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Abstract: - The use of the 𝑇-statistic in statistical inference procedures is usually restricted to normal 
populations or to large samples. However, these conditions may not be fulfilled in some situations: the 
population can be moderate/highly skewed, or the sample size can be small. In this work, we use the Pearson’s 
system of distributions, namely, type IV distributions to model 𝑇. By some simulation work, it is shown that 
this approximation leads to confidence intervals whose coverage is close to the nominal coverage even for low 
sample sizes. 
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1 Introduction 
Let 𝑋1, ⋯ , 𝑋𝑛 be a random sample with mean �̅� and 
standard deviation 𝑆 drawn from a population 𝑋 
with finite mean 𝜇 and standard deviation 𝜎. The 
study of the distribution of the ratio 
 

𝑇 = √𝑛
�̅�−𝜇

𝑆
                        (1) 

 
under an underlying Normal distribution, presented 
by Gosset [1] (under the pseudonym Student) was 
one of the seeds of the development of Statistical 
Inference. However, the potentialities of using 𝑇 
have not (surprisingly?) been exploited outside the 
comfort of the Normal distribution or the scope of 
the Central Limit Theorem (CLT). 

At the beginning of the last decade, [2] derived 
the first four moments of the Student's 𝑇-Statistic 
for any underlying population with finite first four 
moments. The derived approximations for all these 
four moments depend only on two measures: 
skewness and kurtosis. Skewness is defined as 

 
𝛾1(𝑋) =

𝐸(𝑋−𝜇)3

𝜎3                      (2) 
 

and kurtosis is given by 
 

𝛾2(𝑋) =
𝐸(𝑋−𝜇)4

𝜎4 − 3.                 (3) 
 

For a Normal distribution both measures are 
equal to zero. 

Using Delta method (cf. [3]), [2] derived 
expressions for the first four moments of 𝑇 that are 
describe in expressions (4) to (7). 

 
𝐸(𝑇) = −

𝛾1(𝑋)

√𝑛
+ 𝑂(𝑛−3/2)             (4) 

 
𝐸(𝑇2) = 1 + 2

𝛾1
2(𝑋)+1

𝑛
+ 𝑂(𝑛−2)         (5) 

 
𝐸(𝑇3) = −

7𝛾1(𝑋)

2√𝑛
+ 𝑂(𝑛−3/2)           (6) 

 
𝐸(𝑇4) = 3 + 2

14𝛾1
2(𝑋)−𝛾2(𝑋)+9

𝑛−1
+ 𝑂(𝑛−2)     (7) 

 
Surprisingly, the first three moments estimates 

only depend on 𝛾1(𝑋). 
From equations (4) to (7), clearly, as 𝑛 increases 

the importance of skewness decreases. When 𝑛 is 
large, Slutsky’s theorem [4] allows the application 
of the Student's 𝑇-statistic to non-normal 
populations. However, statistical inference for small 
sample sizes may not be possible if the underlying 
distribution is not symmetric. This is also clear 
when we compute the first-order Edgeworth 
expansion of 𝑇 (Edgeworth expansions are a 
particular case of the well-known Gram-Charlier 
series which allows to write a distribution function 
of some variable from a well-known one, usually 
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the Normal standard distribution). Let 𝐹 be the 
cumulative distribution function (cdf) of 𝑇. Then, 

 

𝐹𝑇(𝑥) = Φ(𝑥) −
𝛾1(𝑋)Φ(3)(𝑥)

6√𝑛
+ 𝑂(𝑛−1)         (8) 

 
where Φ(3)(𝑥) is the third-order derivative of the 
cdf of a standard normal distribution, cf [5]. 

Pearson’s system of distributions is a partition of 
the set of all distributions with finite first four 
moments cf. [6,7] whose probability/probability 
density function 𝑓 satisfies the following differential 
equation: 

 

[ln 𝑓(𝑥)]′ = −
𝑥+𝑎

𝑏0+𝑏1𝑥+𝑏2𝑥2              (9) 
 

where 𝑎, 𝑏0, 𝑏1 and 𝑏2 are distribution parameters. 
The solutions of equation (9) are divided into 

seven groups known as Pearson’s type of 
distributions that range from I to VII. 

Multiplying equation (9) by 𝑥𝑟 (with 
𝑟 ∈ {0,1,2,3}) and integrating it, it is possible to 
derive the relation between the four parameters and 
the first four raw moments [8]. [4] provide a more 
comprehensive overview on this subject. However, 
it should be noted that the expression presented by 
[4] for the coefficient 𝑏1 contains an inaccurate. 
Where it should be 𝛾1(𝑋), it appears √𝛽1 where 
𝛽1 = 𝛾1

2(𝑋), which of course is not equivalent. 
[4] performs the partition of the distributions 

considering the combination of parameters 
 

𝑘 =
𝑏1

2

4𝑏0𝑏2
                          (10) 

 
The case 0 < 𝑘 < 1 corresponds to the type IV 

distributions. 
Let Γ(. ) stand for gamma function and consider 

the beta function 
 

𝐵(𝑎, 𝑏) =
Γ(𝑎)Γ(𝑏)

Γ(𝑎+𝑏)
                   (11) 

 
where 𝑎 > 0 and 𝑏 > 0. 

The probability density function is given by 
 

𝑓(𝑥) =

|
Γ(𝑚+

𝜈

2
𝑖)

Γ(𝑚)
|

2

𝛼𝐵 (𝑚 −
1

2
,

1

2
)

×             (12) 

× (1 + (
𝑥 − 𝜆

𝛼
)

2

)

−𝑚

exp (−𝜈 tan−1
𝑥 − 𝜆

𝛼
) 

where 𝑚 > 1/2 and 𝜈 > 0. 

None of the most used distributions in Statistics 
verifies the density function defined in (12), i.e., 
none is a type IV distribution. Nevertheless, it is 
possible to identify in literature examples where 
these distributions are used to model real life 
problems (cf. [9,10]). 

Several researchers have dedicated some of their 
attention to this type of distributions. [11] 
determined several values of type IV distribution 
functions. Later, [12] have constructed an algorithm 
for determination of some quantiles that can be 
applied to any of the types of distributions of the 
Pearson system. [13] analyzed the moments of type 
IV distributions. More recently, [14-16] determined 
approximate expressions for a type IV distribution 
function. Details of packages/macros developed to 
allow the use of type IV distributions can be found 
in [17] for  software and in [18] for SAS 
software. 

Under broader conditions, [1] showed that 𝐹𝑇 is 
a type IV distribution if 𝑋 is non-symmetric, i.e., 
𝛾1(𝑋) ≠ 0. It is clear from equation (8) that as 𝑛 
increases 𝐹𝑇 gets close to a normal distribution. 
Until recently, there was no closed form expression 
for the cdf of a type IV distribution. Moreover, this 
type of distribution depends on four parameters. 
This is important because if the sample size is high, 
it is possible to apply the CLT and if the size is low 
it may not be reasonable to estimate all four 
parameters. These two issues may help to explain 
the little of use of this kind of distributions in 
statistical inference. However, it is now possible to 
use software to easily compute probabilities or 
quantiles. Hence, in the recent years some 
applications involving the use of type IV 
distributions can be found. For instance, its use in 
econometric modelling [19] or in operating room 
management [20]. 

In practice, the problem of fitting a type IV 
distribution to 𝑇 is that it requires finite first four 
moments of the underlying distribution and 
estimates of its skewness and kurtosis. In the 
context of a samples with low sizes this may be a 
challenge as previously discussed. Moreover, it is 
not clear if it there is any advantage of using a type 
IV distribution instead of just using a Normal 
distribution even for small sample sizes. 

In this work, we address the problem of using the 
𝑇-statistic in small samples and skewed populations 
to perform statistical inference. A Bayesian 
approach to this matter can be found in [21]. 

The outline of this work is as follows. In Section 
2, two confidence intervals are presented for the 
mean value of a population: one based in the 
Normal approximation of 𝐹𝑇 and the other based on 
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the approximation to a type IV distribution. In 
Section 3, simulation work is presented to compare 
the two confidence intervals. In two of the studied 
cases studied, it also addressed the situation where 
the skewness can be written using the mean value. 
In the last Section, the obtained results are 
discussed. 

 
 

2 Confidence Intervals for the Mean 
Given a random sample 𝑋1, ⋯ , 𝑋𝑛 drawn from a 
population 𝑋 with finite variance, the application of 
the CLT allows us to obtain the following 
confidence interval for the mean value 𝜇 of 𝑋: 
 

]�̅� − 𝑧𝛼/2
𝑆

√𝑛
, �̅� + 𝑧𝛼/2

𝑆

√𝑛
[                (13) 

 
where 𝑧𝛼 is the quantile 1 − 𝛼 of a standard normal 
distribution. This confidence interval is widely used. 
When the underlying population is normal the 
 𝑡-Student with 𝑛 − 1 degrees of freedom should be 
used if 𝑛 is not large [4]. 

In a similar way, it is possible for small sample 
sizes to replace the quantiles used in (13) when 
dealing with skewed populations. Approximating 𝐹𝑇 
by a type IV distribution that verifies the estimates 
defined by equations (4) to (7), we get an alternative 
confidence interval for 𝜇: 

 
]�̅� − 𝑞1−𝛼/2

𝑆

√𝑛
, �̅� + 𝑞𝛼/2

𝑆

√𝑛
[             (14) 

 
where 𝑞𝛼 is the quantile 1 − 𝛼 of a type IV 
distribution. Clearly, this interval is no longer 
symmetric. In practice, the application of that 
interval requires some knowledge about the 
population kurtosis 𝛾2(𝑋) and especially the 
population skewness 𝛾1(𝑋). Thus, its usefulness in 
practice needs to be assessed by some simulation 
work. It is not clear if there is any advantage in 
estimating both skewness and kurtosisin order to 
compute estimates for the bounds defined in (14). 

The confidence interval defined in (14) only 
makes sense when 𝛾1(𝑋) ≠ 0. Otherwise, the 
approximation to a type IV distribution is no longer 
valid. The 𝐹𝑇 distribution would be a type VII 
distribution which (with no surprise) corresponds to 
the 𝑡-Student distribution. 

To compute the type IV distribution quantiles 
involved in (14),  package PearsonDS [17] was 
used.  
 

 

 

3 Simulation Results 
To analyse the performance of the confidence 
intervals (13) and (14) several underlying 
distributions were considered. The first choice was 
the exponential distribution Exp(𝜆), where 
𝜇 = 1 𝜆⁄ , because both skewness and kurtosis do not 
depend on the parameter 𝜆. The results concerning 
the estimated coverage probability, i.e., the 
proportion of intervals that contain 𝜇 for a 95% 
confidence level when equation (13) (Normal) and 
equation (14) (Type IV) are used are presented in 
Table 1 (𝜆 = 1) and 2 (𝜆 = 1000). Samples sizes 
ranging from 5 to 200 (105 replicas) were 
considered.  
 

Table 1. Estimated coverage for 𝑋~𝐸𝑥𝑝(1) 
(𝛾1(𝑋) = 2, 𝛾2(𝑋)=6) 

𝑛 Normal TypeIV 

5 81.11 89.44 
10 86.95 91.09 
15 89.21 91.00 
20 90.20 91.09 
30 91.79 91.09 
50 92.92 91.16 

200 94,39 94.01 
 

Table 2. Estimated coverage for 𝑋~𝐸𝑥𝑝(1000) 
(𝛾1(𝑋) = 2, 𝛾2(𝑋)=6) 

𝑛 Normal TypeIV 

5 81.21 89.63 
10 86.81 90.93 
15 89.13 91.48 
20 90.56 91.90 
30 91.79 92.17 
50 93.00 92.76 

200 94.74 94.15 
 
Clearly, the observed coverages are very similar 

when the mean value of the underlying distribution 
changes. Comparing the performance of the 
confidence intervals (13) and (14), the coverage 
improves when a type IV distribution is used for 
low sample sizes. For large samples, the coverages 
of both intervals are similar with a little advantage 
to the Normal distribution. 

Both confidence intervals tend to be liberal in the 
sense that its coverage is lower than the nominal 
probability. 

As we are working in a skewed population 
setting two more skewed distributions were 
considered in the more likely situation of having to 
estimate both skewness and kurtosis. To assess the 
performance of the confidence intervals with 
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discrete and continuous underlying distributions it 
was chosen the Poisson 𝑃(𝜆) and Chi-square with 
𝑚 degrees of freedom 𝜒𝑚

2  distributions. The usual 
confidence levels were used: 0.90, 0.95 and 0.99. 

In those two distributions, skewness and kurtosis 
can be estimated different ways. It is possible to use: 

 their observed values as estimates – 
strategy TypeIV,o; 

 the sample mean to estimate both 
measures using the relation between 
each one and 𝜇 – strategy TypeIV,m. 
 

Recall that for a Poisson distribution 𝑋~𝑃(𝜆): 
 

𝛾1(𝑋) = 𝜇−1/2 and 𝛾2(𝑋) = 𝜇−1           (15) 
 

For a Chi-square distribution 𝑋~𝜒𝑚
2 : 

 
𝛾1(𝑋) = 2√2𝜇−1/2 and 𝛾2(𝑋) = 12𝜇−1     (16) 

 
Table 3 to Table 5 present the results of the 

estimated coverage probability for both strategies 
(compared to the use of the Normal approximation) 
at a 95% confidence level for two different Poisson 
distributions. 

 
Table 3. Estimated coverage for 𝑋~𝑃(1) (𝛾1(𝑋) =

1, 𝛾2(𝑋)=1) 

𝑛 Normal TypeIV,o Type IV,m 

10 91.04 92.76 93.23 
15 91.45 92.51 92.85 
20 92.67 93.15 93.05 
30 93.26 93.84 93.73 
50 93.96 93.96 93.79 
200 94.62 94.63 94.75 
 

Table 4. Estimated coverage for 𝑋~𝑃(3) (𝛾1(𝑋) =
0.5774, 𝛾2(𝑋)=0.3333) 

𝒏 Normal TypeIV,o Type IV,m 

10 91.41 93.89 93.58 
15 92.56 94.17 93.87 
20 93.12 94.20 94.22 
30 93.93 94.53 94.39 
50 94.21 94.61 94.48 
200 94.95 95.03 94.82 
 

Clearly, using type IV distributions shortens the gap 
between the nominal and real confidence. For small 
sample sizes the gap is roughly half of what we 
would get using the Normal approximation. 
Comparing TypeIV,o to TypeIV,m there is no clear 
winner between the two strategies of estimating 
skewness. 

Table 5. Estimated coverage for 𝑋~𝑃(5) (𝛾1(𝑋) =
0.4472, 𝛾2(𝑋)=0.2) 

𝑛 Normal TypeIV,o Type IV,m 

10 91.76 92.96 94.78 
15 92.89 94.16 94.29 
20 93.25 94.48 94.09 
30 93.98 94.44 94.52 
50 94.47 94.69 94.70 

200 94.89 94.88 94.87 
 
The script of the simulations performed with an 

underlying Poisson distribution, due to discrete 
nature of the distribution, must take into account 
two issues than turn impossible the estimation of the 
skewness directly from the sample (strategy 
TypeIV,o). A finite value for the sample skewness 
cannot be computed if all values are equal because 
there is no possibility of estimating the sample 
variance. Another issue arises, if the sample is 
symmetric as the distribution from Pearson’s system 
that is going to fit data is no longer a type IV 
distribution (it would be a type VII distribution). 
Every replica/sample that met one of those two 
criteria were excluded from the simulation and 
replaced by other (simulated) sample. Thus, in 
Tables 3 to 5 the sample size 𝑛 = 5 was not 
considered due to the high number of samples with 
all values equal or symmetric. 

Table 6 to Table 8 are like the previous ones but 
consider underlying Chi-squared distributions 
 

Table 6. Estimated coverage for 𝑋~𝜒6
2 (𝛾1(𝑋) =

1.1547, 𝛾2(𝑋)=2) 

𝑛 Normal TypeIV,o Type IV,m 

5 85.49 89.85 91.75 
10 90.11 92.3 92.53 
15 91.59 92.95 92.74 
20 92.41 93.31 93.25 
30 93.38 93.78 93.51 
50 93.90 94.06 93.76 

200 94.81 94.72 94.56 
 
All confidence intervals are once again liberal. 

For a given 𝑛, the real coverage tends to be closer to 
the nominal coverage when 𝛾1(𝑋) and/or 𝛾2(𝑋) are 
close to zero. 

As expected, the strategies that use a type IV 
distribution overcome the approximation to the 
Normal distribution. However, for a large 𝑛, the 
performances are similar. When using a type IV 
distribution, it is not clear what is the best strategy 
to follow: TypeIV,o  or TypeIV,m. 
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Table 7. Estimated coverage for 𝑋~𝜒12
2  (𝛾1(𝑋) =

0.8165, 𝛾2(𝑋)=1) 

𝑛 Normal TypeIV,o Type IV,m 

5 86.51 91.14 91.51 
10 91.13 93.48 93.06 
15 92.30 93.74 93.40 
20 92.98 94.00 93.73 
30 93.74 94.36 94.00 
50 94.26 94.55 94.28 
200 94.57 94.73 94.64 

 
Table 8. Estimated coverage for 𝑋~𝜒18

2  (𝛾1(𝑋) =
0.6667, 𝛾2(𝑋)=0.6667) 

𝑛 Normal TypeIV,o Type IV,m 

5 89.92 91.63 91.38 
10 91.18 93.70 93.46 
15 92,54 94.10 93.82 
20 92.97 94.11 94.13 
30 93.78 94.45 94.29 
50 94,27 94.68 94.47 
200 94.85 94.90 94.92 

 
All conclusions are similar for other levels of 

coverage: 0.90 and 0.99 (results not shown). 
 

 

4 Discussion 
More than one hundred years after Gosset’s work, 
under the pseudonym of Student, the 𝑇-ratio 
potentiality has not been totally exploited yet. The 
𝑡-Student statistic is in the genesis of what we now 
call Statistical Inference. 

Trying to use very well-known methods to 
situations where assumptions are violated is 
common and, above all, a need in the way data is 
often messier than desired [22]. In the literature, 
several works regarding sample size calculation for 
skewed populations can be found (cf. [23,24]). 

In [25], using simulation, it is described that the 
normative value of 50 for the sample size is not 
enough when the population is skewed. 

However, when it is not possible to get a sample 
whose size is not equal or higher to the desired one 
inferential statistics may also be performed even if 
with some constraints.  
This work showed how the 𝑡-Student statistics can 
be used outside the CLT assumptions. Population 
skewness should be considered and even in samples 
with only 5 individuals it is possible to improve the 
coverage of the confidence intervals (comparing to 
the straightforward application of the CLT). 
However, there was no clear winner between the 
two analyzed strategies that used type IV 

distributions. This is, at some extent, surprising 
since the sample mean has some optimal proprieties 
as an estimator of the population mean value. 
Therefore, we would expect a better performance of 
strategy TypeIV,m. 

When both skewness 𝛾1(𝑋) and kurtosis 𝛾2(𝑋) 
do not exceed 1, a coverage of about 94% is 
observed for samples sizes as low as 15 (Tables 4, 5 
and 8). As those measures increase and are closer to 
1, the required sample sizes for that coverage is 
about 20 (Table 7) or 50 (Table 3 and 6). Clearly, 
when skewness or kurtosis is very high, a large 
sample is required to achieve that level of coverage 
as seen when the underlying distribution was 
Exponential (Tables 1 and 2). 
 
 
5 Conclusion 
Clearly, the approximations to a type IV distribution 
is only a plus when the sample size is low and/or 
skewness is at least moderate. For instance, for 
𝑛 = 50, the performances were, in general, quite 
similar. In the future, it can be studied, in more 
detail, conditions where it makes sense to use the 
type IV distribution instead of the Normal 
distribution. 
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