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1 Introduction
In this study, we have developed an algorithm
based on Kelley’s cutting plane method to determine
the D-stability of a matrix. This algorithm
aims to present a different approach to stability
analysis techniques. Our method solves a matrix
inequality using simple iterative operations without
requiring direct eigenvalue calculations and the
cases of eigenvalue inclusion in set D. In recent
studies, various methods have been proposed to
address stability problems in linear systems using
advanced optimization techniques and Linear Matrix
Inequalities (LMIs), [1], [2], [3], [4], [5], [6].
The techniques discussed can also be used to solve
robust stability problems for a family of matrices.
This study focuses on the stability region defined
by second-order matrix inequalities (QMIs) and
polynomial functions. Our method addresses the
problem of determining the stability of a matrix
within these regions and the robust stability of a
matrix segment. We tested our method on matrices
and tried to illustrate the effectiveness of the proposed
algorithm using examples.

Determining whether a matrix A ∈ Rn×n is
D-stable is a critical problem in control theory, where
D is a symmetric region of the complex plane C.

A matrix A ∈ Rn×n is said to be D-stable if all
its eigenvalues lie within a specified region D ⊂ C,
[7]. For instance, a matrix is called Hurwitz stable if
all its eigenvalues are in the open left half-plane, i.e.,
D = {z ∈ C : Re(z) < 0}. Hurwitz stability of

a matrix A provides that the continuous-time linear
system described by ẋ = Ax is asymptotically stable.
Similarly, a matrix is called Schur stable if all its
eigenvalues lie inside the open unit disk, i.e., D =
{z ∈ C : |z| < 1}. This stability guarantees that
the discrete-time linear system described by xk+1 =
Axk is asymptotically stable. Likewise, a matrix is
called sector stable if all its eigenvalues lie within a
specified sector in the complex plane. Particularly,
for an angle θ with 0 ≤ θ ≤ π, the sector is defined
asD = {z ∈ C : π−θ < arg(z) < π+θ}. When the
arguments of the eigenvalues of the systemmatrix are
restricted, it gives rise to the sector stability problem
of that matrix.

In [8], the stability region

D = {z ∈ C : a+ b(z + z̄) + czz̄ < 0}

is considered, where a, b, and c are real numbers,
b ≥ 0, c ≥ 0. The authors propose that the problem
can be reduced to the positivity of two specially
constructed determinants in the continuous case. In
contrast, in the discrete-time case, three determinants
are required.

Results on the D-stability of matrices for regions
defined by linear matrix inequalities (LMIs) are
provided in the study, [3]. Specifically, a region D
of the complex plane is defined by

D =
{
z ∈ C : Q+ Sz + ST z̄ +Rzz̄ < 0

}
(1)

for some symmetric matrix Q ∈ Rm×m, a general
matrix S ∈ Rm×m, and a symmetric positive
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semi-definite R ≥ 0 ∈ Rm×m. This is called a
quadratic matrix inequality region (QMI) of orderm.

QMI regions possess crucial characteristics such
as being open, convex, and symmetrical concerning
the real axis. Moreover, since the intersection of
any QMI region results in another QMI region, it
is possible to approximate practically any convex
region in the complex plane using a QMI region.
The following theorem ascertains a criterion for the
D-stability of a matrix A ∈ Rn×n.

Theorem 1 ([3]). A matrixA ∈ Rn×n isD-stable (1)
if and only if there exists a symmetric positive definite
matrix P > 0 of dimension n× n such that

Q⊗P+S⊗(AP )+ST⊗(PAT )+R⊗(APAT ) < 0.
(2)

Here, the symbol ‘⊗’ stands for the Kronecker
product of matrices.

Another region of stability that draws attention
is the region defined by polynomials with real
coefficients in complex variables. In [9], the stability
of a matrix for such defined regions has been
characterized. In [9], the region

D := {z ∈ C | Refi(z) < 0, i = 1, . . . , N} (3)

is considered, where the coefficients of the
polynomial fi(z) are all real. This region is open
and symmetrical about the real axis. The following
theorem suggests a necessary and sufficient condition
for a common positive definite solution to a set of
Lyapunov inequalities for the eigenvalues of a matrix
to lie in D.

Theorem 2 ([9]). A matrix A ∈ Rn×n is D-stable
(3) if and only if there exists a matrix P = P T > 0
satisfying

{fi(A)}T P + Pfi(A) < 0, i = 1, . . . , N. (4)

Consider the switched system

ẋ(t) = Ax(t), A ∈ {A1, A2, . . . , AN} (5)

where x(t) ∈ Rn and t ≥ 0. In (5), the
matrix A switches among N Hurwitz stable matrices
A1, A2, . . . , AN .

A key issue is to determine the existence of a
quadratic Lyapunov function V (x) = xTPx, where
P = P T > 0, such that:

AT
i P + PAi < 0 for all i ∈ {1, 2, . . . , N}. (6)

This function V (x), known as a common quadratic
Lyapunov function (CQLF), guarantees the uniform
asymptotic stability of the switched system.

In [10], the common P > 0 solution of Lyapunov
inequalities given by equation (6) is investigated by
Kelley’s cutting-plane method.

In our research, we discuss the solution of the
inequality system (4) in Theorem 2 using the method
presented in [10]. We will use this method to
determine the D-stability of a matrix A, as given by
equation (3). TheD-stability of matrixA for the QMI
region defined by equation (1) is equivalent to the
LMI problem (2) formulated for this matrix. In our
study, we propose an algorithm to solve this problem.

2 Kelley’s Cutting-Plane Method and
LMI’s

Kelley’s cutting-plane method is an iterative
algorithm for convex optimization problems. The
methodworks by iteratively refining a feasible region,
using linear hyperplanes to exclude regions that do
not contain the optimal solution. At each iteration,
a subgradient of the objective function is computed,
and the algorithm checks whether the current
solution encounters the stopping criterion. If not, a
new hyperplane is added, and the process continues
until convergence. This method is particularly useful
for solving linear matrix inequalities (LMIs) in
D-stability problems.

Let x ∈ Rr be xT = (x1, x2, . . . , xr) and P be an
n× n symmetric matrix defined as

P = P (x) =


x1 x2 · · · xn
x2 xn+1 · · · x2n−1
...

...
...

xn x2n−1 · · · xr

 , (7)

with r = n(n+ 1)/2.
For the inequalities involving the matrix P

linearly, as in (2) or (4), let us define the symmetric
matrices

M(x) := Q⊗ P + S ⊗ (AP ) + ST ⊗ (PAT )+

R⊗ (APAT ), (8)

and

L(x, i) := {fi(A)}T P + Pfi(A),

i = 1, 2, . . . , N. (9)

The function λmax(A) for a symmetric matrix A
represents the largest eigenvalue of the matrix A.
Define

ϕM (x) = λmax(M(x))
= max

∥u∥=1
uTM(x)u. (10)
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and

ϕL(x) = max
1≤i≤N

λmax(L(x, i))

= max
1≤i≤N,∥u∥=1

uTL(x, i)u.
(11)

We consider two problems:

1) Is thereP > 0 such thatM(x) < 0 (referred to as
(2))? If there exists a point x̃ such that P (x̃) >
0 and ϕM (x̃) < 0, then the matrix P (x̃) is the
solution we are pursuing.

2) Is there a common matrix P > 0 such that
L(x, i) < 0 for all i = 1, 2, . . . ,m (referred to as
(4))? If there exists a point x̂ such that P (x̂) > 0
and ϕL(x̂) < 0, then P (x̂) satisfies the necessary
conditions.

These problems can be reduced to minimizing a
convex function under convex constraints.

Consider the following convex minimization
problem:

ϕ(x) → minimize
min
∥v∥=1

vTP (x)v > 0 . (12)

Assume X ⊂ Rn is a convex set and F : X → R
is a convex function. We say that a vector g ∈ Rn

is a subgradient of F (x) at x∗ ∈ X if the following
inequality holds for every x ∈ X:

F (x) ≥ F (x∗) + gT (x− x∗).

The collection of all subgradients of F (x) at x∗ is
represented by ∂F (x∗). If x∗ is an interior point ofX ,
then the set ∂F (x∗) is guaranteed to be nonempty and
convex. The subsequent proposition follows from the
theory of nondifferentiable optimization.

Proposition 3 ([10]). Define ϕ(x) as follows:

ϕ(x) = max
y∈Y

f(x, y) (13)

where Y is a compact set, and f(x, y) is continuous
and differentiable with respect to x. Then,

∂ϕ(x) = conv
{
∂f(x, y)

∂x
: y ∈ Y (x)

}
where Y (x) is the set of all maximizing elements y in
(13), that is,

Y (x) = {y ∈ Y : f(x, y) = ϕ(x)} .

For a given x, if the the maximizing element
is unique, i.e. Y (x) = {y(x)} then ϕ(x) is
differentiable at x and its gradient is

∇ϕ(x) =
∂f(x, y(x))

∂x

For the function ϕM (x) as defined in (10):

∂ϕM (x) = conv
{

∂

∂x

(
uTM(x)u

)
: u is a unit

eigenvector corresponding to λmax(M(x))} . (14)
Similarly, for the function ϕL(x) as defined in (11):

∂ϕL(x) = conv
{

∂

∂x

(
uTL(x, i)u

)
: i maximizes

λmax(L(x, i)), u is a corresponding unit
eigenvector} . (15)

If the maximizing value of i for the given x is unique
and λmax(L(x, i)) is a simple eigenvalue, then the
differentiability of ϕL at the point x is guaranteed,
[11].

We examine problem (12) using Kelley’s
cutting-plane method

Kelley’s method reformulates problem (12) as
follows:

cT z → min
c1(z) ≥ 0,
c2(z) ≥ 0,

−1 ≤ xi ≤ 1 (i = 1, 2, . . . , r)

(16)

where z = (x1, x2, . . . , xr, L)
T , c = (0, . . . , 0, 1)T ,

c1(z) = L− ϕ(x), and c2(z) = min
∥v∥=1

vTPv.

Let z0 be a starting point and z0, z1, . . . , zk be k+
1 distinct points. (Here zk denotes the point at the
k-th iteration.)

At the (k + 1)th iteration, the cutting-plane
algorithm solves the following LP problem

minimize L
subject to −hT1 (z

0)z ≥ −hT1 (z
0)z0 − c1(z

0)
−hT2 (z

0)z ≥ −hT2 (z
0)z0 − c2(z

0)
...

−hT1 (z
k)z ≥ −hT1 (z

k)zk − c1(z
k)

−hT2 (z
k)z ≥ −hT2 (z

k)zk − c2(z
k)

−1 ≤ xi ≤ 1
(17)

where hj(z
i) denotes a subgradient of −cj(z) at zi

(j = 1, 2).
Let zk∗ be the minimizer of the problem (17).
If zk∗ satisfies the inequality

min{c1(zk∗ ), c2(zk∗ )} ≥ −ε,

where ε is a tolerance, then zk∗ is considered an
approximate solution to the problem in (16).

If this condition is not satisfied, we define j∗ as
the index of the most negative cj(z

k
∗ ). Update the

constraints in (17) by adding the linear constraint:

cj∗(z
k+1)− hTj∗(z

k+1)(z − zk+1) ≥ 0, (18)
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then repeat the process.
Remember, our objective is to find x∗ such that

P (x∗) > 0 and ϕ(x∗) < 0, rather than solving the
minimization problem (12), (16).

Theorem 4 ([10]). If there exists a k such that:

c1(z
k
∗ ) > Lk and c2(z

k
∗ ) > 0,

where zk∗ = (xk∗, L
k) is the minimizer of the problem

(17), then the matrix P = P (xk∗) is a solution to (12).

This algorithm can be adapted to our problem as
follows:

Algorithm 1.

(1) Select an initial point z0 = (x0, L0)T .
Compute ϕ(x0) and c2(z0).
If ϕ(x0) < 0 and c2(z0) > 0, terminate;
Otherwise, continue to the next step.

(2) Find zk∗ by solving the LP problem in (17).
If c1(zk∗ ) > Lk and c2(zk∗ ) > 0, terminate;
Otherwise, proceed.
Set zk+1 = zk∗ , update the constraints in (17) and
repeat the procedure.

We will present applications of Kelley’s method to
D-stability problems.

3 Examples and Applications
We demonstrate the D-stability of a matrix A using
Algorithm 1, where the set D is defined as a QMI
region given by equation (1) and a region defined
by equation (3), respectively. In the proposed
method, we calculate the subgradient of the convex
function by using the maximal eigenvalue and its
corresponding eigenvector. We then update the set of
constraints (17) for the linear programming problem.
This approach requires fewer operations than other
methods, reducing computational complexity.

Example 1. Let us consider the set D defined by
equation (2) with the following matrices (see, [3]):

Q =

−1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , R =

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


S =


0 0 0 0
0 1 0 0
0 0 1/

√
2 1/

√
2

0 0 −1/
√
2 1/

√
2

 ,

This D ⊂ C region is as shown in Fig. 1. Given the

0.5

1.0

−0.5

−1.0

0.5 1.0−0.5−1.0

x

y

Fig. 1: Region D in Example 1.

matrix A as:

A =

[−2.369 5.297 5.225
−1.351 2.481 3.445
0.684 −1.148 −2.112

]
.

If we take the initial point as

z0 = (x01, x
0
2, x

0
3, x

0
4, x

0
5, x

0
6, L

0)T

= (1, 0, 0, 1, 0, 1, 1)T ,

then

P (x0) =

[
1 0 0
0 1 0
0 0 1

]
.

Applying Algorithm 1, in the first step, we
find c1(z

0) = −84.342, c2(z
0) = 1, and

ϕM (x0) = λmax(M(x0)) = 85.342 > 0.
Solving the LP problem (17) yields z1 =
(−1, 1, 1,−1,−1, 0,−191.062)T . Calculations
give the following Table 1.

Table 1. Iterative Results of Kelley’s Method for
                                  Example 1

k Lk c1(z
k) c2(z

k)
1 -19.772 -220.596 -2.732
2 -2.693 -21.071 -2.125
3 -1.353 -10.277 -0.361
...

...
...

...
32 -0.000826 -0.001011 0.000587
33 -0.000826 -0.000802 0.000526

z33 = (x33, L33)T

= (1, 0.322, 0.018, 1,−0.849, 0.818,−0.000826)T .

Since ϕM (x33) = L33 − c1(z
33) = −0.000024 < 0

and λmax(P (x0)) = c2(z
33) = 0.000526 > 0, the
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inequality (2) in Theorem 1 is satisfied for the matrix

P (x33) =

[
1 0.322 0.018

0.322 1 −0.849
0.018 −0.849 0.818

]
,

which means M(x33) < 0. Therefore, all the
eigenvalues of the matrix A are within the D defined
here, indicating that the matrix A is D-stable.

Example 2 ([9]). Let f1(z) = z, f2(z) = −z2 and
f3(z) = −z3. Define

D1 = {z ∈ C : Ref1(z) < 0,Re f2(z) < 0 },
D2 = {z ∈ C : Ref1(z) < 0,Re f3(z) < 0 }.

Consider stability region D = D1 ∩ D2 in Fig. 2.

1

2

3

−1

−2

−3

1−1−2

x

y

D1 1

2

3

−1

−2

−3

1−1−2

x

y

D2

1

2

3

−1

−2

−3

1−1−2

x

y

D = D1 ∩ D2

Fig. 2: Regions: D 1, D2 and D.

In [9], the D-stability of

A =

 −94.7 −47.1 −41.1 −2.3
15.2 −46.9 3.0 −7.6
121.0 77.9 46.3 9.1
−116.9 65.2 −54.6 −4.7


is considered. It has been solved with an algorithm
based on the Schur decomposition method. Here we

solve the D-stability of this matrix using the Kelley’s
method. The polynomials

f1(z) = z, f2(z) = −z2, f3(z) = −z3

define the boundaries of the D region, ensuring that
the eigenvalues of the matrix A lie within this sector.

According to Theorem 2 in [9], to ensure the D
stability of the matrixA, we need to find a symmetric
positive definite matrix P such that the following
matrix inequalities are satisfied:

f1(A)TP + Pf1(A) < 0,
f2(A)TP + Pf2(A) < 0,
f3(A)TP + Pf3(A) < 0,

(19)

that is,
ATP + PA < 0
(−A2)TP + P (−A2) < 0,
(−A3)TP + P (−A3) < 0.

These inequalities ensure that thematrixA isD-stable
with a common positive definite matrix P .

Using the Kelley’s method, we iterate to find a
common positive definite matrix P that satisfies the
stability conditions for the given matrices. Starting
z0 = (1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1), that is P (x0) is
a identity matrix, after 111 iterations, we find the
solution (see Table 2). Calculations give

Table 2. Iterative Results of Kelley’s Method for
                                 Example 2

k Lk c1(z
k) c2(z

k)
0 −1.53× 106 −3.603× 105 1
1 −3.94× 105 −2.087× 106 -3.402
2 −2.34× 105 −5.218× 105 -2
3 −31924.888 −2.586× 105 -0.523
...

...
...

...
110 -11.732012 -18.400783 0.006
111 -11.732012 -11.301216 0.007

z111 = (x111, L111)T

= (1,−0.305, 0.563,−0.081, 1,−0.091,
0.240, 0.343,−0.009, 0.099,−11.732012)T .

Since ϕL(x
111) = L111 − c1(z

111) = −0.430796 <
0 and c2(z

111) = 0.007 > 0, the positive definite
matrix

P (x111) =

 1 −0.305 0.563 −0.081
−0.305 1 −0.091 0.240
0.563 −0.091 0.343 −0.009
−0.081 0.240 −0.009 0.099


is a common solution to (19) and L(x111, i) < 0 for
i = 1, 2, 3.
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Using Kelley’s method, we obtained a common
positive definite matrix P that solves the matrix
inequalities derived from A. As a result, matrix A
is D-stable. The results shown in Fig. 2 demonstrate
the robustness of our solution by verifying that the
eigenvalues of the matrix are within the defined
stability region D.

The examples above show how effective Kelley’s
method is in solving stability problems for matrices
within complex D regions. Our proposed algorithm
also has an advantage over other optimization
methods in determining the common positive solution
(if it exists) for the matrix inequalities. Kelley’s
cutting-plane method found a solution matrix that
confirmed the stability of the given matrices within
the defined D region. This was affirmed through
multiple iterations, where the eigenvalues of the
matrix remained within the defined stability region.

4 The D-stability of One-parameter
Matrix Families

Let A1, A2 ∈ Rn be D-stable matrices. The set of
their convex combinations is defined as

A = {A(α) = (1−α)A1+αA2 : α ∈ [0, 1]}. (20)

If A(α) is D-stable for every α ∈ [0, 1], then the
matrix family A is called robustly D-stable.

In this section, we will handle the problem of the
robust stability of the one-parameter matrix familyA.

Theorem 5. The family of matrices A in equation
(20) is robustly D-stable if and only if there exists a
symmetric positive definite matrix P (α) > 0 for each
α ∈ [0, 1], such that

Q⊗P (α)+S⊗(A(α)P (α))+ST⊗(P (α)A(α)T )+

R⊗ (A(α)P (α)A(α)T ) < 0. (21)

Determining the D-stability of the matrix family
A (20) involves finding a matrix P (α) > 0 that
satisfies the matrix inequality in the Theorem 5 for
every α ∈ [0, 1], which can be a challenging task.
Despite producing conservative results, we present
the following theorem because of its applicability and
relevance to our problem.

Theorem 6. Let A be a given matrix family. If there
exists a symmetric positive definite matrix P > 0 of
dimension n× n such that for each α ∈ [0, 1],

Q⊗ P + S ⊗ (A(α)P )+

ST ⊗ (PA(α)T )+

R⊗ (A(α)PA(α)T ) < 0, (22)

then the matrix family A is robustly D-stable.

In the Theorem 6, the requirement for the
existence of a positive definite matrix P > 0, which
satisfies the matrix inequality (22) for every α ∈
[0, 1], introduces a level of conservatism. However,
this theorem can still be applied to solve the robust
D-stability problem of a one-parameter matrix family
A.

Let

M(x, α) := Q⊗ P + S ⊗ (A(α)P )+

ST ⊗ (PA(α)T ) +R⊗ (A(α)PA(α)T ).

Define

ϕM (x) = max
0≤α≤1

λmax(M(x, α))

= max
0≤α≤1,∥u∥=1

uTM(x, α)u.
(23)

If there exists a point x̃ such that P (x̃) > 0 and
ϕM (x̃) < 0, then A is robustly D-stable.

To overcome the computational challenge of
calculating

max
0≤α≤1

λmax(M(x, α))

for α ∈ [0, 1], we divide the interval [0, 1] into k parts
and let

αi =
i

k
(i = 0, 1, 2, . . . , k)

then

ϕM (x) ≈ FM (x) := max
0≤i≤k,∥u∥=1

uTM(x, αi)u.

For this value of k, if there exists a point x̃ such that
P (x̃) > 0 and FM (x̃) < 0, and if the inequality
ϕM (x̃) < 0 is satisfied, then we have obtained the
solution to our problem. If the inequality is not
satisfied, we proceed with a larger value of k and
continue this procedure.

Example 3. Consider the set D given in Example 1.
Let

A1 =

[−2.369 5.297 5.225
−1.351 2.481 3.445
0.684 −1.148 −2.112

]

and

A2 =

[−0.83 0.02 −0.01
−0.07 −0.78 −0.01
0.06 −0.01 −0.82

]
be D-stable matrices (Fig. 3).

Starting from the initial point

z0 = (x01, x
0
2, x

0
3, x

0
4, x

0
5, x

0
6, L

0)T

= (1, 0, 0, 1, 0, 1, 1)T ,
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1.0

−0.5
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x

y

Fig. 3: The eigenvalues of matrix A1 are shown
with circles, and the eigenvalues of matrix A2 are
shown with points.

and applying Algorithm 1, in the first step we obtain

FM (x0) = max
0≤i≤k,∥u∥=1

uTM(x, αi)u = 85.342 > 0.

When the LP problem (17) is solved, the point
z1 = (−1, 1, 1,−1,−1, 0,−191.062)T is obtained.
Continuing this process, after 55 iterations we find

z55 = (x551 , x552 , x553 , x554 , x555 , x556 , L55)T

= (1,−0.0072, 0.3432, 0.2489,−0.2329,
0.3331,−0.0003)T .

For this point, P (x55) > 0 and FM (x55) =
−0.000025 < 0.

By examining the signs of the principal minors of
M(x55, α) for each α ∈ [0, 1], it is concluded that
M(x55, α) < 0. Therefore, according to Theorem
5.2 the matrix family A = {(1− α)A1 + αA2 : α ∈
[0, 1]} is robustly D-stable (Fig. 4).

5 Conclusion
This study inspected the stability of a matrix within
symmetric regions of the complex plane defined by
quadratic matrix inequalities (QMI) and polynomial
functions using Kelley’s cutting-plane method. We
proposed an algorithm to efficiently determine the
D-stability of matrices, with examples demonstrating
its effectiveness.

We also addressed the robust D-stability of
one-parameter matrix families, providing theoretical
results and computational techniques. To address the
inherent conservatism in the D-stability analysis, we

0.5

1.0

−0.5

−1.0

0.5 1.0−0.5−1.0

x

y

Fig. 4:   The set of eigenvalues of the matrices in the
set A.

plan to consider in future work the matrix P (α) as
P (α) = (1 − α)P1 + αP2, where P1 and P2 are
the matrices to be determined. This approach has
the potential to reduce the conservatism associated
with stability conditions and produce more accurate
results.
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