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1 Introduction 
In a recent article, Roach and Hamdan, [1], 
investigated solutions to Airy’s inhomogeneous 
equation when the inhomogeneity (the forcing 
function in Airy’s equation) is due to Einstein’s 
functions. Einstein functions are combinations of 
logarithmic and exponential that arise in the study of 
distributions, and the determination of physical and 
chemical material constants arising in the study of 
Einstein’s field equations. For these and many other 
applications of Einstein functions, one is referred to 
the elegant works of Abramowitz and Stegun, [2], 
Hilsenrath and Ziegler, [3], Cezairliyan, [4], and the 
references therein. 
     The main objective of the work of Roach and 
Hamdan, [1], was to find a connection between 
Airy’s functions, [5], of the first and second kind, and 

the four Einstein functions, 𝐸𝑗(𝑥), 𝑗 = 1,2,3,4, are 
given by: 

 

{
  
 

  
 𝐸1(𝑥) =

𝑥

𝑒𝑥 − 1
𝐸2(𝑥) = log(1 − 𝑒−𝑥)

𝐸3(𝑥) =
𝑥

𝑒𝑥 − 1
− log(1 − 𝑒−𝑥)

𝐸4(𝑥) =
𝑥2𝑒𝑥

(𝑒𝑥 − 1)2

(1) 

 
where "log" is the natural logarithm. 
     In order to accomplish their objective, Roach and 
Hamdan, [1], provided particular and general 
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solutions to Airy’s inhomogeneous ordinary 
differential equation (ODE) of the form 
 

𝑦′′ − 𝑥𝑦 = 𝐸𝑗(𝑥) (2) 
 
wherein “prime” notation denotes ordinary 
differentiation with respect to the independent 
variable, and 𝐸𝑗(𝑥) is one of the four functions in (1). 
     The particular solution to (2) is given by, [1]: 
 

𝑦𝑝 = ∫ {∫ 𝐸𝑗(𝑡)𝑑𝑡
𝜏

0

}
𝑥

0

𝑑𝜏 (3) 

and the general solution is given by 
 

𝑦 = 𝑐1𝐴𝑖(𝑥) + 𝑐2𝐵𝑖(𝑥) + ∫ {∫ 𝐸𝑗(𝑡)𝑑𝑡
𝜏

0

}
𝑥

0

𝑑𝜏 (4) 

where 𝑐1 and 𝑐2 are arbitrary constants, and 
𝐴𝑖(𝑥) and 𝐵𝑖(𝑥) are the linearly independent Airy’s 
functions of the first and second kind, respectively, 
[6], with a non-zero Wronskian given by, [2,6]: 

𝑊(𝐴𝑖(𝑥), 𝐵𝑖(𝑥)) = 𝐴𝑖(𝑥)
𝑑𝐵𝑖(𝑥)

𝑑𝑥
− 𝐵𝑖(𝑥)

𝑑𝐴𝑖(𝑥)

𝑑𝑥

=
1

𝜋
(5)

 

Roach and Hamdan, [1], obtained the following 
particular solutions corresponding to (1), 
respectively, by evaluating (3): 

𝑦𝑝 =

{
 
 
 
 
 

 
 
 
 
 𝑥𝐿𝑖2𝑒

−𝑥 + 2𝐿𝑖3𝑒
−𝑥 −

𝜋2𝑥

6
− 2𝜁(3).

−(𝐿𝑖3(𝑒
−𝑥) +

𝑥𝜋2

6
) − 𝜁(3).

− {𝑥[𝐿𝑖2(𝑒
−𝑥)] + 3𝐿𝑖3(𝑒

−𝑥) +
𝜋3

3
𝑥}

−6 𝜁(3).

−𝑥2𝑙𝑜𝑔(1 − 𝑒𝑥) − 4𝑥𝐿𝑖2(𝑒
𝑥) +

6𝐿𝑖3(𝑒
𝑥) −

𝑥𝜋2

3
− 6 𝜁(3).

(6) 

 
where 𝜁(𝑥) is the zeta function and 𝜁(3) =
1.2020569, and 𝐿𝑖2(𝑥) and 𝐿𝑖3(𝑥) are 
polylogarithmic functions, [7,8]. 
     In this work, an alternative method is offered in 
which the series form of Einstein functions is used in 
the evaluation of particular solution (3). The use of 
series and tis approach might offer an easier 
alternative to computing particular and general 
solutions when dealing with initial and boundary 

value problems. In the process of this work, the 
existing relationships between Einstein’s functions 
and the standard Nield-Kuznetsov functions, 
[1,9,10], will be utilized to express the standard 
Nield-Kuznetsov function of the second kind in terms 
of Bessel functions, [11]. 
 

 

2 Einstein and Bessel Functions 
Roach and Hamdan, [1], obtained particular solution 
(3) through the following alternate form, introduced 
by Hamdan and Kamel, (2011): 
 

𝑦𝑝 = 𝜋𝐾𝑖(𝑥) − 𝜋𝑓(𝑥)𝑁𝑖(𝑥) (7) 
                                                                                                            
where 𝑁𝑖(𝑥) and 𝐾𝑖(𝑥) are the standard Nield-
Kuznetsov functions of the first and second kind, 
respectively, defined as, (Nield and Kuznetsov, 2009, 
Hamdan and Kamel, [9]: 
 

𝑁𝑖(𝑥) = 𝐴𝑖(𝑥) ∫ 𝐵𝑖(𝑡)𝑑𝑡
𝑥

0
− 𝐵𝑖(𝑥) ∫ 𝐴𝑖(𝑡)𝑑𝑡

𝑥

0
(8)  

𝐾𝑖(𝑥) = 𝑓(𝑥)𝑁𝑖(𝑥) −

{𝐴𝑖(𝑥)∫ 𝑓(𝑡)𝐵𝑖(𝑡)
𝑥

0
𝑑𝑡 − 𝐵𝑖(𝑥) ∫ 𝑓(𝑡)𝐴𝑖(𝑡)

𝑥

0
𝑑𝑡}(9)

  

where 𝑓(𝑥) = 𝐸𝑗(𝑥) in the work of Roach and 
Hamdan, [1], and in the current work. 
The following relationships between Einstein 
functions, 𝐸𝑖(𝑥), Airy’s functions, 𝐴𝑖(𝑥) and 𝐵𝑖(𝑥), 
and the standard Nield-Kuznetsov functions 𝑁𝑖(𝑥) 
and 𝐾𝑖(𝑥) were established in a theorem introduced 
by Roach and Hamdan, [1]: 
 

𝐾𝑖(𝑥) = 𝐸𝑖(𝑥)𝑁𝑖(𝑥) +
1

𝜋
∫ {∫ 𝐸𝑗(𝑡)𝑑𝑡

𝜏

0

}
𝑥

0

𝑑𝜏 (10) 

𝐾𝑖(𝑥) =

𝐸𝑗(𝑥) {𝐴𝑖(𝑥)∫ 𝐵𝑖(𝑡)𝑑𝑡
𝑥

0

−𝐵𝑖(𝑥)∫ 𝐴𝑖(𝑡)𝑑𝑡
𝑥

0

}

+
1

𝜋
∫ {∫ 𝐸𝑗(𝑡)𝑑𝑡

𝑥

0

}
𝑥

0

𝑑𝑡 (11)

 

     Using (6) and (7), the following relationships 
involving the polylogarithm functions are developed: 

𝐾𝑖(𝑥) = 𝐸1(𝑥)𝑁𝑖(𝑥) +
𝑥

𝜋
𝐿𝑖2𝑒

−𝑥 +
2

𝜋
𝐿𝑖3𝑒

−𝑥

−
𝜋𝑥

6
−
2

𝜋
𝜁(3) (12)

 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2022.21.47 M. H. Hamdan, D. C. Roach

E-ISSN: 2224-2880 396 Volume 21, 2022



𝐾𝑖(𝑥) = 𝐸2(𝑥)𝑁𝑖(𝑥) − [
1

𝜋
𝐿𝑖3(𝑒

−𝑥) +
𝑥𝜋

6
]

−
1

𝜋
𝜁(3) (13)

 

 

𝐾𝑖(𝑥) = 𝐸3(𝑥)𝑁𝑖(𝑥) −

{
𝑥

𝜋
𝐿𝑖2(𝑒

−𝑥) +
3

𝜋
𝐿𝑖3(𝑒

−𝑥) +
𝜋2

3
𝑥} −

6

π
 𝜁(3) (14)

 

𝐾𝑖(𝑥) = 𝐸4(𝑥)𝑁𝑖(𝑥) −
𝑥2

𝜋
𝑙𝑜𝑔(1 − 𝑒𝑥)

−
4𝑥

𝜋
𝐿𝑖2(𝑒

𝑥) +
6

𝜋
𝐿𝑖3(𝑒

𝑥) −
𝑥𝜋

3
−
6

π
 𝜁(3) (15)

   

     With the knowledge of the expressions of 𝐴𝑖(𝑥) 
and 𝐵𝑖(𝑥), and their integrals in terms of Bessel’s 
function of the first kind as, [11]: 

𝐴𝑖(𝑥) =
√𝑥

3
[𝐼
−
1
3

(𝜇) − 𝐼1
3

(𝜇)] (16) 

𝐵𝑖(𝑥) = √
𝑥

3
[𝐼
−
1
3

(𝜇) + 𝐼1
3

(𝜇)] (17) 

∫𝐴𝑖(𝑡)𝑑𝑡 =
1

3
∫ [𝐼

−
1
3

(𝑡) − 𝐼1
3

(𝑡)] 𝑑𝑡

𝜇

0

𝑥

0

(18) 

∫𝐵𝑖(𝑡)𝑑𝑡 =
1

√3
∫ [𝐼

−
1
3

(𝑡) + 𝐼1
3

(𝑡)] 𝑑𝑡

𝜇

0

𝑥

0

(19) 

wherein 𝜇 = 2

3
𝑥3/2, then using (16)-(19) in (8), the 

function 𝑁𝑖(𝑥) can be expressed in terms of Bessel’s 
function, as, [11]: 

𝑁𝑖(𝑥) =
2√𝑥

3√3
[𝐼
−
1
3

(𝜇).∫ 𝐼1
3

(𝑡)𝑑𝑡

𝜇

0

−

 𝐼1
3

(𝜇)∫ 𝐼
−
1
3

(𝑡)𝑑𝑡]

𝜇

0

(20)

 

     Using (16)-(19) in (12)-(15), the function 𝐾𝑖(𝑥) 
in (12)-(15) can be expressed, respectively, in terms 
of Bessel’s function, as 

𝐾𝑖(𝑥) =
2𝑥√𝑥

3√3(𝑒𝑥 − 1)

{
  
 

  
 
𝐼
−
1
3

(𝜇).∫ 𝐼1
3

(𝑡)𝑑𝑡

𝜇

0

−

 𝐼1
3

(𝜇)∫ 𝐼
−
1
3

(𝑡)𝑑𝑡

𝜇

0 }
  
 

  
 

+

𝑥

𝜋
𝐿𝑖2𝑒

−𝑥 +
2

𝜋
𝐿𝑖3𝑒

−𝑥 −
𝜋𝑥

6
−
2

𝜋
𝜁(3) (21)

 

 

𝐾𝑖(𝑥) =

2√𝑥

3√3
𝑙𝑜𝑔(1 − 𝑒−𝑥)

{
  
 

  
 
𝐼
−
1
3

(𝜇).∫ 𝐼1
3

(𝑡)𝑑𝑡

𝜇

0

−

 𝐼1
3

(𝜇)∫ 𝐼
−
1
3

(𝑡)𝑑𝑡

𝜇

0 }
  
 

  
 

−

[
1

𝜋
𝐿𝑖3(𝑒

−𝑥) +
𝑥𝜋

6
] −

1

𝜋
𝜁(3) (22)

 

 

𝐾𝑖(𝑥) = [
2𝑥√𝑥

3√3(𝑒𝑥 − 1)
−
2√𝑥

3√3
log(1 − 𝑒−𝑥)]

{𝐼
−
1
3

(𝜇).∫ 𝐼1
3

(𝑡)𝑑𝑡

𝜇

0

− 𝐼1
3

(𝜇)∫ 𝐼
−
1
3

(𝑡)𝑑𝑡

𝜇

0

}

−{
𝑥

𝜋
𝐿𝑖2(𝑒

−𝑥) +
3

𝜋
𝐿𝑖3(𝑒

−𝑥) +
𝜋2

3
𝑥}

−
6

π
 𝜁(3) (23)

 

 

𝐾𝑖(𝑥) =
2√𝑥𝑥2𝑒𝑥

3√3(𝑒𝑥 − 1)2
{𝐼
−
1
3

(𝜇).∫ 𝐼1
3

(𝑡)𝑑𝑡

𝜇

0

− 𝐼1
3

(𝜇)∫ 𝐼
−
1
3

(𝑡)𝑑𝑡

𝜇

0

}

−
𝑥2

𝜋
𝑙𝑜𝑔(1 − 𝑒𝑥) 

 

−
4𝑥

𝜋
𝐿𝑖2(𝑒

𝑥) +
6

𝜋
𝐿𝑖3(𝑒

𝑥) −
𝑥𝜋

3
−
6

π
 𝜁(3) (24) 
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     Although (21)-(24) do not have direct 
implications on solving Airy’s inhomogeneous 
equation at present, they are of theoretical value and 
are presented in this work for the sake of 
completeness and to provide a connection of Bessel’s 
function and Einstein’s functions. 
 
 

3 Series Expressions of Einstein Functions 

Some of the elementary properties of the Einstein 
functions, their domains, ranges, graphs and series 
representations are summarised in what follows, [12]. 

Case 1: 𝑬𝟏(𝒙) =
𝒙

𝒆𝒙−𝟏
 

Domain of 𝐸1(𝑥) is the set of real numbers except 
𝑥 = 0, and its range is the set of values 0 < 𝐸1(𝑥) <
1 or 𝐸1(𝑥) > 1. Its graph is given in Fig. 1 

 

Fig. 1. Graph of 𝑬𝟏(𝒙) 

The following improper integral of 𝐸1(𝑥) converges: 

∫
𝑥

𝑒𝑥 − 1
𝑑𝑥 =

𝜋2

6

∞

0

(25) 

and the function has a horizontal asymptote at 0, 
namely: 

lim
𝑥→∞

𝑥

𝑒𝑥 − 1
= 0 (26) 

First derivative of 𝐸1(𝑥) and its indefinite integral are 
given by: 

𝐸′1(𝑥) =
𝑒𝑥(𝑥 − 1) + 1

(𝑒𝑥 − 1)2
(27) 

∫
𝑥

𝑒𝑥 − 1
𝑑𝑥 = 𝑥𝑙𝑜𝑔(1 − 𝑒−𝑥) − 𝐿𝑖2(𝑒

−𝑥) + 𝐶 (28) 

𝐸1(𝑥) can be approximated by the following 
Maclaurin series:       

𝐸1(𝑥) =  1 −
𝑥

2
+
𝑥2

12
−
𝑥4

720
+

𝑥6

30240
−

𝑥8

1209600
+

𝑥10

47900160
−

691𝑥12

1307674368 000
+𝑂(𝑥13) (29)

 

Using (29) in (3), the following particular solution is 
obtained for (2) when its forcing function is 𝐸1(𝑥): 

𝑦𝑝 = −
𝑥3

12
+
𝑥4

144
−

𝑥6

21 600
+

𝑥8

1 693 440
−

𝑥10

108 864 000
+

𝑥12

632 2821 120
−

691𝑥14

237 996 734 976 000
(30)

 

and the general solution can be obtained by 
substituting (30) in (4). 

Case 2: 𝑬𝟐(𝒙) = 𝐥𝐨𝐠 (𝟏 − 𝒆
−𝒙) 

Domain of 𝐸2(𝑥) is the set of positive real numbers 
and its range is the set of negative real numbers. Its 
graph is shown in Fig. 2. 

 

Fig. 2. Graph of 𝑬𝟐(𝒙) 

     The following improper integral of 𝐸2(𝑥) 
converges: 

∫ log(1 − 𝑒−𝑥) 𝑑𝑥 = −
𝜋2

6

∞

0

(31) 

and the function has a horizontal asymptote at 0, 
namely: 

lim
𝑥→∞

log(1 − 𝑒−𝑥) = 0 (32) 

First derivative of 𝐸1(𝑥) and its indefinite integral are 
given by: 

𝐸′2 =
1

𝑒𝑥 − 1
(33) 
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∫log(1 − 𝑒−𝑥) 𝑑𝑥 = 𝐿𝑖2(𝑒
−𝑥) + 𝐶 (34) 

     𝐸2(𝑥) can be approximated by the following 
Puiseux series: 

𝐸2(𝑥) = 𝑙𝑜𝑔𝑥 −
𝑥

2
+
𝑥2

24
−

𝑥4

2880
+

𝑥6

181440
−

𝑥8

9676800
+

𝑥10

4790011600
(35)

 

Using (35) in (3), the following particular solution is 
obtained for (2) when its forcing function is 𝐸2(𝑥): 

𝑦𝑝 =
𝑥2

2
𝑙𝑜𝑔𝑥 −

3𝑥2

4
−
𝑥3

12
+
𝑥4

288
−

𝑥6

86 400
+

𝑥8

10 160 640
−

𝑥10

870 912 000

+
𝑥12

632 281 531 200
(36)

 

and the general solution can be obtained by 
substituting (36) in (4). 

Case 3: 𝑬𝟑(𝒙) =
𝒙

𝒆𝒙−𝟏
− 𝐥𝐨𝐠 (𝟏 − 𝒆−𝒙) 

Domain of 𝐸3(𝑥) is the set of positive real numbers 
and its range is the set of positive real numbers. Its 
graph is shown in Fig. 3.  

 

 

Fig. 3. Graph of 𝑬𝟑(𝒙) 

 

      The following improper integral of 𝐸3(𝑥) 
converges: 

∫ [
𝑥

𝑒𝑥 − 1
− log(1 − 𝑒−𝑥)] 𝑑𝑥 =

𝜋2

3

∞

0

(37) 

and the function has a horizontal asymptote at 0, 
namely: 

lim
𝑥→∞

[
𝑥

𝑒𝑥 − 1
− log(1 − 𝑒−𝑥)] = 0 (38) 

 

First derivative of 𝐸3(𝑥) and its indefinite integral are 
given by: 

𝐸′3 = −
𝑥𝑒𝑥

(𝑒𝑥 − 1)2
(39) 

∫

𝑥

𝑒𝑥 − 1
− log(1 − 𝑒−𝑥) 𝑑𝑥

= 𝑥𝑙𝑜𝑔(1 − 𝑒−𝑥) − 2

𝐿𝑖2(𝑒
−𝑥) + 𝐶 (40)

 

𝐸3(𝑥) can be approximated by the following Puiseux 
series: 

𝐸3(𝑥) = 1 − 𝑙𝑜𝑔𝑥 + 𝑂(𝑥
2) (41) 

     Using (41) in (3), the following particular solution 
is obtained for (2) when its forcing function is 𝐸3(𝑥): 

𝑦𝑝 =
𝑥2

4
(5 − 2𝑙𝑜𝑔𝑥) (42) 

and the general solution can be obtained by 
substituting (42) in (4). 

Case 4: 𝑬𝟒(𝒙) =
𝒙𝟐𝒆𝒙

(𝒆𝒙−𝟏)𝟐
 

Domain of 𝐸4(𝑥) is the set of real numbers except 
𝑥 = 0, and its range is the set of values 0 < 𝐸4(𝑥) <
1. Its graph is given in Fig.  

 

Fig. 4. Graph of 𝑬𝟒(𝒙) 

The following improper integral of 𝐸4(𝑥) converges: 

∫
𝑥2𝑒𝑥

(𝑒𝑥 − 1)2
𝑑𝑥 =

𝜋2

3

∞

0

(43) 
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and the function has a horizontal asymptote at 0, 
namely: 

lim
𝑥→∞

𝑥2𝑒𝑥

(𝑒𝑥 − 1)2
= 0 (44) 

 

First derivative of 𝐸4(𝑥) and its indefinite integral are 
given by: 

𝐸′4 =
𝑥𝑒𝑥[𝑒𝑥(𝑥 − 2) + (𝑥 + 2)]

(𝑒𝑥 − 1)3
(45) 

∫
𝑥2𝑒𝑥

(𝑒𝑥 − 1)2
𝑑𝑥 = 2𝐿𝑖2(𝑒

𝑥) + 2𝑥𝑙𝑜𝑔(1 − 𝑒𝑥)

+
𝑥2

1 − 𝑒𝑥
+ 𝐶 (46)

 

𝐸4(𝑥) can be approximated by the following 
Maclaurin series:       

𝐸4(𝑥) = 1 −
𝑥2

12
+
𝑥4

240
−

𝑥6

6048
+

𝑥8

172800

−
𝑥10

5322240
+

691𝑥12

118879488000
(47)

 

Using (47) in (3), the following particular solution is 
obtained for (2) when its forcing function is 𝐸4(𝑥): 

𝑦𝑝 =
𝑥2

2
−
𝑥4

144
+

𝑥6

7 200
−

𝑥8

338 688
+

𝑥10

15 552 000
−

𝑥12

702 535 680
+

691𝑥14

21 636 066 816 000
(48)

 

and the general solution can be obtained by 
substituting (48) in (4). 
 
 
4 Results and Discussion 
Polylogarithmic expressions for the particular 
solutions of Airy’s inhomogeneous equation with 
Einstein’s functions as its right-hand-side, as given 
by equation (6), are graphed in Figs.5(a), 6(a), 7(a) 

and 8(a). Corresponding particular solutions 
obtained from Taylor and Puiseux series, as given by 
equations (30), (36), (42) and (48), are plotted in 
Figs.5(b), 6(b), 7(b) and 8(b). 
     For particular solutions obtained using Taylor 
series expressions of the Einstein function, Fig. 5(a) 
and 5(b) show similar trends in the graphs, although 

their numerical values are different. Similar behavior 
is observed in Fig. 8(a) and 8(b). Although no 
solution to initial or boundary value problems has 
been obtained in this work, hence solutions based on 
the general solutions have not been computed, it is 
expected that numerical values of the general 
solutions in both approaches should be close. 
     For particular solutions in Fig. 6(a) and 6(b), and 
in Fig. 8(a) and 8(b), differences occur in both the 
graphical trends and in the numerical values. This 
might be attributed to the use of Puiseux series in 
these cases, or it might be possible that solutions to 
initial and boundary value problems based on the 
general solutions would adjust themselves 
numerically. While this is inconclusive at present, 
graphs of the particular solutions are meant to 
provide information with regard to how close the 
polylogarithm expressions are to series expressions. 

                                       
Fig. 5(a) 

𝒚𝒑 Corresponding to 𝑬𝟏(𝒙) in Equation (6) 

 

 

Fig. 5(b)  𝒚𝒑 of Equation (30) 
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Fig. 6(a) 

𝒚𝒑 Corresponding to 𝑬𝟐(𝒙) in Equation (6) 

                                                                         

 

 

Fig. 6(b) 𝒚𝒑 of Equation (36) 

       

 
Fig. 7(a) 

𝒚𝒑 Corresponding to 𝑬𝟏(𝒙) in Equation (6) 

 

 

Fig. 7(b) 𝒚𝒑 of Equation (42) 

 

 
Fig. 8(a) 

𝒚𝒑 Corresponding to 𝑬𝟏(𝒙) in Equation (6) 

                                                                        

 

 

Fig. 8(b) 𝒚𝒑 of Equation (48) 

 

 

5 Conclusion 
In this work, a method of solution of the 
inhomogeneous Airy’s equation when the right-
hand-side is one of Einstein’s functions is 
investigated. The method is based on expressing the 
Einstein functions in series form followed by 
obtaining particular solutions. The main conclusion 
that can be drawn from this work is that Taylor series 
expansions of Einstein’s functions produce particular 
solutions with a trend that is similar to that of 
particular solutions expressed in polylogarithmic 
functions. 
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