
Optimal System for non-linear Burger equation ut = uxx + uux.

Abstract: The paper discusses the optimal system for a nonlinear Burger equation whose coefficients are dependent
on first order spatial derivatives. The main purpose for the project is to determine the optimal system for the oper-
ators accepted by the equation. We construct the principal Lie algebra, calculate transformations for the generators
which provide one-parameter group of transformations for the operator using Lie equations. We construct optimal
systems for the equation where the method requires a simplification of a vector to a general form for each of the
transformations of the generators. These are finally used to determine invariant solutions for some operators.
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1 Introduction
The Burger’s equation

ut = uxx + uux (1)

is a basic non-linear partial differential equation that
is used to model propagation of shocks and solitons,
[1]. It also appears in many other applications includ-
ing plasma physics, non-linear harmonics and traf-
fic flow, [2]. Lie group method is one of most effi-
cient computational methods to obtain exact analytic
as well as invariant solutions of nonlinear partial dif-
ferential equations. It was pioneered by Sophus Lie
in the 19th century (1849-1899), [2].An optimal rep-
resent the best or most favoured. In the context of
the project, the optimal system seek to determine the
minimal representation of the operators accepted by
the nonlinear Burger equation. An optimal system
of one-dimensional subalgebras is constructed using
Lie vectors. Optimal system of symmetry subalge-
bras is important in producing possible invariant solu-
tions through through Lie symmetry simplification or
reduction, [3]. The results of other work on symme-
try method have been captured in several outstanding
literary, works, [4], [5], [6], [7].

The optimal systems for a general Burger’s equa-
tion

ut = f(x, u)u2
x + g(x, u)uxx

was determined by the method of symmetry group
classification, [8]. The present work discusses the

optimal system of the nonlinear partial differential
equation (1). In this work we use the results of one-
dimensional optimal systems to calculate the invariant
solutions of some examples. The method followed in
the construction of the one-dimensional optimal sys-
tems is found in [3].

In this paper while constructing the principal Lie
algebra, we also show how to determine the Lie
point symmetries of (1). We proceed to construct
transformations for the generators which provide one-
parameter group of transformations for the operator
using Lie equations, [9], [10]. We also show the
method of determining invariant solutions,[6], [7].
The paper also illustrates the construction of one-
dimensional optimal systems of principal Lie algebras
L5. We conclude by calculating invariant solutions of
some one-dimensional subalgebras of each extended
algebra L5.

2 Symmetries of the Burgers equa-
tion

The Burgers equation is given by (1) in which the de-
pendent variable is u and independent variables t and
x.
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2.1 Prolongation formulas

Given that x and t are two independent variables, and
u a differential variable, then the total derivatives are
defined by

Dx =
∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux
+ uxt

∂

∂ut
+ · · · .

Dt =
∂

∂t
+ ut

∂

∂u
+ uxt

∂

∂ux
+ utt

∂

∂ut
+ · · · .

The infinitesimal generator X is given by

X = T (t, x, u)
∂

∂t
+ ξ(t, x, u)

∂

∂x
+ (fu+ g)

∂

∂u
, (2)

where X [2] is the second prolongation of X and is
given by

X(2) = X + ζ1
x

∂

∂ux
+ ζ1

t

∂

∂ut
+ ζ2

xx

∂

∂uxx
(3)

+ ζ2
tx

∂

∂uxt
+ ζ2

tt

∂

∂utt
.

The coefficients ζ1
x, ζ

1
t , ζ

2
tt, ζ

2
tx and ζ2

xxare given by

ζ1
x = Dx(fu+ g)− uxDx(ξ)− utDx(T )

= gx + ufx + ux(f − ξx)− utTx,
ζ1
t = Dt(fu+ g)− uxDtξ − utDtT

= gt + uft + ut(f − Tt)− uxξt.

ζ2
xx = Dx(ζ1

x)− uxxDx(ξ)− uxtDx(T )

= gxx + ufxx + ux(2fx − ξxx)− utTxx
+uxx(f − 2ξx)− 2utxTx,

ζ2
tx = Dt(ζ

1
x)− uxxDt(ξ)− uxtDt(T )

= gxt + ufxt + ux(ft − ξxt)− ut(fx − Txt)
+ξtuxx + utx(f − ξx − Tt)− uttTx,

ζ2
tt = Dt(ζ

1
t )− uxtDt(ξ)− uttDt(T )

= gtt + uftt + ux(ξtt)− ut(2ft − Ttt)
+utt(f − 2Tt)− 2utxξt.

2.2 Determination of symmetries Burgers
equation

We solve the determining equations for symmetries of
the Burgers equation (1). The determining equation is
determined from the invariance condition(

T (t, x, u)
∂

∂t
+ ξ(t, x, u)

∂

∂x
+ (fu+ g)

∂

∂u

+ζ1
x

∂

∂ux
+ ζ1

t

∂

∂ut
+ ζ2

tt

∂

∂utt
+ ζ2

tx

∂

∂utx

+ζ2
xx

∂

∂xx

)(
ut − uxx − uux

)∣∣∣
ut=uxx+uux

= 0,

or equivalently

(ζ1
t − ζ2

xx − uζ1
x − ux(fu+ g))

∣∣∣
ut=uxx+uux

= 0, (4)

After substituting for ζ1
t ,ζ1

x , ζ2
xx and ut = uxx + uux

in equation (4), we obtain

gt + uft + (uxx + uux)(f − Tt) (5)
−uxξt − gxx − ufxx
−ux(2fx − ξxx) + (uxx + uux)Txx

−uxx(f − 2ξx) + 2utxTx

−ugx − u2fx − uux(f − ξx)

+(uxx + uux)Tx − uuxf − uxg = 0.

Separation of coefficients in equation (5) yields

C : gt = 0, (6)
u : ft − fxx − gx = 0, (7)
u2 : fx = 0, (8)
ux : −uTt + ξxx + uξx − uf − g − ξt = 0,(9)
uxx : Tx + 2ξx − Tt + Txx = 0. (10)
utx : Tx = 0. (11)

Integrating (11) with respect to x results into

T = a(t) (12)

Substituting for T in (10) and integrating with respect
to x results in that

ξ =
1

2
atx+ b(t), (13)

Differentiating (13) with respect to t we have that

ξt =
1

2
attx+ bt. (14)

The determining equation (9) splits into

ξxx − g − ξt = 0 (15)
−Tt + ξx − f = 0 (16)

After differentiating equation (14) with respect to t,
and applying equation (6) we obtain that

ξtt =
1

2
atttx+ btt = 0, (17)

whence attt = 0 and btt = 0, and thus we have that

a(t) = C1t
2 + 2C2t+ C3, b(t) = C4t+ C5. (18)

It follows from equation (15) that

g = −ξt = −1

2
attx− bt = −C1x− C4 (19)
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We also have equation (16) which determines that the
function f is given by

f = Tt − ξx = −1

2
at(t) = −C1t− C2 (20)

The infinitesimals are

T = C1t
2 + 2C2t+ C3, (21)

ξ = C1tx+ C2x+ C4t+ C5, (22)
η = −(C1t+ C2)u− C1x− C4 (23)

2.2.1 Symmetries

For the symbol of infinitesimal transformation or the
generator,

X = (T )
∂

∂t
+ (ξ)

∂

∂x
+ (fu+ g)

∂

∂u

the corresponding symmetries are given by

X1 = t2
∂

∂t
+ tx

∂

∂x
− (x+ tu)

∂

∂u
, (24)

X2 = 2t
∂

∂t
+ x

∂

∂x
− u ∂

∂u
, (25)

X3 =
∂

∂t
, (26)

X4 = t
∂

∂x
− ∂

∂u
, (27)

X5 =
∂

∂x
. (28)

2.3 Commutator Table

Considering the operators

Xa = Ta
∂

∂t
+ ξa

∂

∂x
+ ηa

∂

∂u

Xb = Tb
∂

∂t
+ ξb

∂

∂x
+ ηb

∂

∂u

The commutator [Xa, Xb] of operators (24) to (28) is
a linear operator defined by the formula

[Xa, Xb] = XaXb −XbXa

Furthermore we define

[Xa, Xb] = (Xa(Tb)−Xb(Ta))
∂

∂t

+ (Xa(ξb)−Xb(ξa))
∂

∂x

+ (Xa(ηb)−Xb(ηa))
∂

∂u

As an illustration we determine the commutator

[X2, X3] = (X2(1)−X3(2t))
∂

∂t
(29)

+ (X2(0)−X3(x))
∂

∂x

+ (X2(0)−X3(0))
∂

∂u

= −2
∂

∂t
= −2X3

The complete drawn out Τable of commutators is given
 Table 1. 

Table 1: Commutator Table of operators

[, ] X1 X2 X3 X4 X5

X1 0 −2X1 −X2 0 −X4

X2 2X1 0 −2X3 X4 −X5

X3 X2 2X3 0 X5 0

X4 0 −X4 −X5 0 0

X5 X4 X5 0 0 0

The Lie Algebra L5 spanned by the symmetries
(24 - 28) provide a possibility of finding invariant so-
lutions of equation (1) based on any one-dimensional
subalgebra of the algebra L5, i.e. on any operator
X ∈ L5. However, there are an infinite number of
one-dimensional subalgebra of the algebra L5, since
an arbitrary operator from L5 is expressed as

X = l1X1 + l2X2 + ...+ l5X5 (30)

which depends upon arbitrary constants l1, l2, ..., l5.

2.4 Construction of an optimal system of
one-dimensional subalgebras.

The construction of optimal system of one-
dimensional subalgebras of Lie Algebra L5 follow
from the method in [3]. The transformations of the
symmetry group with Lie algebra L5 provide the 5 -
parameter group of transformations of the operators
X ∈ L5 or, equivalently, linear transformations of the
vector

l = (l1, l2, ..., l5) (31)

To determine linear transformations we use their gen-
erators

Eα = ciαβXi i = 1, 2, 3, 4, 5.
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and the structure constant of the Lie Algebra L5 is
given by ciαβ which is defined by

[Xα, Xβ] = ciαβXi

Case 1: For α = 1, we have

E1 = ci1βl
β ∂

∂li

where ciαβ the structure constant of the Lie Algebra
L5 is given by

[X1, Xβ] = ci1βXi

Setting β = 2, we have i = 1. That is row (1) column
(2) from the commutator table, we have that

[X1, X2] = c1
12X1

The non-vanishing structure constant is

c1
12 = −2

Setting β = 3, we have i = 2. That is row (1) column
(3) from the commutator table, we have that

[X1, X3] = c2
13X2

The non-vanishing structure constant is

c2
13 = −1

Setting β = 5, we have i = 4. That is row (1) column
(5) from the commutator table, we have that

[X1, X5] = c4
15X4

The non-vanishing structure constant is

c4
15 = −1

From equation (2.4) we have that

E1 = c1
12l

2X1 + c2
13l

3X2 + c5
15l

5X4

Thus we have that

E1 = −2l2
∂

∂l1
− l3 ∂

∂l2
− l5 ∂

∂l4
(32)

Case 2: For α = 2, we have

E2 = ci2βl
β ∂

∂li

where ciαβ the structure constant of the Lie Algebra
L5 is given by

[X2, Xβ] = ci2βXi

Setting β = 2, we have i = 1. That is row (2) column
(1) from the commutator table, we have

[X2, X1] = c1
21X1

The non-vanishing structure constant is

c1
21 = 2

Setting β = 3, we have i = 3. That is row (2) column
(3) from the commutator table, we have that

[X2, X3] = c3
23X3

The non-vanishing structure constants are

c3
23 = −2

Setting β = 4, we have i = 4. That is row (2) column
(4) from the commutator table, we have that

[X2, X4] = c4
24X4

The non-vanishing structure constant is

c4
24 = 1

Setting β = 5, we have i = 5. That is row (2) column
(5) from the commutator table, we have that

[X2, X5] = c5
25X5

The non-vanishing structure constant is

c5
25 = −1

From equation (2.4) we have that

E2 = c1
21l

1X1 + c3
23l

3X3 + c4
24l

4X4 + c5
25l

5X5

Thus we have that

E2 = 2l1
∂

∂l1
− 2l3

∂

∂l3
+ l4

∂

∂l4
− l5 ∂

∂l5

Case 3: For α = 3, we have

E3 = ci3βl
β ∂

∂li

where ciαβ the structure constant of the Lie Algebra
L5 is given by

[X3, Xβ] = ci3βXi

Setting β = 1, we have i = 2 That is row (3) column
(1) from the commutator table, we have that

[X3, X1] = c2
31X2

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2024.23.59 Tshidiso Masebe , Peter Mathye

E-ISSN: 2224-2880 564 Volume 23, 2024



The non-vanishing structure constant is

c2
31 = 1

Setting β = 2, we have i = 3. That is row (3) column
(2) from the commutator table, we have that

[X3, X2] = c3
32X3

The non-vanishing structure constant is

c3
32 = 2

Setting β = 4, we have i = 5. That is row (3) column
(4) from the commutator table, we have that

[X3, X4] = c5
34X5

The non-vanishing structure constant is

c5
34 = 1

From equation (2.4) we have that

E3 = c2
31l

1X2 + c3
32l

2X3 + c5
34l

4X5

Thus we have that

E3 = l1
∂

∂l2
+ 2l2

∂

∂l3
+ l4

∂

∂l5

Case 4: For α = 4, we have

E4 = ci4βl
β ∂

∂li

where ciαβ the structure constant of the Lie Algebra
L5 is given by

[X4, Xβ] = ci4βXi

Setting β = 2, we have i = 4. That is row (4) column
(2) from the commutator table, we have that

[X4, X2] = c4
42X4

The non-vanishing structure constants are

c4
42 = −1

Setting β = 3, we have i = 5. That is row (4) column
(3) from the commutator table, we have that

[X4, X3] = c5
43X5

The non-vanishing structure constant is

c5
43 = −1

From equation (2.4) we have that

E4 = c4
42l

2X4 + c5
43l

3X5

Thus we have that

E4 = −l2 ∂

∂l4
− l3 ∂

∂l5

Case 5: For α = 5, we have

E5 = ci5βl
β ∂

∂li

where ciαβ the structure constant of the Lie Algebra
L5 is given by

[X5, Xβ] = ci5βXi

Setting β = 1, we have i = 4. That is row (5) column
(1) from the commutator table, we have that

[X5, X1] = c4
51X4

The non-vanishing structure constants are

c4
51 = 1

Setting β = 2, we have i = 5. That is row (5) column
(2) from the commutator table, we have that

[X5, X2] = c5
52X5

] The non-vanishing structure constant is

c5
52 = 1

From equation (2.4) we have that

E5 = c4
51l

1X4 + c5
52l

2X5

Thus we have that

E5 = l1
∂

∂l4
+ l2

∂

∂l5

In summary we have the following linear transforma-
tions

E1 = −2l2
∂

∂l1
− l3 ∂

∂l2
− l5 ∂

∂l4
, (33)

E2 = 2l1
∂

∂l1
− 2l3

∂

∂l3
+ l4

∂

∂l4
− l5 ∂

∂l5
, (34)

E3 = l1
∂

∂l2
+ 2l2

∂

∂l3
+ l4

∂

∂l5
, (35)

E4 = −l2 ∂

∂l4
− l3 ∂

∂l5
, (36)

E5 = l1
∂

∂l4
+ l2

∂

∂l5
(37)
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2.5 Construction of Lie Equations

We determine the transformations provided by the
generators (33) to (37). For the generator E1, the Lie
equations for the parameter a1 are written

dl̄1

da1
= −2l̄2

dl̄2

da1
= −l̄3 (38)

dl̄4

da1
= −l̄5 dl̄5

da1
= 0

dl̄3

da1
= 0

We integrate all five equations of (38) using the initial
condition

l̄|a1=0 = l (39)

We proceed as follows. For E1 we have that

dl̄3

da1
= 0

⇒ l̄3 = l3; dl̄5

da1
= 0

⇒ l̄5 = l5;
dl̄2

da1
= −l̄3 ⇒ l̄2 = −l3a1 + l2;

dl̄1

da1
= −2[−l3a1 + l2]

⇒
∫
dl̄1 =

∫
{2l3a1 − 2l2}da1

⇒ l̄1 = l3a2
1 − 2a1l

2 + l1;

⇒ l̄4 = −l5a1 + l4; l̄5 = l5

Thus for E1 we have the following transformations

l̄1 = l3a2
1 − 2a1l

2 + l1; l̄2 = −l3a1 + l2; (40)
l̄3 = l3 l̄4 = −l5a1 + l4; l̄5 = l5

For the generator E2 we have the transformations

l̄1 = l1a2
2; l̄2 = l2; l̄3 = l3a−2

2 (41)

l̄4 = l4a2; l̄5 = −l5a2.

For the generator E3 we have the transformations

l̄1 = l1; l̄2 = l1a3 + l2; l̄3 = l1a2
3 + 2l2a3 + l3; (42)

l̄4 = l4; l̄5 = l4a3 + l5.

For the generator E4 we have the transformations

l̄1 = l1; l̄2 = l2; l̄3 = l3; (43)
l̄4 = −l2a4 + l4; l̄5 = −l3a4 + l5.

For the generator E5 we have the transformations

l̄1 = l1; l̄2 = l2; l̄3 = l3; (44)
l̄4 = l1a5 + l4; l̄5 = l2a5 + l5.

2.6 One functionally independent invariant

The assertion that the 5 × 5 matrix ||cλµν lν || of coef-
ficients of operators (33) to (37) has rank four, means
that the transformations (40) to (44) have precisely
one functionally independent invariant. The integra-
tion of the equations (33) to (37)

Eµ(J) = 0 µ = 1, 2, 3.., 5 (45)

will help determine the invariant. From equation (33)
we have

E1(J) = −2l2
∂J

∂l1
− l3 ∂J

∂l2
− l5 ∂J

∂l4
= 0 (46)

The characteristic equation of equation (46) is given
by

dl1

−2l2
=
dl2

−l3
=
dl4

−l5
(47)

Solving the linear equation

dl1

−2l2
=
dl2

−l3
(48)

yields that
C = (l2)2 − l1l3

Similarly from (35) we have

E3(J) = l1
∂J

∂l2
+ 2l2

∂J

∂l3
+ l4

∂J

∂l5
= 0 (49)

The characteristic equation of equation (49) is given
by

dl2

l1
=
dl3

2l2
=
dl5

l4
(50)

Solving the linear equation

dl2

l1
=
dl3

2l2
(51)

yields that
C = (l2)2 − l1l3

A similar integration with equations (34) and (36) will
yield that l1l3 = l4l5 = C, l4l3 − l1l5 = C etc.
The logical conclusion is that the transformations (40)
to (44) have one functionally independent invariant
given by

J = (l2)2 − l1l3 (52)

This invariant helps to simplify the vector used to de-
termine the optimal system. We can exclude the oper-
ator X1 from the operators providing for the optimal
system where possible. This is done by eliminating l̄1
from the transformations of the optimal system from
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transformation (40). To accomplished this we solve
the quadratic equation

l3a2
1 − 2l2a1 + l1 = 0

for a1 from the transformation (40). The results is that

a1 =
l2 ±
√
J

l3
(53)

where J is given by equation (52). We apply equation
(53) only if J ≥ 0.

The method to determine the optimal system re-
quires the simplification of the vector (31) by means
of transformations (40) to (44).

2.7 Cases

The construction of optimal system is divided into
several cases.

(1) The case l3 = 0. We subdivide this into cases
namely (a) l3 = 0 , l2 6= 0 and (b) l3 = 0 , l2 =
0.

(a) We discuss the case when l3 = 0, l2 6= 0.
The vector (30) takes the form

(l1, l2, 0, l4, l5), where l2 6= 0.

We use l2 to reduce the given vector (31). From
equation (40) if we set a1 = l1

2l2
, then l1 = 0.

The vector reduces to

(0, l2, 0, l4, l5)

Since l2 6= 0 then from equation (43) we have
l̄4 = −l2a4 + l4. Setting a4 = l4

l2
, we have that

l4 = 0. If we let a5 = l4

l2
from equation (44) in

l̄5 = l2a5 + l5, we get l5 = 0. The vector (31)
reduces to

(0, l2, 0, 0, 0)

Since l2 6= 0 we can divide the vector (31) by
l2 and obtain the following representation for the
optimal system

X2 (54)

(b) The case l3 = 0, l2 = 0. results in the the vector
(31) taking the form

(l1, 0, 0, l4, l5)

If l1 6= 0 we use transformation (43) with a4 =

− l4

l1
, and have that l4 = 0. The vector (31) re-

duces to
(l1, 0, 0, 0, l5, 0)

. If l5 6= 0, we can assume that l5 = 1, use
transformation (41) and make l1±1. Taking into
account the possibility that l5 = 0, we thus ob-
tain the following representation for the optimal
system

X5, X1 +X5, X1 −X5 (55)

If l5 = 0 and l1 6= 0, we set l1 = 1. We apply
transformation (44) with a5 = −l4 and obtain
the vector

(1, 0, 0, 0, 0)

If l1 = 1, we get the vector

(0, 0, 0, 1, 0)

The contribution to the optimal system is pro-
vided by the vectors

X1, X4 (56)

(2) The case l3 6= 0, J > 0.
We now define a1 in terms of equation (2.6) and
eliminate l1. We thus have the vector given by

(0, l2, l3, l4, l5), where l3 6= 0.

J is an invariant for the transformations (40) to
(44), and the condition J > 0 with l3 6= 0 im-
plies that l2 6= 0. We use the transformation (44)
with l̄5 = l2a5 + l5, and set a5 = − l5

l2
and have

l5 = 0. We also use the transformation (43) with
l̄4 = −l2a4 + l4 and set a4 = l4

l2
resulting in

l4 = 0. We set a3 = − l3

l2
in the transformation

(42) where l̄3 = 2l2a3 + l3, and get l3 = 0. The
vector (31) reduces to

(0, l2, 0, 0, 0).

The representation for the optimal system is sim-
ilar to equation (54).

(3) The case l3 6= 0, J = 0.

The case reduces equation (52) to a1 = l2

l3
.When

we apply transformation (40) we have that l2 =
0. Due to the invariance of J = (l2)2 − l1l3 with
l2 = 0, it follows that l1 = 0. The vector (31)
becomes

(0, 0, l3, l4, l5)

We set a4 = l5

l3
, in the transformation (43) and

have that l5 = 0. This simplifies the vector to

(0, 0, l3, l4, 0, 0)
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If l4 6= 0, we apply the transformation (41) and
approximate a2 to make l4 = ±1 and l3 = 1 with
the possibility that l4 = 0 to obtain the represen-
tation for the optimal system as

X3 X3 +X4 X3 −X4 (57)

(3) The case l3 6= 0, J < 0.
The condition J = (l2)2 − l1l3 < 0 implies that
l1 6= 0 since l3 6= 0. From the transformation
(40) with a1 = l2

l3
we get l2 = 0. In a similar

fashion from the transformation (43) with a4 =
l5

l3
we get l5 = 0. We also apply transformation

(44) with a5 = − l4

l1
and get l4 = 0. The vector

(31) reduces to

(l1, 0, l3, 0, 0).

The condition J < 0, with l2 = 0 suggests that
l1 and l3 should have a common sign. We can
approximate a2 in transformation (41) such that
when we divide the vector (31) by an appropriate
constant we get that l1 = l3 = 1. The represen-
tation for the optimal system as given by

X1 +X3 (58)

We finally collect all the operators (24) to (28) to-
gether with the operators (54), (55), (56), (57) and
(58) to form the optimal system

X1, X2, X3, X4, , X5, (59)
X1 +X5, X1 −X5,

X3 −X4, X3 +X4,

X1 +X3

3 Invariant Solutions for equation
(59)

A useful feature of a symmetry is that it preserves
the solutions of a differential equation. This means
that if a differential equation has a symmetry then
the solutions of the differential equation remain un-
changed under symmetry transformations. The sym-
metry transformations merely permute the integral
curves among themselves. Such integral curves are
termed invariant solutions. To construct an optimal
system of invariant solutions we have to determine the
invariant solution for each of the operators of the op-
timal system (59).

3.1 Invariant Solution for the operator X1

The operator X1 = t2 ∂∂t + tx ∂
∂x − (x+ tu) ∂

∂u has the
characteristic equation given by

dt

t2
=
dx

tx
= − du

(x+ tu)
(60)

There are two linear equations that are formed from
the characteristic equation (60). The first such linear
equation is

dt

t2
=
dx

tx
(61)

Integrating equation (61) yields that x
t = C1 where

C1 is the constant of integration. Hence one of the
invariants is x

t
= λ1 (62)

Checking the invariant λ1 we have that

X1(λ1) = t2
∂(xt )

∂t
+tx

∂(xt )

∂x
−(x+tu)

∂(xt )

∂u
= −x+x = 0

Thus the operator satisfies the invariant condition.
The second linear equation is given as

dt

t2
= − du

(x+ tu)
(63)

The equation (63) simplifies to the first order Ordinary
differential equation given by

du

(xt + u)
+
dt

t
= 0 (64)

but from equation (62) we have that x
t = λ1, which

we replace in equation (64) and arrive at the equation

du

(λ1 + u)
+
dt

t
= 0. (65)

Solving the equation (65) we obtain the second invari-
ant given by the equation

v = tu+ x (66)

Checking the invariant v we have that

X1(v) = t2
∂(tu+ x)

∂t
(67)

+ tx
∂(tu+ x)

∂x

− (x+ tu)
∂(tu+ x)

∂u
= t2u+ tx− t2u− tx
= 0
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Thus the operator satisfies the invariant condition. We
designate one of the invariants to be a function of the
other i.e.

v = φ(λ1)

The invariant solution is given by

u =
φ(λ1)

t
− λ1 (68)

We substitute for

ut =
1

t2
(x− φ(λ1)− λ1φ

′(λ1)) (69)

ux =
1

t2
φ′(λ1)− 1

t

uxx =
1

t3
φ′′(λ1)

into the equation (1) and we obtain that

ut − uxx − uux = φ′′(λ1) + φ′(λ1))φ = 0 (70)

which when integrated once yields that

φ′(λ1) +
1

2
φ2(λ1) =

1

2
C1 (71)

This gives that

dφ(λ1)

dλ1
=

1

2
(C1 − φ2(λ1)) (72)

This implies that∫
dφ(λ1)

C1 − φ2(λ1)
=

∫
1

2
dλ1 (73)

which gives that∫
dφ(λ1)

C1 − φ2(λ1)
=

1

2
λ1 +A (74)

with A a constant. For C1 = 0, we obtain that

φ(λ1) =
2

λ1 + 2A
(75)

We conclude that the invariant solution is given by

u(t, x) =
2

x+ 2At
− x

t
(76)

4 Conclusion
The purpose of the project was to gain an insight into
the method of optimal system a non linear equation
using the simplification of a vector. The challenges
were how to simplify the vector used to determine
the optimal system. However the determination of the
rank the coefficients matrix of operators helped solve

the problem. From the present project, the method of
finding optimal systems of one-dimensional subalge-
bras, proved to be effective. We would like to explore
them further and even for higher dimensional subal-
gebras. Future projects would also include extending
on the current one to determine an optimal system of
the invariant solutions for the equation (1).
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