
Abstract: This paper shows how to determine all those positive integers x such that ϕ(x) = m holds,

where x is of the form 2apbqc and p, q are distinct odd primes and a, b, c ∈ N.
In this paper, we have shown how to determine all those positive integers n such that ϕ (x) = n will

hold where n is of the form 2apbqc, where p, q are distinct odd primes and a, b, c ∈ N. Such n are
called pre-totient values of 2apbqc. Several important theorems along with subsequent results have been
demonstrated through illustrative examples.
We propose a lower bound for computing quantity of the inverses of Euler’s function. We answer the
question about the multiplicity of m in the equation ϕ(x) = m [1]. An analytic expression for exact

multiplicity of m = 22
n+a, where a ∈ N , a < 2n, ϕ(x) = 22

n+a was obtained. A lower bound of
inverses number for arbitrarym was found. We make an new approach to Sierpinski assertion.

Key-Words: Inverses of Euler’s totient function, prime numbers, number of pre-totients of Euler’s totient
function, lower bound of the inverses of Euler’s function.

1 Introduction

The Euler totient function ϕ(n) for n ∈ N is the total
number of positive integers which are less than n and
coprime with n.

Let n be a positive integer. Then the set Z∗
n con-

taining the positive integers less than or equal to n
and relatively prime to n forms a group under multi-
plication modulo n and the order of this group is de-
noted by ϕ(n), known as Euler’s phi function or the
totient function. For example, Z∗

8 = {1, 3, 5, 7}and
So ϕ(8) = 4. Similarly, ϕ(11) = 10 because Z∗

11 =
{1, 2, . . . , 10}.

In number theory and abstract algebra, Euler’s phi
function plays a major role in several aspects. There
are several important properties and rules to deter-
mine the value of ϕ(n) for given n ∈ N which can
be found in many standard text books related to num-
ber theory.

(1) If a, b are relatively prime integers, then
ϕ(ab) = ϕ(a)ϕ(b). An immediate consequence of
this property is, ϕ(2em) = ϕ(2e)ϕ(m) provided
m ∈ N is odd and e ∈ N.

This is an application of our theorem on the num-
ber of solutions to an equation with the Euler function
i.e. search for the preimage of the Euler function in
cryptography. Since p and q are prime numbers, then
ϕ(pq) = ϕ(n) = (p−1)(q−1), whereϕ(x) is the Eu-

ler function. From the condition of choosing the key d
as mutually inverse to e we have: de(modϕ(n)) ≡ 1,
or de = kϕ(n) + 1 for some natural k. Then using
Euclid algorithm one can find secret key d. Solving
the last equation with respect to d, we actually find the
secret key in algorithm RSA [24]. Therefore, in order
for this equation to be solved, it is extremely neces-
sary that the possible solutions, i.e. the pre-totients of
the function ϕ(n), be as large as possible. Therefore,
it is important for us to learn to choose such n = pq
that the set ϕ−1(n) is as large as possible for num-
bers n of this order. To find ϕ(n) we can consider
the Sylow p1-subgroup and Sylow q1-subgroup of Z

∗
n

and compute their orders, where pq is divisible on
p1 and Q1. Orders of p1-subgroup and q1-subgroup
[16, 18, 17, 19] of Z∗

n depends from its structure and
multiplicity p1 and q1 in p − 1 and q − 1 because of
ord(Z∗

n) = (p− 1)(q − 1).

2 Preliminaries and Notifications
In order to make the presentation simpler, we shall
make use of the following symbols. For a, b, n ∈ N,
Nn = {1, 2, ..., n− 1, n},
aNb = {a, a+ 1, a+ 2, ..., b− 1, b},
aNn = {x ∈ N : x ≥ a},
Wn = {1, 2, ..., n− 1, n},
W = {0} ∪ N,
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P = {p ∈ N | p is a prime number }.

We shall use the symbol |S| to denote the number
of elements of the set S. When a positive integer |x| is
given, one can compute ϕ(x) easily. But when ϕ(x)
is given, determination of x becomes comparatively
a difficult task. Here the values ϕ(x) is called a to-
tient number whereas its preimage x under ϕ is called
a pre-totient. Corresponding to a given n ∈ N, the
collection of all pre-totients of n under ϕ is denoted
by ϕ−1(n) i.e. ϕ−1(n) = {r ∈ N : ϕ(r) = n}.

For example, ϕ−1(2) = {3, 4, 6}. The number
14 has no pre-totients and so ϕ−1(14) is empty set.
Moreover, if n > 2 is odd, then ϕ−1(n) is an empty
set because of the set property 4 given above.
In [2], a general process to determinate the setϕ−1(n)
is discussed along with an example for n = 576.
However the process demands the assumption that
all ϕ−1(x) where x < 576 must be known before-
hand. Once this table is prepared, the actual determi-
nation starts. Another set of works can be found in [2]
and [11]. In [11] the determination is done through
algorithm, which way become tedious job when n
will become severely bigger. In [2] works of deter-
mination of pre-totients of some particular cases like
n = 2p, 2kp where p is odd prime have been made.
Carmichael showed his process for determination of
pre-totients of the number of the form 2m in [4]. We
also did his work on the same set ϕ−1(22n+a) in our
work in arxiv [12].

In this paper we are considering those n that have
the form n = 2apa1

1 pa2

2 , where a, a1, a2 ∈ N and
p1 < p2 are distinct odd primes in an alternative man-
ner. To proceed further, we assume that x ∈ φ−1(n).
Then x is either even or odd positive integer. For
n ∈ N , we take into account the following partition
into two sets introduced in [2].

E(n) = x ∈ ϕ−1(n) : x ≡ 0(mod2) (1)

O(n) = x ∈ ϕ−1(n) : x ≡ 1(mod2) (2)

Clearly, ϕ−1(n) is disjoint union of E(n) and
O(n). Moreover, the set of O(n) is empty provided
n is odd. In this case, ϕ−1(n) = E(n). In [2] it is
derived that cardinalities of the set O(2s) and E(2s),
where s is odd positive integer are equal. We now
start with the first case x ∈ E(2apa1

1 pa2

2 ).

3 Problem Formulation
The aim of this work is to study theoretical numeri-
cal properties of the multivalued inversed to Euler’s
function [13, 14], demonstrate the relevance of the ex-
amples.

Subject of study: explore the composition of the
functionϕ (n)with itself and the tasks associatedwith

it, it’s properties, the number of preimages of the
functionϕ (n), behavior of the straightO(An), where
An (n;ϕ (n)) and O (0; 0) where n → ∞ [23].

Using Lenstra’s factorizationmethodwe have deal
with group of curve point isomorphic to multiplica-
tive group of ring Zn which has order ϕ(n). Hence, it
is important to know size set of pre-totients for ϕ(n)
to choose suitable curve [22, 23].

We going to find a lower estimation for computing
quantity of the inverses of Euler’s function. Our ap-
proach can be further adapted for computing certain
functions of the inverses, such as their quantity, the
larger.

Of fundamental importance in the theory of num-
bers is Euler’s totient function ϕ(n). Two famous
unsolved problems concern the possible values of the
functionA(m), the number of solutions ofϕ(x) = m,
also called the multiplicity of m. Of big importance
in the cryptography has number of pre-totients of Eu-
ler’s totient function ϕ(n), n = pq. Because it deter-
mines cardinal of secret key space in RSA [24].

4 Main result about solution of

ϕ (n) = 2mpα1p
β
2 .

Firstly, we consider the case x ∈ E(2apa1

1 pa2

2 ).
Theorem 4.1. Let x ∈ E(2apa11 pa2

2 ). Then x can

never be divisible by 2P for all p ∈ a+1N.
Proof. Let’s make the opposite assumption. Since

x ∈ E(2apa1

1 pa2

2 ), wewrite x = 2a+rm0 wherem0 =
2k − 1 and k, r ∈ N . Then ϕ(x) = 2apa1

1 pa2

2 lead us
to the contradiction:

2a+r−1ϕ(m0) = 2apa1

1 pa2

2 , (3)

2r−1ϕ(m0) = pa1

1 pa2

2 . (4)

In (4), if r − 1 ∈ N, then left hand side is even
number but right hand side is not, a contradiction. If
r − 1 = 0 i.e. r = 1 then (4) reduces to ϕ(m0) =
pa11 pa22 . Since m0 is odd, m0 = 1 or m0 ≥ 3 will
create contradiction in either way. This completes the
proof.

Theorem 4.2. For e ∈ Na the set E(2apa1

1 pa2

2 )
contains elements of the form 2em0, where
m0 ≡ 1(mod2) iffm0 ∈ O(2a+1−epa1

1 pa2

2 ).

Proof. Let x = 2em0, where e ∈ Na and m0 is
odd. Then x ∈ E(2apa1

1 pa2

2 ) gives us the following
chain of transformations: 2e−1ϕ(m0) = 2apa1

1 pa2

2

which implies that ϕ(m0) = 2(a+1)−epa1

1 pa2

2 . Con-

sequently we obtain m0 ∈ O (2(a+1)−epa1

1 pa2

2 ).
On the other hand, if

O (2(a+1)−epa1

1 pa2

2 )
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be non-empty for e ∈ Na ( we won’t take e = a+1
since O (pa1

1 pa2

2 ) is empty set), then x = 2em0 ∈
E(2apa1

1 pa2

2 ). Hence the proof is completed.
Corollary 2.3. Let qβ be a divisor of x ∈

ϕ−1(2apα1

1 pα2

2 ), q ∈ P\{2, p1, p2}. Then β = 1.
Proof. The proof follows from the opposite as-

sumption that n = 2eqβm ∈ ϕ−1(2apα1

1 pα2

2 ), where
e ∈ Wa, m ≡ 1(mod2) and GCD (q, 2m) = 1.
Then, the initial number n = 2apa1

1 pa2

2
can be presented in form of the product
2apa1

1 pa2

2 = 2e−1qβ−1 (q − 1)ϕ (m) . If β−1 ∈ N
then desired contradiction is already reached.

Statement. If m ∈ O(2apa1

1 pa2

2 ) then m contains
no greater than a number of odd prime divisors.

Proof. Let m ∈ O(2apa1

1 pa2

2 ). Then m is odd
and evidently m ≥ 3. Hence any prime divisor of m
will be odd. Let the total number of such odd prime
divisors ofm be r. In other words, r ∈ Na.

Let the total number of such odd prime divisors of
m be r. Then 2r|ϕ (m) or equivalently 2r|2apa1

1 pa2

2 .
In other words, r ∈ Na or putting it simply number of
odd prime divisors ofm is at most a.

Remark 4.1. Till October 2019 only
Fermat’s prime that have been discovered are
F0, F1, F2, F3, F4. From F5 till F32 all composite.
Primality of F33, F34, F35 is still an open problem.
From F36, some of the Fermat’s numbers have been
established as composite. See [5, 8, 9], for latest up-
dates.

2.2 Let m = pβ1

1 q2, then ϕ(m) = 2apa1

1 pa2

2 will
produce

2apa1+1−β1

1 pa2

2 = (p1 − 1)(q2 − 1). (5)

Let e1, e2 are natural numbers. Evidently, β1 ∈
Na1+1 and q2 =

(
2ap

a1+1−β1
1 p

a2
2

p1−1 + 1
)
∈ P . More-

over, if we assume

p1 − 1 = 2e1 ,

q2 − 1 = 2e1pγ21

1 pγ22

2

where
e1, e2 ∈ N

and
γ21, γ22 ∈ W

then

a = e1 + e2,

a1 = γ21 + β1 − 1,

a2 = γ22.

Once again, p1 is a Fermat’s prime Fe′1 for some

2e
′
1 ∈ Na−1 and so e2 = a − 2e

′
1 . Consequently

we can state.

Theorem 4.3. m = pβ1

1 q2 ∈ O(2apa1

1 pa2

2 )
provided

(1) β1 ∈ Na1+1,

(2) p1 = F
e
′
1
for 2e

′

1 ∈ Na−1 and this p1 ∈ P,

(3) q2 = 2a−2e
′
1 F a1+1−β1

e
′
1

pa2

2 + 1 and such q2 ∈
P,

(4) p1, q2 satisfy equation 2apa1+1−β1

1 pa2

2 =
(p1 − 1)(q2 − 1) and ϕ(m) = 2apa1

1 pa2

2 .

The set of such numbersm has size at most a1+1.
If we consider the case ϕ−1 (n) ∈ E (n) and clas-

sify such values of ϕ (n) by a quantity of prime mul-
tipliers, grater then 3 in ϕ (n).

Now we consider the statement about number of
solutions of equation ϕ (n) = 2mpα1 p

β
2 .

Theorem 4.4. If

ϕ (n) = 2mpα1 p
β
2 , (6)

then maximal number of solutions n = 2 · 3pq sat-
isfying equation ϕ (pq) = 2mpα1 p

β
2 equals to m(α +

1)(β + 1). The solutions have the following form:

p = 2m−m1pα1−β1

1 pα2−β2

2 + 1 ∈ P,

q = 2m1−1pβ1

1 pβ2

2 + 1 ∈ P.

Proof. Since we search solutions for numbers of
the form n = 2k ·3pq. The process of Eulers function
computation is determined by the formula:

ϕ
(
2k3pq

)
= 2k−1 · 2 · (p− 1) (q − 1).

Implies that new non-zero power of 2 can contains
in p − 1 and q − 1. But in our case k = 1. If we fix

that ϕ (n) = 2mpα1 p
β
2 , then structure of dividers of n

is the following:

m = m1 +m2,

α = α1 + α2, β = β1 + β2

this follows from equations below

ϕ(n) = 2m · pα1 q
β
2 ,

m = m1 +m2,

α = α1 + α2, β = β1 + β2,

p = 2m−m1pα1−β1

1 pα2−β2

2 + 1 ∈ P,

q = 2m1−1pβ1

1 pβ2

2 + 1 ∈ P,

n = 2 · 3pq.

The number of solutions of ϕ (n) = 2mpα1 p
β
2 is de-

termined by number of partitions of m in 2 into terms
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from 0 to m, and there are such C1
m+1 = m + 1, but

the present factor 3 takes 1 term in the power, since
ϕ(3) = 2 of these two parts, so there are exactly m
possibilities for the number of partitions. The number
of partitions of the exponentαbetween powers [25] of
the factors p and q into parts including the possibility
of an empty part is total, including a degenerate parti-
tion with an empty part. Entirely similarly, we obtain
the number of possible distributions of powers of the
number p2 is equal to C

1
β+1. The exact number of so-

lutions is determined by the number of cases when the
following two following conditions pertaining to set
of primе of the numbers p and q are satisfied.

p = 2m−m1pα1−β1

1 pα2−β2

2 + 1 ∈ P,

q = 2m1−1pβ1

1 pβ2

2 + 1 ∈ P.

Verifying of the condition ϕ (3pq) = 2mpα1 p
β
2 is pro-

viding with using of multiplicity of Euler’s function
ϕ (pq) = ϕ (p)ϕ (q). The proof is completed. Corol-
lary. In case of

n = 2pq,

if ϕ (n) = 2mpα1 p
β
2 , (1) then maximal number of

equation solutionsϕ (pq) = 2mpα1 p
β
2 equals tom(α+

1)(β + 1). The solutions have the following form:

ϕ(n) = 2m · pα1 q
β
2 , m = m1 +m2,

α = α1 + α2, β = β1 + β2,

p = 2m−m1pα1−β1

1 pα2−β2

2 + 1 ∈ P,

q = 2m1pβ1

1 pβ2

2 + 1 ∈ P.

The proof follows from proof of previous Theorem.
Remark 4.2. Minimal number of primes grater

then 3 in solution of (1) is possible if one of multipli-
ers factorized on powers of 2 and second multiplier
that is p2 − 1 = 2m2px1 .

Proof. The special case arise, when p2 − 1 =
2m2px1 . This condition give us the next solution:

ϕ(n) = 2m · pα1

1 , m = m1 +m2,

p = 2m−m1pα1−x
1 pα2−1

2 + 1 ∈ P,

q = p2,

p2 − 1 = 2m1px1 ; p1, p2 ∈ P.

Then n = pq and ϕ (n) = 2mpα1 p
β
2 .

Secondly, it remains to consider the case m ∈
O (2apa1

1 pa2

2 ).
We consider the case ϕ−1 (n) ∈ O (n)– odd num-

bers and classify such values of ϕ (n) by a quantity of
prime multipliers. grater then 3 in ϕ (n).

Theorem 4.4. (About number of solutions of

equation ϕ (n) = 2mpα1 p
β
2 ). If

ϕ (n) = 2mpα1 p
β
2

then maximal number of solutions n = pq satisfying

equation ϕ (pq) = 2mpα1 p
β
2 equals to (m + 1)(α +

1)(β+1). The solutions have in general case the fol-
lowing form:

p = 2m−m1pα1−β1

1 pα2−β2

2 + 1 ∈ P,

q = 2m1pβ1

1 pβ2

2 + 1 ∈ P.

But in this casem = m1 = 0.
Proof. Since we search first of all solutions for the

numbers n used in RSA algorithm then it are numbers
of the form n = pq. The process of Eulers function
computation is determined by the general formula for
n = 3pq: ϕ (3pq) = 2 · (p− 1) (q − 1). Implies that
new non-zero power of 2 can contains in p − 1 and

q − 1. If we fix that ϕ (n) = 2mpα1 p
β
2 , then structure

of dividers of n is the following: m = m1+m2, α =
α1+α2, β = β1+β2 this follows from the equations
below

ϕ(n) = 2m · pα1 q
β
2 , m = m1 +m2,

α = α1 + α2, β = β1 + β2,

p = 2m−m1pα1−β1

1 pα2−β2

2 + 1 ∈ P,

q = 2m1pβ1

1 pβ2

2 + 1 ∈ P.

where n = pq, p, q ∈ P.

The number of solutions ofϕ (n) = 2mpα1 p
β
2 is de-

termined by number of partitions of m in 2 into terms
from 0 to m, and there are such C1

m+1 = m + 1, but
the present factor 3 takes 1 term in the power, since
ϕ(3) = 2 of these two parts, so there are exactly m
possibilities for the number of partitions. The num-
ber of partitions of the exponent αbetween powers of
the factors p and q into parts including the possibility
of an empty part is total, including a degenerate parti-
tion with an empty part. Entirely similarly, we obtain
the number of possible distributions of powers of the
number p2 is equal to C

1
β+1. The exact number of so-

lutions is determined by the number of cases when the
following two following conditions pertaining to set
of primе of the numbers p and q are satisfied.

p = 2m−m1−1pα1−β1

1 pα2−β2

2 + 1 ∈ P,

q = 2m1+1pβ1

1 pβ2

2 + 1 ∈ P.

Let’s check the condition ϕ (pq) = 2mpα1 p
β
2 is carried

out taking into account the multiplicative property
of the Euler function ϕ (3pq) = ϕ (p)ϕ (q) =
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(2 · 2m−m1−12pα1−β1

1 pα2−β2

2 )(2m1pβ1

1 pβ2

2 ) =

2mpα1+α2

1 pβ1+β2

2 . Let’s notice, that p, q ∈ P as well
as their exponents as 3 adds another factor of 2.

Proposition 4.1 If ϕ (n) = 2mpα1 p
β
2 , then maxi-

mal number of solutions of the form n = pq satisfy-

ing equation ϕ (pq) = 2mpα1 p
β
2 equals to (m+1)(α+

1)(β + 1). Minimal number of primes grater then 2
in factorization of p − 1 and q − 1 is possible if one
of multipliers is

p = 2m−m1pα1−β1

1 pα2−β2

2 + 1 ∈ P

and second multiplier presents as p2 − 1 = 2m2px1 .
Proof. The special case arise when p2 − 1 = 2m2px1
gives us the result.

ϕ(n) = 2m · pα1

1 , m = m1 +m2,

p = 2m−m1pα1−x
1 pα2−1

2 + 1 ∈ P,

p2 − 1 = 2m1px1 ; p1, p2 ∈ P,

q = p2.

Then n = pq and ϕ (n) = 2mpα1 p
β
2 .

We now start to classify odd preimages.
Theorem 4.5. Let qβ be a divisor of x ∈

φ−1(2apa11 pa22 ), q ∈ P \ {2, p1, p2}. Then β = 1.

Proof. Let a = 2eqβm ∈ φ−1(2apa1pa2

2 ), where
e ∈ Wa, q is relatively prime to 2m and m is odd.
Then, 2apa1

1 pa2

2 = 2e−1qβ−1(q − 1)φ(m). If β−1 ∈
N , then desired contradiction already arrived.

Theorem 4.6. If m ∈ O(2apa11 pa22 ) then m con-
tains at most a number of odd prime divisors.

Proof. Let m ∈ O(2apa11 pa2

2 ). Then m is odd and
evidently > 3. Hence any prime divisor ofm will be
odd. Let the total number of such odd prime divisors
of m be r. Then 2r|φ(m) i.e. 2r|2apa1

1 pa2

2 . In other
words, r ∈ Na.

We denote the total number of distinct prime fac-
tors of x ∈ N by ω(x).

Theorem 4.7. Ifm ∈ O (2apa1

1 pa2

2 ) and ω(m) =
1 thenm is one of the form

1. pa2+1
2 provided p2 = (2apa1

1 + 1) for case
2apa1

1 + 1 ∈ P holds,
2. q3, where q3 = 2apa1

1 pa2

2 + 1 for case
2apa1

1 pa2

2 + 1 ∈ P.
We are going to find out the explicit forms of x

when it is an odd element of the set ϕ−12apa1

1 pa2

2 . By
Theorem 4.5. r ∈ {1, 2, ..., a}, where r is a total num-
ber of odd prime divisor of x = m ∈ O(2apa1

1 pa2

2 ).
We discuss each case of r one by one.
4.7.1 If r = 1. In this case, m will be one of the
forms
(1) pβ1

1 , β1 ∈ N,

(2)pβ2

2 , β2 ∈ N,

(3)qβ3

3 , β3 ∈ N, where q3 ∈ P\{2, p1, p2}

4.7.1.2 Futhermore if m = pβ1

1 . Then

2apa1

1 pa2

2 = ϕ(pβ1

1 ) = pβ1

1 (p1 − 1) yields

2apa1+1−β1

1 pa2

2 = (p1 − 1)

The number in left side is divisible by pa2

2 but
the number in right side is not. Hence, this case is

rejected and som 6= pβ1

1 .

4.7.1.3 Ifm = pβ1

2 , then

2apa1

1 pa2+1−β2

2 = (p2 − 1). (7)

It is evident, a2 + 1 − β1 ≥ 0. In other words,
β2 ∈ Na2+1. If β2 < a2 +1 then previous equation 7
lead us to contradiction. So, β2 = a2 + 1 and hence

2apa11 = (p2 − 1) (8)

which implies that

(p2 = 2apa1

1 + 1), and 2apa1

1 + 1 ∈ P, (9)

if 2apa11 + 1 is prime indeed, only then it will be
taken under consideration as an eligible candidate in
the set ϕ−1(2apa11 pa22 ).

Furthermore, equation (9) states if p2 ≡
1 (mod3) , p1 ≡ 0 (mod3) and therefore p2 =
2a3a1 + 1 and if 2a3a1 + 1 ∈ P Thus, m = pa2+1

2 ∈
O (2apa1

1 pa2

2 ) provided (9) is satisfied equation.

4.7.1.4 m = qβ3

3 . According to Corollary 4.3
β3 = 1, therefore m = q3. By applying simi-
lar arguments as shown above, we shall get q3 =
(2apa1

1 pa2

2 + 1) ∈ P . In order words, if 2apa1

1 pa2

2 + 1
be a prime, it will be an element of

ϕ−1(2apa1

1 pa2

2 ).

This completes the proof.
Example. Let Fa < Fb be two distinct Fermat’s

primes and we consider the set ϕ−1(2FaFb). Here
it is a routine work to show Fb = 2Fa + 1. So
F 2
b ∈ ϕ−1(2FaFb). Also, 2FaFb + 1 = 0(mod 3).

Therefore, the cardinality of the set ϕ−1(2FaFb) is 0.

5 The cardinality of pre-totients for

ϕ(m).

We propose a exact formula for computing quantity
of the inverses of Euler’s function for any number of
form 2s.
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An old conjecture of Sierpinski asserts that for ev-
ery integer k > 2, there is a number m for which the
equation ϕ(t) = m has exactly k solutions the num-
ber of solutions t of ϕ(t) = m, also called the mul-
tiplicity ofm. In this section we find multiplicity for
numbers of form 2s.

Example. The set of preimages for 12 is
following: φ−1(12) = {13, 21, 26, 28, 36, 42}.
Also we have ϕ−1 (16) = {32, 48, 17, 34, 40, 60},
ϕ−1 (18) = {19, 27, 38, 54}. We remind, that the
number of a form 22

n

+ 1, where n is not-negative
integer, is called Fermat number.

Also the recursive formula for Fermat numbers
[13, 15, 18, 20] was used: Fn = F0...Fn−1 + 2. Be-
sides Useful for the study of the number of prototypes
is Lucas’s Theorem: each prime divisor of the Fermat
number Fn, where n > 1, has a form of k2n+2 + 1.

Lemma. If 2m + 1 is prime, thenm = 2n.
Proof. We will prove by contradiction. Suppose

there exists a number of a form 2m + 1 which is
not prime and m is divisible by p 6= 2. Since p is
prime and it is not 2, it must be odd. Let m = pt,
so we can rewrite our number like this: 2m + 1 =(
2t
)p

+ (1)p =
(
2t + 1

) ((
2t
)p−1 − ...+ (1)p−1

)
.

Expressions in both brackets are grater than 1, but our
number is supposed to be prime. Contradiction.

We make of use Theorem about mutually primal-
ity of non-prime Fermat number [20].

Theorem 5.1. Let n ∈ N ∪ {0}. If 22n

+ 1 is not
prime, then for any number of the form 22

n+a, where
a ∈ N , a < 2n, there exists exactly 2t natural num-
bersm such that ϕ (m) = 22

n+a

, where t is amount of
prime Fermat numbers, which are less than 22

n

+ 1.
Proof. Consider a set {p1, p2, ...pt} of all prime

Fermat numbers lesser than 22
n

+ 1. Let ϕ (x) =
22

n+a. According to Lemma 1, x = 2sq1q2...qv,
where qi are different prime Fermat numbers. Since
a < 2n, then 22

n+a < 22
n+1

. That means, that
qi < 22

n+1

+ 1, because ϕ (x) = ϕ (2sq1q2...qv) =

22
n+a < 22

n+1

.
We also know that qi 6= 22

n

+ 1, because 22
n

+ 1
is not prime. This yields qi < 22

n

+ 1. Other
words it can be written like this: {q1, q2, ...qv} ⊆
{p1, p2, ...pt}. For each x we get, that {q1, q2, ...qv}
is a subset of the set {p1, p2, ...pt}. We shall prove,
that each subset of the setMt = {p1, p2, ...pt} deter-
mines such unique x as a unique product of this subset
of primes fromMt, that x with a corresponding mul-
tiplier 2s, s ∈ N ∪ {0} gives us x = 2st such that
ϕ (x) = 22

n+a.
For this goal we need to show, that

ϕ (p1 · p2 · ...pt) < 22
n+a.

Since ϕ (p1 · p2 · ...pt) is Euler’s function of a
product of prime Fermat numbers, which lesser than
22

n

+ 1, it is not grater than value of Euler’s function

of a product of all Fermat numbers, which lesser than
22

n

+ 1, which is equal to

ϕ
((

22
0

+ 1
)
...
(
22

n−1

+ 1
))

.

That is true, as obvious inequality holds: ϕ (d) ≤
ϕ (db). It is also known, that any two Fermat numbers
are coprime [20], so

ϕ
((

22
0

+ 1
)
...
(
22

n−1

+ 1
))

=

= ϕ
(
22

0

+ 1
)
...ϕ

(
22

n−1

+ 1
)
.

As known, ϕ (y) ≤ y − 1, therefore

ϕ
(
22

0

+ 1
)
...ϕ

(
22

n−1

+ 1
)
≤

≤
(
22

0

+ 1− 1
)
· ... ·

(
22

n−1

+ 1− 1
)
=

= 20 · ... · 22n−1

= 22
n−1.

It was used the formula of the sum of geometric pro-
gression, we have 20 + 21 + ... + 2n−1 = 2n − 1.

Therefore
(
22

0

+ 1− 1
)
· .. ·

(
22

n−1

+ 1− 1
)

=

22
0+21+..+2n−1

= 22
n−1.

Finally,

ϕ (p1 · p2 · ...pt) ≤ 22
n−1 < 22

n+a,

what was needed. That means, that Euler’s function
of the product of the elements of any subset of the
set {p1, p2, ...pt} is lesser than 22

n+a. Let us take
an arbitrary subset of {p1, p2, ...pt}. Let the elements
of this set be {q1, q2, ...qv}. Consider the expression
ϕ (q1 · q2 · ... · qv) = 2w < 22

n+a. This inequality
means, that we can choose such natural number s,
so ϕ (2s · q1 · q2 · ... · qv) = 2s−1 · 2w = 22

n+a. In
other words, for given subset {q1, q2, ...qv}, we found
such number x, that ϕ (x) = 22

n+a. The last equality
means, that each subset defines unique x.

Therefore, each subset gives us the needed the
number x that is always determined by some sub-
set. In other words, the amount of needed numbers is
exactly the amount of different possible subsets. As
well-known fact, this amount is equal 2t for a set of t
elements.

Example. For a non-prime Fermat number 232+1,
number of preimages for subsequent numbers of the
form 22

n+a, a ≤ 32− 1, n ≤ 4 is equal to 232.
For generalizing of Theorem 5.1 it is convenient

to prove the following statement:
Theorem 5.2 Let a ∈ Z, 0 ≤ a ≤ 2n, then the

number of solutions of ϕ(x) = 22
n+a is equal to the

number of sets {2i1 , ..., 2ik}, such that: i1 < i2 <
... < ik
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2i1 + 2i2 + ...+ 2ik ≤ 2n + a,
22

i1 + 1, ..., 22
ik + 1 ∈ Fpr,

where Fpr is a set of Ferma’s prime numbers.

If 22
n

+1 is not prime, then the number of specified
sets (including empty set) is equal to 2t, where t is a
number of Ferma’s prime numbers smaller then 22

n

+
1.

Proof. To construct the necessary preimage x over
the set of Ferma’s primes with the properties of this
Theorem ϕ(x) = 22

n+a we proceed as follows:
1) We choose a combination of this numbers. Let

us call it (
22

i0
+ 1

)
...
(
22

ik−1
+ 1

)
.

2) Then we should find its total power of 2 that
is 2i1 + 2i2 + ... + 2ik = s, this power be ob-
tained after calculating the Euler’s function from the

product ϕ
((

22
i0 + 1

)
...
(
22

ik + 1
))

and also satis-

fies the inequality

s = 2i1 + 2i2 + ...+ 2ik ≤ 2n + a.

We supplement the received power exponent s to
the necessary 2n + a by multiplying the product of(

22
i0
+ 1

)
...
(
22

ik
+ 1

)
on 22

n+a−s. Thus, the necessary preimage x is
constructed.

Property. For any number S of the form
pα1

1 pα2

2 ... pαk

k , p1 > 2, where p1, p2, ... , pk are odd
prime numbers, the following equality holds: ϕ(S) =
ϕ(2S).

Proof. Since 2 and pα1

1 pα2

2 ... pαk

k , p1 > 2 are co-
prime, then

ϕ
(
2pα1

1 pα2

2 ... pαk

k

)
= ϕ (2)ϕ

(
pα1

1 pα2

2 ... pαk

k

)
=

= ϕ
(
pα1

1 pα2

2 ... pαk

k

)
.

Therefore these numbers has the same of Euler’s
function.

6 The lower bound for ϕ−1(m).
We suggest a lower bound estimate for computing
quantity of the inverses of Euler’s function. Our ap-
proach can be further adapted for computing certain
functions of the inverses, such as their quantity, the
larger.

Definition 6.1 LetMk be a set of first k consecu-
tive primes. We will say, that the number is decom-
posed over a setMk, if in its canonical decomposition
there are only numbers from Mk. Let x1, ... , xn+2

be such numbers, that ϕ (x1) = ϕ (x2) = ... =
ϕ (xn+2), and at the same time all prime factors of

the canonical decomposition belong to the set Mn =
{p0, ...., pn}, where p0 = 2 and pi are all consecutive
prime numbers. Let for any natural number n, we de-
fine Qn = (p0 − 1) (p1 − 1) ... (pn−1 − 1) (pn − 1),
where pi is i-th odd prime number, where i ∈ N and
p0 = 2.

Example: p1 = 3, p2 = 5, p3 = 7,
then Q3 = (p0 − 1) (p1 − 1) (p2 − 1) (p3 − 1) =
(3− 1) (5− 1) (7− 1) = 48.

So the first presentation of 48 overM3 has canon-
ical form ϕ(3 · 5 · 7) = 2 · 22 · 2 · 3 = 48, and
rest 4 presentations of 48 overM3 are the following:
ϕ(24 · 32) = 23 · 3 · 2 = 48,
ϕ(5 · 9 · 22) = 3 · 24 = 48,
ϕ(7 · 5 · 2) = 3 · 24 = 48,
ϕ(7 · 24) = 3 · 24 = 48,
thus, we obtain 5 presentations for Q3.

Let Mk be a set of k consequent first prime num-
bers. The following statement about estimation of
pre-totients number is true.

Theorem 6.1 For each natural n ∈ N there is a set
of such various natural numbers
x1,x2, ..., xn,xn+1,xn+2, that

ϕ (x1) = ϕ (x2) = ... = ϕ (xn+2) = Qn,

where every number xi contains in its canonical de-
composition [20] only pi from Mn (i.e. pi < pn if
i < n), and

xn+2 = p0p1 ... pn−1pn

holds.
Proof. We prove it by the mathematical induction.
Base case: given n = 1, then P1 = (p1 − 1) = 2

has at least three preimages. This statement is true,
because ϕ (3) = ϕ (4) = ϕ (6) = 2 = Q2. The base
case is proved.

Step case: if for n = k it holds, we will prove,
that for n = k + 1 it holds too. By the assumption
we have, that for natural number n were found such
various natural x1,x2, ...,xk+1,xk+2, that

ϕ (x1) = ϕ (x2) = ... = ϕ (xk+1) =

= ϕ (xk+2) = Qk = Q,

where Qk = pβ0

0 pβ1

1 ... pβk

k ,

xk+1 = p1p2...pk−1pk, xk+2 = p0p1p2...pk−1pk.

Let us make induction transition. Prove, that for n =
k + 1 exist such various natural y1,y2,...,yk+2, yk+3,
for which holds:

ϕ (y1) = ϕ (y2) = ... =

= ϕ (yk+2) = ϕ (yk+3) = Qk+1, (10)
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each of which has a canonical decomposition over
Mk ∪ pk+1. Clear, that ϕ (pk+1) has a canonical de-
composition into elements of Mk because of all pre-
vious primes are inMk and ϕ (pk+1) < pk+1.

Therefore, it can be presented as

ϕ (pk+1) = pβ0

0 pβ1

1 ... pβk

k .

Let’s construct new numbers
y1,y2, ... ,yk+1,yk+2,yk+3 in such a way:

y1=x1pk+1, y2=x2pk+1, ... ,yk+1=

=xk+1pk+1, yk+2=xk+2pk+1.

In this case, the value of the Euler function

is Qk+1 = pβ0

0 pβ1

1 ... pβk

k . Let us show, that all
y1, ... ,yk+2, yk+3 are different.

Since numbers x1,x2, ...,xk+1,xk+2 from (1) have
different canonical decompositions, so the decompo-
sitions of numbers y1,y2, ... ,yk+1,yk+2 over Mk are
different too, but they all have a new factor pk+1, but
do not decompose over Mk. A last one yk+3 also
decomposes over Mk and does not contain a factor

pk+1. But value Qk+1 = pβ0

0 pβ1

1 ... pβn
n does not con-

tain pk+1 in the decomposition, so there is at least one
number yk+3 with decomposition overMk, such, that
ϕ (yk+3) = Qk+1 holds.

Since Qk+1 > Qk, then a new preimage
yk+3 does not coincide with any of the numbers
y1,y2, ...,yk+1,yk+2 which give the value of Euler’s
function equal Qk.

Moreover such yk+3 can be not unique number
that can be constructed overMk such, thatϕ (yk+3) =
Qk+1. Consequently beyond y1,y2, ... ,yk+1,yk+2,
which decomposed over Mk+1, we have at least one
new yk+3, which can be decomposed over Mk in
product of primes. Thus Qk+1 has at least k + 3 dif-
ferent preimages.

We propose method of constructing of such pre-
totients set.

Let p0 = 2, p1 = 3, p2 = 5, . . . , pn be consecu-
tive prime numbers, where n = k + 1. Note, that
ϕ(p0p1, . . . , pn) = (p0 − 1)(p1 − 1)...(pn − 1).
Let us construct some new numbers x0, . . . , xn, for
which ϕ(x0) = ϕ(x1) = ... = ϕ(xn) =
ϕ(p0, p1, . . . , pn) = (p0 − 1)(p1 − 1)...(pn − 1).
Namely, let

x0 = (p0 − 1)p0, . . . , pn,
x1 = p0(p1 − 1)p2, . . . , pn,
· · ·
xn = p0p1, . . . , pn−1(pn−1 − 1).
Now we will prove, that ϕ(p0p1...pk−1(pk −
1)pk+1...pn) = (p0 − 1)(p1 − 1)...(pn −
1) for every k ∈ {0, 1, ..., n}. Obviously,
p0...pk−1(pk − 1) and pk+1...pn are coprime, so
ϕ(xk) = ϕ(p0p1...pk−1(pk − 1))×ϕ(pk+1 . . . pn) =

ϕ(p0p1...pk−1(pk−1))× (pk+1−1)...(pk−1). That
is, we have to prove the equality ϕ(p0p1...pk−1(pk −
1)) = (p0 − 1)(p1 − 1)...(pk − 1).

Let for induction step yk+3 = xk+2(pk+1 − 1).
Since only p0p1, . . . , pk−1 are the prime numbers,

which are not more than (pk − 1), we have pk −
1 = α0α1, . . . , αk−1 for some non-negative integer
α0α1, . . . , αk−1.

By direct calculation we ob-
tain ϕ(p0p1...pk−1(pk − 1)) =

ϕ(pα0+1
0 pα1+1

1 ...p
αk−1+1
k−1 ) =

(p0 − 1)...(pk−1 − 1)p
(α0+1)−1
0 ...p

(αk−1+1)−1
k−1 =

= (p0 − 1)(p1 − 1)...(pk−1 − 1)pα0

0 ...p
αk−1

k−1 =
(p0 − 1)(p1 − 1)...(pk−1 − 1)(pk − 1).
Also we may subtract 1 from more than one pk, if
(pk − 1) has the decomposition into prime factors,
which does not contain some pj , (j < k). For exam-
ple, ϕ(p0p1p2p3) = ϕ(2 × 3 × 5 × 7) = 48. Except
(2−1)×3×5×7, 2×(3−1)×5×7, 2×3×(5−1)×7
and 2×3×5× (7−1), we may take as preimage, for
example, 2× (3−1)(5−1)×7, because (3−1) = 2
and (5 − 1) = 22. Hence ϕ(2 × (3 − 1)(5 − 1)) =
(2− 1)(3− 1)(5− 1) by the same arguments, as for
p0, . . . , pk−1(pk − 1)pk+1, . . . , pn. So, we may con-
struct at most 2n products of the form p0q1, . . . , qn,
where qk = pk. Also (p0−1)p1, . . . , pn fits for the re-
quirement ϕ(p0−1)p1, . . . , pn = (p0−1)...(pn−1),
so we have at most 2n + 1 numbers, which give us
the same meaning of ϕ, as p0, . . . , pn. Note, that it
is not necessarily the complete set of such numbers
x, for which ϕ(x) = p0p1, . . . , pn, but it is the set,
which may be obtained by the given by us scheme.

The case when a number of form f(m) is prime
we denote by (f(m))p. We denote Mersenne number

byMm, whereMm = 2m − 1.
Corollary. If Ma < Mb for m ∈ N , then set

ϕ−1 (2MaMb) contains an element M2
b if and only

if b = a + 1. On the other hand, if 2MaMb + 1 ∈
P then ϕ−1 (2MaMb) ⊆ {{2M2

b , 2(2MaMb + 1)P ,
M2

b , (2MaMb + 1)P }; a+ 1 = b} ∪
∪ {{2(2MaMb + 1)P , (2MaMb + 1)P }; a+1 6= b}.

7 Possible questions for further

research.
For an introduction, interested reader can refer [10]
for further study, from which we collect some of the

important properties of ϕ(n). ϕ(m) = 2a
k∏

i=1
pai

i .

8 Conclusion.
The analytic expression for exact multiplicity of in-
verses for m = 22

n+a, where a ∈ N , a < 2n and
ϕ(t) = m was obtained. As it turned out, it de-
pends on the number of prime numbers Fermat. The
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method of constructing of preimages set for obtained
by us lower bound was proposed by us. These results
can be applied not only to the cryptanalysis of cipher
RSA [24] and in the coding theory [21]. The author
is grateful to Volodya Karlovskyi for correcting re-
marks.
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