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1 Introduction

Geometric Brownian motion (GBM) is a simple
continuous-time stochastic process in which the loga-
rithm of the randomly varying quantity of interest fol-
lows a Brownian motion with drift and a special case
of Markov process. Geometric Brownian motion fre-
quently features in mathematical modeling. The ad-
vantage of considering this process lies in its univer-
sality, as it represents an attractor of more complex
models that exhibit non-ergodic dynamics, we refer
the readers to [1], [2], [3]. Geometric Brownian mo-
tion is defined by dSt

St
= µdt + σdWt, where µ is a

drift term, σ is a noise amplitude, andWt is a Wiener
process. [4] proposed this model without the noise,
i.e. σ = 0, that means the model is simply exponen-
tial growth at rate µ. If σ ̸= 0, it can be interpreted
as exponential growth with a fluctuating growth rate.
[5] put forward the logarithm of random variables sat-
isfying Geometric Brownian motion. The main fac-
tors affecting the change of stock price are the rising
trend of stock price over time and the average volatili-
ty of stock price. The contribution of the former to the
growth of stock prices relies on the length of time; the
latter only depends on the random fluctuations caused
by Brownian motion. In the classical Wiener process,
we assume that the expected drift rate is constant, that
is, µ(·) = µ. Therefore, Geometric Brownianmotion,
a widely used model to describe the behavior of stock
prices, is obtained. If the price of the stock at time t is
S, then the drift rate of the underlying model should
be µS, where µ is a constant. But in practice, it is
more reasonable to assume that the expected rate of

return is not constant. Compared with Brownian mo-
tion, the expectation of Geometric Brownian motion
is independent of the stock price, which conforms to
the expectation of real market.

In recent years, Geometric Brownian motion has
been widely used in the field of transportation plan-
ning in [6] and management in [7]. See, for instance
that, [8] predicted traffic flow. [9] predicted a mini-
mum future closing price in a company by using GB-
M. Among others, Geometric Brownian motion has
applications in ecology in [10], economics in [11],
[12], etc. More recent work on option pricing prob-
lems, readers may consult the papers in [13], [14],
[15], [16], [17].

In the financial field, Geometric Brownian mo-
tion is the most widely used dynamic. In 1965, based
on Einstein's Brownian motion research method and
Wiener's definition of Brownian motion, [18] estab-
lished a Geometric Brownian motion model to de-
scribe the random fluctuation of stock prices. In 1973,
[19] first assumed that the stock price was subject to
the Geometric Brownian motion model of Samuel-
son, to deduce the famous B-S option pricing formula,
and used the stock price model to solve the reasonable
pricing problem of financial derivatives such as stock-
s, bonds, currencies and commodities. In the same
year, [20] also derived the B-S option pricing formu-
la using the stochastic calculus method, further weak-
ened the assumptions on which the B-S option pricing
formula depends, and added the Poisson jump process
to the Geometric Brownian motion model, expanding
the application scope of the B-S option pricing for-
mula. Later in [21], the paper put forward a simple
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and efficient numerical procedure for valuing option-
s for which premature exercise may be optimal. Al-
so in [22], the paper empirically provided an alterna-
tive pption pricing models by first deriving an option
model that allows volatility, interest rates and jumps
to be stochastic. Further, [23] provided an analytical
treatment of a class of transforms, including various
Laplace and Fourier transforms as special cases, that
allow an analytical treatment of a range of valuation
and econometric problems to solve example applica-
tions including fixed-income pricing models, with a
role for intensity-based models of default, as well as
a wide range of option-pricing applications. It is well
known that the volatility and yield are set as constants
in the Geometric Brownianmotion. Economists often
used this Geometric Brownian motion to describe the
stock trend, so it is very meaningful to study it. In
addition, this has attracted the attention and discus-
sion of a large number of scholars. Among them, it is
an important aspect to analyze asset pricing with the
change of financial time series. [24] considered the
research of multivariate GARCHmodel in explaining
the difference in expected returns between Shanghai
and Shenzhen of China's stock market. In addition,
the difference is not remarkable. Therefore, this pa-
per mainly focuses on the option price under the Geo-
metric Brownian motion process. However, because
the classical assumption is too idealistic, it has obvi-
ous limitations, that is, the volatility and yield in the
actual market do not meet the constant assumption.
For example, Figure 1 & Figure 2 show the trend of
the Dow Jones Industrial Index and the United States
Federal Fund Interest Rate (1955-2023). It is obvious

Fig. 1: Dow Jones Industrial Index from 2018-
2023

that the volatility and yield are not constant, and they
will change under various influences. If we consider
the case of random volatility, in most cases, we can-
not give a closed-form solution and must define the
appropriate distribution for the volatility. For exam-
ple, [25] considering the pricing of derivative options
with random volatility, only provided the pricing for-
mula, and did not give a closed-form solution. Hence,
this paper take the broken drift and singular volatility
into consideration.

The first hitting time is a mathematical term that

Fig.    2: The United States Federal Fund Interest
Rate from 1955-2023

represents the moment when a stochastic process first
reaches a certain set of states. In terms of application,
the first hitting time has important practical signifi-
cance, for example, in fields like financial risk man-
agement, communication network optimization, and
transportation scheduling. In addition, the first hitting
time can also be used for the optimization of predic-
tion models and algorithms, for example in fields like
machine learning and data mining. By understand-
ing the nature and calculation methods of the hitting
time, we can better understand and optimize the be-
havior of stochastic processes, thereby providing bet-
ter solutions for practical applications. On one hand,
the first hitting time problem is very crucial as a clas-
sic subject. On the other hand, the study of the first
hitting time problem of Geometric Brownian motion
with broken drift and singular volatility is very few at
present. We also view this problem as our target s-
tudy. Around the literature about the first hitting time
problems, the authors may consult [26] under skew
CIR process, [27] under regime switching Geometric
Brownian motion, [28] under sticky skew Brownian
motion, and [29] under sticky skew CIR process. A
most recent paper in 2019, [30] considered the opti-
mal stopping and first hitting time problems of Brow-
nian motion with broken drift. However, there ex-
ists few papers concerning on hitting time and op-
tion pricing problems by introducing singularity coef-
ficients. In addition, traditional methods when solv-
ing the pricing problem needs complex calculations
or numerical scheme. Complex calculations may re-
sult in inaccurate or even non-closed-form solution-
s. Numerical computations have high requirements
for accuracy and real-time performance of the results.
Therefore, this paper tries to solve the first hitting time
and option pricing problem under our setting mod-
el, respectively. In probability scheme, we only need
to employee the variable substitution and probability
distribution of random variable function for our tar-
get under risk-neutral measure. Now let us introduce
the Geometric Brownianmotion with broken drift and
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singular volatility by

dSt

St
= µ(St)dt+ σ(St)dWt, (1)

where

µ(St) =

{
µ1, St ≥ a,

µ2, St < a,
σ(St) =

{
σ1, St ≥ a,

σ2, St < a.

The notations µ1 and µ2 are the drifts, σ1 and σ2 are
the volatilities, a is the singularity boundary, St is the
stock price at time t and Wt is a standard Brownian
motion. When we consider the option pricing prob-
lem, in traditional option pricing theory, we always
assume the drift term to be the risk-free interest rate
r, this model (1) reduces to

dSt

St
= rdt+ σ(St)dWt. (2)

Before proceeding the study, please let us retel-
l our target problem. In this paper, we consider the
Laplace transform of the first hitting time and op-
tion pricing problem under Geometric Brownian mo-
tion with singular volatility, respectively. To get the
Laplace transform of first hitting time under the above
model, we should solve the Sturm-Liouville equation,
and when facing the option pricing problem, we ap-
ply the probability scheme to calculate this object. All
the results we get are closed-form. At last, we provide
the numerical results to explain some interesting phe-
nomena under different coefficients.

The rest of this paper is organized as follows. Sec-
tion 2 analyzes the option pricing problem under Ge-
ometric Brownian motion with singular volatility and
use Matlab to get numerical results. Under our mod-
el the Laplace transform of first hitting time and the
theoretical and numerical results are respectively cal-
culated in Section 3. Section 4 concludes this paper
and explains some future study.

2 Option Pricing
2.1 Theoretical results

Let us assume that (Ω,F ,P) is a complete proba-
bility space, F is a σ-algebra on Ω and P represents a
probability measure of (Ω,F). In this paper, we con-
sider that the underlying asset satisfies (2).

We can write the definition of the option price un-
der risk-neutral measure by:

f(t, St) = e−r(T−t)EQ[max(ST −K)+], (3)

where K is the exercise price and T is the maturity
date.

Next, we naturally draw the theorem of option
pricing:

Theorem 1. If the stock price satisfies the Geometric
Brownian motion with risk-free interest rate and sin-
gular volatility in (2), then the option price defined by
(3) takes the form of:

f(t, St) =



StΦ(
lnSt

K
+(r+ 1

2
σ2
1)(T−t)

σ1

√
T−t

)−

Ke−r(T−t)Φ(
lnSt

K
+(r− 1

2
σ2
1)(T−t)

σ1

√
T−t

),

St ≥ a,

StΦ(
lnSt

K
+(r+ 1

2
σ2
2)(T−t)

σ2

√
T−t

)−

Ke−r(T−t)Φ(
lnSt

K
+(r− 1

2
σ2
2)(T−t)

σ2

√
T−t

),

St < a.

Proof. According to Itô's formula:

df(t, St) =(
∂f

∂t
+

∂f

∂St
µSt +

1

2

∂2f

∂t2
σ2St

2)dt (4)

+
∂f

∂St
σStdWt. (5)

Let lnSt = Gt, thenwe have ∂Gt

∂St
= 1

St
, ∂2Gt

∂St
2 = − 1

St
2

and ∂G
∂t = 0.

We recall (5), getting

dGt = dlnSt = (µ− σ2

2
)dt+ σdWt.

Further, we get

lnST ∼ N(lnSt + (µ− σ2

2
)(T − t), σ2(T − t)).

Lettingm = lnSt + (µ− σ2

2 )(T − t), s = σ
√
T − t

and applying the probability scheme, we have

EQ[max(ST −K)+]

=

∫ ∞

K
(St −K)f(St)dSt

=

∫ ∞

lnK
(elnSt −K)g(lnSt)d(lnSt)

=

∫ ∞

lnK−m

s

[e(sw+m) −K]h(w)dw

=

∫ ∞

lnK−m

s

e(sw+m)(2π)−
1

2 e(
−w2

2
)dw −KΦ(

m− lnK

s
)

=e(
s2

2
+m)

∫ ∞

lnK−m

s

(2π)−
1

2 e
−(w−s)2

2 dw −KΦ(
m− lnK

s
)

=e(
s2

2
+m)Φ(s− lnK −m

s
)−KΦ(

m− lnK

s
),

where f(St) is the density function of St, g(lnSt) is
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the density function of lnSt, h(·) is the standard nor-
mal density function and lnK obeys normal distribu-
tion that the mean is m and the standard deviation is
s, that is lnK ∼ N(m, s2).

Therefore, we apply the result to (3), acquiring

f(t, St) =e−r(T−t)[e
s2

2
+mΦ(s− lnK −m

s
)

−KΦ(
m− lnK

s
)],

where

s− lnK −m

s
=

σ2(T − t) + lnSt/K + (r + 1
2σ

2)(T − t)

σ
√
T − t

=
ln(St

K ) + (r + 1
2σ

2)(T − t)

σ
√
T − t

= d1,

m− lnK

s
=

lnSt + (r − 1
2σ

2)(T − t)− lnK

σ
√
T − t

=
ln(St

K ) + (r − 1
2σ

2)(T − t)

σ
√
T − t

= d2,

and

m+
s2

2
= lnSt + (r − 0.5r2)(T − t) +

σ2(T − t)

2
= lnSt + r(T − t).

Finally, we replace µ and σ by r and σ(·), which fin-
ishes our proof.

2.2 Numerical results
We use Matlab for numerical simulation to realize

the trend and comparison of option prices and stock
prices. In our setting, we choose a to be close to the
median value of 7 and r = 0.1. When the stock price
St is greater than or equal to 7, we take volatility σ
as 1.8, and when St is less than 7, we take volatili-
ty σ as 1.2. Because risk in markets is usually high,
implying that the greater the risk is, the greater the
potential gain gets, but the greater the potential loss
happens. Therefore, the higher the stock price is, the
more severe the fall is likely to be; while the lower
the stock price is, the less room for further decline the
stock price is. More precisely, we set

a = 7, r = 0.1, σ(t) =

{
1.8, St ≥ a,

1.2. St < a.

Figure 3 is the results of our numerical simulation.
It can be seen from Figure 3 that the cumulative val-
ue of derivatives has existed for a long time due to
the continuous compounding of stocks, so the overall
trend is upward.

10 20 30 40 50 60 70 80 90 100 110 120

time/day

0

2

4

6

pr
ice

The option price

Call
Put
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pr
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The stock price

Price

Fig. 3:   The trend and comparison of option prices
and stock prices

We observe the changes of option prices and s-
tock prices by different parameters. First, fix broken
boundary a and volatility σ, and change the value of
r. The specific values are as follows:

a = 7, r = 0.2, σ(t) =

{
1.8, St ≥ a,

1.2, St < a.

a = 7, r = 0.05, σ(t) =

{
1.8, St ≥ a,

1.2, St < a.

It can be seen from Figure 4 & Figure 5 that blue
curve is bigger than the red (green) curve. With the
change of r value, both stock price and option price
will change, in which the price of stock price and call
option increases relative with the increase of value,
which reflects the fact that the great r pushes the high
level for stock price and the corresponding call option
price.
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time/day
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11

pr
ice

The stock price

Price1
Price2

Fig.  4:    The stock price and call option price with
different r. The blue line relies on r = 0.2 and the
red line relies on r = 0.05, respectively.

Moreover, we get the intuition that the change of
σ has an effect on the price of the stock and the rela-
tive size of the impact of the yield on the price trend.
Therefore, by changing the value of σ, the influences
of different parameters on the stock price and option
price are compared. Hence we fix broken boundary a
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Fig.  5:   The stock price and call option price with
different r. The blue line relies on r = 0.2 and the
green line relies on r = 0.05, respectively.

and r, and change the volatility value of σ. The spe-
cific values are as follows:

a = 7, r = 0.05, σ(t) =

{
1.8, St ≥ a,

1.2, St < a.

a = 7, r = 0.05, σ(t) =

{
2, St ≥ a,

1.2, St < a.

It can be seen from the Figure 6 & Figure 7 that blue
curve is bigger than the red (green) color curve. When
the value changes, the price of stock and option will
also change. The price of stock and call option in-
creases with the increase of σ value, which may ex-
plain that the great σ, leading high reward, pushes the
high level for stock price and the corresponding call
option price. We can also observe that the impact of
r value on option prices is smaller than that of σ val-
ue, that is, the impact of volatility on asset prices is
greater than that of yield. In our opinion, managing
risk is far more important than guaranteeing expecta-
tion.
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Fig.  6:   The stock price under GBM with risk-free
interest rate. The red line relies on σ1 = 1.8 and σ2 =
1.2 and the blue line relies on σ1 = 2 and σ2 = 1.2,
respectively.
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Fig.  7:   Call option price under GBM with risk-free
interest rate. The green line relies on σ1 = 1.8 and
σ2 = 1.2 and the blue line relies on σ1 = 2 and σ2 =
1.2, respectively.

3 Laplace transform of first hitting
time

3.1 Main results regarding first hitting time
First hitting time is the moment when a random

variable passes a given threshold for the first time.
For example, random walks leave a given space for
the first time. It can also be diffusion limited reac-
tions, polymer ring formation, stock market price dy-
namics, search problems, etc. The problem of lead-
time is an important part of stochastic process theory.
Stochastic process is the fundamental theory in finan-
cial mathematics, so the problem of first hitting time
also plays an important role in financial mathematics.

In the study of financial markets, especially the
pricing and risk management of path-dependent fi-
nancial derivatives, the problem of first hitting time is
almost always encountered. It is necessary to under-
stand the distribution of first hitting time. However, it
is not easy to obtain the distribution of the first hitting
time directly, so some scholars obtained the distribu-
tion of the first hitting time by studying the Laplace
transform of the first hitting time. More precisely, if
we set the density function of the first hitting time to
be f(t), then the Laplace transform of the first hitting
time is defined by

L(λ;x; l) = Ex[exp(−λτl)] =

∫ +∞

0
f(t)e−λtdt,

. By inverse Laplace transform,

f(t) =
1

2πj

∫ λ+j∞

λ−j∞
L(λ;x; l)eλtdt,

we get the density function of the first hitting time.
As the first hitting time problem is an important

subject in optimal stopping, the first hitting time prob-
lem of Geometric Brownian motion with broken drift
term is studied next. Then, set a constant level l ≥ 0
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and define the first hitting time ofX for touching l by
τl = inf{t ≥ 0;Xt = l}. The Laplace transform of
τl is L(λ;x; l) = Ex[exp(−λτl)], where X0 = x is
the initial point ofX and λ is a parameter. Next lem-
ma provides the main result under Geometric Browni-
an motion about the Laplace transform of the first hit-
ting time, the proof can be seen in Borodin and Salmi-
nen.

Theorem 2. (Lemma in [31]) If Xt is the Geometric
Brownian motion, then the Laplace transform of first
hitting time of X for touching l is expressed by

L(λ;x; l) = Ex[exp(−λτl)] =
f(x)

f(l)
,

where

f(x) = xr1 + xr2

and

r1 =
(1− 2µ

σ2 ) +
√

(2µσ2 − 1)2 + 8λ
σ2

2
,

r2 =
(1− 2µ

σ2 )−
√

(2µσ2 − 1)2 + 8λ
σ2

2
.

Further we consider the first hitting level l under
Geometric Brownian motion with broken drift and
singular volatility, this immediately leads to the fol-
lowing theorem.

Theorem 3. IfXt is the Geometric Brownian motion
with broken drift and singular volatility, then the so-
lution to the S-L equation is expressed by
Case 1: if x ≥ l,{

f(x) = xr12 , l > x ≥ a,
c1x

r11 + c2x
r12 , a < x < l.

(6)

Case 2:if x < l,{
f(x) = xr21 , x > l ≥ a,
b1x

r12 + b2x
r22 , l < a < x.

(7)

where

c1 =
ar

12

(r21 − r12)

ar11(r21 − r11)
, c2 =

ar
12

(r12 − r11)

ar21(r21 − r11)
,

b1 =
ar

21

(r22 − r21)

ar12(r22 − r12)
, b2 =

ar
21

(r21 − r12)

ar22(r22 − r12)
,

and

r11 =
(1− 2µ1

σ2
1
) +

√
(2µ1

σ2
1
− 1)2 + 8λ

σ2
1

2
,

r12 =
(1− 2µ2

σ2
2
) +

√
(2µ2

σ2
2
− 1)2 + 8λ

σ2
2

2
,

r21 =
(1− 2µ1

σ2
1
)−

√
(2µ1

σ2
1
− 1)2 + 8λ

σ2
1

2
,

r22 =
(1− 2µ2

σ2
2
)−

√
(2µ2

σ2
2
− 1)2 + 8λ

σ2
2

2
.

Proof. First of all, for case 1 (X ≥ l), we have the fact
that the function and its derivative are continuous at
point of a, namely

ar12 = c1a
r11 + c2a

r21 , (8)

r12a
(r12−1) = c1r11a

(r11−1) + c2r21a
(r12−1). (9)

By solving equations (8) and (9), we get

c1 =
ar

12

(r21 − r12)

ar11(r21 − r11)
,

c2 =
ar

12

(r12 − r11)

ar21(r21 − r11)
.

Recalling Lemma 2, under our model, we have the
above result.
On the other hand, for case 2 (X < l), we have the
fact that the function and its derivative are continuous
at point of a, namely

ar21 = b1a
r12 + b2a

r22 ,

r21a
(r21−1) = b1r12a

(r12−1) + b2r22a
(r22−1).

In a similar way, we have

b1 =
ar21(r22 − r21)

ar12(r22 − r12)
,

b2 =
ar21(r21 − r12)

ar22(r22 − r12)
.

Thus the proof is finished.

Theorem4. The expectation of the first hitting time of
Geometric Brownian motion with singular volatility
term is infinite, i.e. Ex[τl] = ∞.

Proof. Recall the Laplace transform expression

Ex[e
−λτl ] = g(λ).
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Taking the derivative of both sides of this equation
with respect to λ have

Ex[−τle
−λτl ] = g

′
(λ).

Then, as λ approaches 0+, we have

Ex[τl] = − lim
λ→0+

g(λ)− g(0)

λ
= − lim

λ→0+

f(l)− f(x)

λf(l)
.

Using the L'Hopital's rule implies the result.

3.2 Numerical results
At first, we observe the change of underlyingmod-

el and the value of Laplace transform with different l.
For numerical results, the common coefficients are

a = 7, µ(t) =

{
0.125, Xt ≥ a,

0.15, Xt < a,

σ(t) =

{
1.1, Xt ≥ a,

1.5, Xt < a,
X0 = 8, λ = 0.8.

The boundary l are supposed to be l = 4.5 and
l = 6.5, respectively. The Figure 8 & Figure 9 below
show the numerical simulation results. In this way,
the larger l is, the larger Laplace transform is, the s-
maller the first hitting time is.
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time
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0.035
The Laplace transform of first hitting time 

10 20 30 40 50 60 70 80 90 100 110 120

time

8

9

10

11

12

The underlying model

Fig.  8:   The figures are the Laplace transform of
first hitting time and the underlying model, respec-
tively. The figures rely on l = 4.5.

Then, we want to know the change of the under-
lying model and the value of Laplace transform by
changing the value of X0 by using Matlab. For nu-
merical simulation, let

a = 7, µ(t) =

{
0.125, Xt ≥ a,

0.15, Xt < a,

σ(t) =

{
1.1, Xt ≥ a,

1.5, Xt < a,
l = 6.5, λ = 0.8.

X0 = 8 andX0 = 13 are taken respectively. The Fig-
ure 10 and Figure 11 below show the numerical simu-
lation results. In this way, the largerX0 is, the smaller
Laplace transform is, the larger the first hitting time
is.
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Fig.  9:   The figures are the Laplace transform of
first hitting time and the underlying model, respec-
tively. The figures rely on l = 6.5.
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Fig. 10:  The figures are the Laplace transform of
first hitting time and the underlying model, respec-
tively. The figures rely on X0 = 8.
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Fig. 11:   The figures are the Laplace transform of
first hitting time and the underlying model, respec-
tively. The figures rely on X0 = 13.
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4 Conclusion
In this paper, the option pricing and Laplace trans-

form of first hitting time problem under Geometric
Brownian motion with singular volatility are studied
and the numerical simulations are carried out to ver-
ify the accuracy of the conclusions. The following
conclusions can be drawn:

(i)A rich body of literature on option pricing prob-
lem contain complex calculations and numerical re-
sults under complex models. Unlike their method-
s, we adopt probability scheme to directly get the
closed-form solution instead of previous methods. In
contemporary financial problems, especially in the
pricing of path-dependent financial derivatives.

(ii)We use the Sturm-Liouville equation and Eu-
ler's formula to get the Laplace transform of the first
hitting time. Furthermore, the density of the first hit-
ting time can be deduced by inverse Laplace trans-
form. In order to better depict the financial market,
Geometric Brownian motion model has been widely
used in the financial field, and there is a large room
for improvement. But most of the model are too ideal
to make the pricing problem difficult. Hence in our
paper we discuss Geometric Brownian motion with
singular volatility.

In summary, in the process of deducing op-
tion pricing we use probability scheme. In solving
Laplace transform of the first hitting time we use the
Sturm-Liouville equation and Euler's formula to de-
rive the closed-form solution, and then give some
main results. Compared with other numerical results,
our solutions are closed-form and accurate.

In the future, we will focus on introducing jump
or random volatility and extending our model to the
sticky OU or sticky CIR model to reflect more real-
istic phenomena, but need the density function of the
underlying models. This seems to be a big challenge
for future study.
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