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Abstract: - With the development of 5 g wireless communication networks, spectrum allocation (especially in 
metropolises) is becoming increasingly challenged. To mitigate this problem, in this paper, we propose a 
Cognitive Reinforcement Learning Spectrum Allocation (CRLSA) framework to improve spectrum utilization 
while satisfying the quality of service (QoS) requirements. Deep Q Networks (DQN), an advanced deep-
reinforcement learning technique, serve as the backbone of the framework, complemented with challenging 
urban spectrum management features. So it uses DQN to obtain effective spectrum allocation policy in 
simulated urban areas. Using synthetic datasets, spectrum management with DQN agent-based dynamic 
resource allocation takes into account available spectrum bands, QoS metrics, interference levels, and user 
mobility patterns to optimize performance. We build an environment to collect data from the previous step by 
simulating the environment during the training phase in which the agent learns the knowledge and skills he 
needs to make good decisions about spectrum allocation. In addition, CRLSA framework configuration and 
optimization are critical to improve its performance. The framework is tuned with hyperparameter adjustments, 
reward shaping, and exploration strategies to enable better convergence and effectiveness in real-world 
deployment scenarios. Moreover, computations are optimized to guarantee real-time decision-making in 
changing urban surroundings. CRLSA necessitates analysis and a better comprehension of the communications 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS 
DOI: 10.37394/23209.2025.22.37

G. M. Karthik, V. Pushpa, R. Rekha, 
C. Nandhakumar, S. Logesswari, 

N. Naga Saranya

E-ISSN: 2224-3402 450 Volume 22, 2025



channels beyond interference, including propagation conditions, and acknowledges that the overall 
performance is contingent on whether multiple, possibly conflicting objectives are realistically harmonized. 
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1  Introduction 
5G wireless communication is testimony to the 
normal evolution of telecommunications, it is 
expected to bring a new digital transforming era. 
The upcoming wireless tech revolution in 5G could 
completely transform how we live, work, and 
experience the world around us. It paves the way for 
innovative applications and services previously 
deemed impossible by promising lightning-fast 
speeds, lower latency, and the ability to connect vast 
numbers of devices simultaneously, [1], [2]. Not 
only is 5G a significant upgrade from previous 
evolutions of mobile communication but it also 
marks the cornerstone of the Internet of Things 
(IoT), smart cities, autonomous vehicles, and a 
variety of virtual and augmented reality. Central to 
the promise of 5G is the potential for data rates 
orders of magnitude faster than those of current 4G 
networks. 5G networks are capable of offering 
bandwidth for ultra-high-definition video streaming, 
interactive virtual reality experiences, and cloud-
based services with low latency, redefining mobile 
internet with speeds likely to exceed 10 Gbps. 
Additionally, 5G provides ultra-reliable low-latency 
communication (URLLC), minimizing the time 
needed for data transmission to milliseconds. Such 
an enhancement is vital for applications that need 
low latency, including remote surgery, real-time 
gaming, and smart industry equipment regulation, 
[3], [4]. 

Another critical aspect of 5G technology is its 
ability to handle many connected devices. As the 
Internet of Things grows, from smart home devices 
to industrial sensors, the demand for networks that 
can handle massive scale without sacrifice will only 
increase. This demand is met by 5G networks, 
which support the transfer of data between the 
billions of devices, ushering in the fully connected 
world, in which everything from refrigerators to 
street lamps can share, communicate, and operate 
intelligently, [5], [6]. 5G also presents new 
challenges as well as opportunities in the area of 
spectrum management. What is unique about 5G 
compared with earlier generations is that it uses a 
wide band of frequencies, ranging from low-band 
frequencies that provide wide coverage to high-band 

millimeter-wave frequencies that can offer high data 
rate (but short-distance) communications. 
Innovative approaches are necessary to ensure 
efficient/effective communication across the wide 
range of spectrum usage in densely populated urban 
areas with high demand for wireless services. 

As 5G networks slowly discover the planet, the 
way ahead is set for transformational adjustments in 
healthcare, schooling, transportation, and leisure 
alike. 5G wireless communication – a cornerstone 
tech on the brink of a new digital age. But its reach 
goes well beyond faster internet speeds, impacting 
every corner of modern life and society, [7]. 5G 
serves as a backbone of our hyper-connected world 
and thus has the potential to deliver economic 
growth, technological innovation, or solutions to 
social development needs and complex challenges 
like healthcare access, environmental sustainability, 
or urban congestion, [8]. Each red box in Figure 1 
represents a variety of groups of the architecture and 
components in a 5G wireless communication 
network. As we step into this exciting new era, the 
full ramifications of 5G on our lives, economies, 
and nations have yet to fully unfold, providing a 
path paved with discovery, technology, and 
evolution, [9]. 

The spectrum of available radio frequency is 
limited and there is an increasing demand for 
wireless services which requires innovative ways to 
use the spectrum as efficiently as possible to 
overcome such issues. CRL is a breakthrough 
method in dealing with the spectrum scarcity 
dilemma and can pave the way to achieve better 
spectrum utilization in 5G wireless communication 
networks. Table of Contents As 5G technologies 
have the potential to reshape our economy, spectrum 
scarcity is not just a technical challenge, but an 
important bottleneck that could stifle innovation and 
limit 5G’s expansiveness. Considering that the 
spectrum is a restricted resource defined by physical 
laws and regulatory structures, the massive number 
of various wireless devices and services requiring 
bandwidth makes optimal spectrum management 
more vital than ever 8. Therefore, conventional 
approaches to spectrum allocation can benefit from 
dynamic and pro-active actions, as these relatively 
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static and pre-allocated spectrum usages are not 
sufficient for the diversified needs of wireless in the 
ever-changing spectrum access demand. Enter 
Cognitive Reinforcement Learning, which offers the 
potential to revolutionize spectrum assignment as a 
dynamic, intelligent task that balances evolving user 
needs and fluctuating network traffic. 

 

 
Fig. 1: 5G Wireless Communication Network 
 

Cognitive Reinforcement Learning (CRL): 
Combining cognitive radio (CR) with reinforcement 
learning (RL) can change how the spectrum is 
allocated dramatically. Cognitive radio is a type of 
intelligent wireless communication system that can 
automatically detect available channels in a wireless 
spectrum and unify the parameters of the 
communication system by changing the channel, 
transmission power, modulation type, etc. This 
adaptability is important for dealing with the 
challenges posed by spectrum scarcity since it 
enables much more efficient use of already 
available spectrum resources. In contrast, 
reinforcement learning in machine learning operates 
on the principle of trial-and-error, allowing agents to 
learn to access their environment the best way 
possible, [10], [11]. However, cognitive radio, uses 
reinforcement learning (RL), to learn from past 
decisions and optimize future spectrum allocation 
decisions. 

Nonetheless, the path to unlocking the full 
potential of Cognitive Reinforcement Learning for 
efficient spectrum allocation is not without its 
difficulties. These encompass everything from 
technical challenges, including the creation of 
powerful and efficient RL algorithms, to regulatory 
and policy factors concerning dynamic spectrum 
utilization, [12]. In addition to this, the core 
technical features need to be complemented by 
elements derived from other fields, such as 
behavioral sciences, in order to model and capture 
user interaction and preferences accurately in the 
CRL framework for 5G implementation. Designing 

a dynamic, intelligent use of spectrum requires these 
stakeholders to work together to innovate, hone 
CRL technologies, and prepare regulatory practices, 
[13]. It's a challenge that demands hardheaded 
research, real-world testing, and a boatload of 
incremental trial and error in the endless churn of 
the wireless communication landscape. Cognitive 
Reinforcement Learning gives some hope in 
alleviating spectrum scarcity in 5G wireless 
communication, [14], [15]. Thus, CRL provides a 
solid solution to immediate challenges that arise in 
the general area of spectrum allocation while also 
laying the groundwork for the continued viability of 
wireless networks in the face of exponential growth 
predicted for the 5G environment and further 
advances in wireless systems. The era of cognitive 
reinforcement learning is upon us, and the 
evolution of wireless communication, intertwined 
with ubiquitous IoT devices and autonomous 
systems, is not something to be taken lightly. This 
makes it a landmark moment for all engaged parties 
to seize this technology and work in unison to 
realize the full potential of 5G and subsequent 
generations of wireless technology. 

As urban wireless networks are inherently 
dynamic and diversified, traditional spectrum 
allocation approaches, which are mainly based on 
static and preset assignment processing, are 
insufficient. Cognitive radio technologies have been 
gaining traction as a possible solution to address 
these issues, enabling dynamic and intelligent 
spectrum allocation in response to service demand 
requests and real-world environmental conditions. 
To address this issue, this paper introduces a CFLOI 
framework that is adapted to spectrum management 
solutions in high-density urban 5G networks. 
CRLSA model is built on the Deep Q-Networks 
(DQN), which applies a reinforcement learning 
approach to adaptively allocate the spectrum 
resources, efficiently fulfilling the QoS 
requirements and optimizing the overall network 
performance, [16]. 
 
 
2  Related Works 
The systems of shared spectrum allowed licensing 
unused parts of the spectrum to users who did not 
own it without interfering with the licensed ones. 
Although such systems were promising ways of 
increasing spectrum utilization, they proved 
administratively burdensome, especially concerning 
the efficient allotment of spectrum to users without 
licenses. In practical environments, the signal path-
loss function is important for efficiently allocating 
spectrum to secondary users (SUs) (the optimal 
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spectrum allocation). Due to the implications of 
practical implementation, doing extensive surveys to 
obtain path-loss numeric values was not feasible, 
and most of the well-known path-loss models had 
reasonably limited accuracy in practical scenarios. 
As a result, existing allocation algorithms were 
either(i) founded upon erroneous propagation 
models and/or spectral sensing with insufficient 
spatial granularity, or (ii) excessively conservative 
in their attempts to avoid interference, incurring 
performance penalties in the process. This 
countered the main objective behind shared 
spectrum systems to utilize spectrum to the fullest 
extent. For this purpose, direct supervised learning 
of the spectrum allocation function was proposed. 
If the amount and quality of the training data were 
sufficient, the result could be near optimal, [16]. It 
also still worked in the presence of missing data; in 
PU missing contexts crowdsourcing sensing 
architecture was used, and sensor spectra were used 
for features. To follow this up, we applied RNNs to 
handle multiple SU requests from x at once. Several 
challenges arose in the context of single SU 
negotiating the spectrum allocation, often adopting 
CNN based approach. The strategies were shown to 
be effective through large-scale simulation 
combined with a small testbed. This methodology 
produced a 60% increase in accuracy over 
traditional learning methods and previous studies. 

Given this, CR users could start transmitting 
data as soon as any unoccupied licensed bands 
became available. Machine learning also enabled 
CR users to intelligently sense channel activity in 
all time, frequency, and space aspects and assess the 
status of vacant channels. In particular, learning-
based CR systems using supervised learning for 
spectrum sensing required labelled training data. 
Most detectors that employed deep learning were 
also supervised, meaning they required large 
amounts of labeled data during training in order to 
perform well. On the other hand, in practical CR, it 
would have been difficult to acquire enough volume 
of labeled data. In a bid to address this deficiency, 
DeepSense was proposed, which independent from 
supervision, experienced representation learning 
with an unsupervised focus group using Gaussian 
mixture model (GMM). DeepSense did not need 
several SUs to cooperate, [17]. Because it utilized 
the learned representation instead of the network to 
improve detection efficiency, the coordination 
overhead for the collaboration was greatly reduced. 
DeepSense didn't require any prior knowledge on 
how to operate, such as information on noise 
characteristics or data about channel status. 
Furthermore, training was achieved with minimal 

unlabeled data. The results from the large number of 
simulations that have been performed confirmed 
that the proposed detector can learn to achieve 
excellent detection performance by finding the 
underlying features in the sensing data. Moreover, 
we showed DeepSense reached detection 
performance comparable to the state-of-the-art deep 
supervised learning-based cooperative sensing while 
outperforming pure GMM. 

The previous generation of wireless networks 
was driven, among others, by cognitive radio 
networks, which depended on spectrum sensing. 
There were several approaches over the decades, 
like cyclostationary processes, energy detectors, 
and matching filters. However, there were several 
disadvantages to these tactics. Energy detectors 
struggled with varying SNRs, cyclostationary 
detectors had horrible implementation complexity, 
and matching filters required knowledge of PU 
signals ahead of time. The detection efficiencies of 
these methods were completely influenced by the 
accuracy of the sensor owing to their dependency on 
thresholds on specific signal-noise model 
assumptions, [18]. As such, creating a dependable 
and intelligent spectrum-sensing device remains at 
the forefront of wireless research interests. 
Multilayer learning algorithms were poorly suited to 
time-series data because of the high computational 
cost and high rate of misclassification. To enhance 
sensing performance, the scientists developed a 
fusion ELM and LSTM hybrid system. This system 
would learn temporal behaviors from spectral data 
with complementary statistics about environmental 
activities for energy, distance, and duty cycle 
duration. The system proposed was tested on 
multiple systems such as the GNU-radio 
experimental testbed and a Raspberry Pi Model B+. 

This included something called a Multiple Input 
Multiple Output (MIMO) system within the 5G 
networks. The advent of 5G radically transformed 
wireless communication in terms of mobile 
communication, the IoT & smart devices, and smart 
antenna systems. Mobile broadband services 
expanded with the development of smart multi-
antenna automation, including new systems to 
expand spectral usage such as beamforming (BF), 
and 5G began serving heterogeneous services with 
their individual complete requirements. This has 
primarily served to enhance energy and spectrum 
efficiency by allowing a massive number of base 
station antennas to be individually adapted. To 
maximize spectrum efficiency and bandwidth, 
interference needed to be properly reduced in both 
small and macro cells, [19]. The former articles 
focused on the latest development in 3D-MIMO, 
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which gave an even better performance of the BF 
under 5G architecture. Sadly, a very ideal case of 
ML-based MIMO beamforming, too, had not been 
explored that much. Similarly, in the 5G 
environment where many users exist, it was not easy 
to reduce the blockade during the BF. 3D-MIMO 
beamforming was mainly implemented using the 
SVM algorithm. The recommended implementation 
demonstrated that ML-3D SVM achieved 
significant improvements in both throughput and 
SNR over the state-of-the-art technologies. 

Processing delays for subterranean data are 
increasingly unable to satisfy the underground 5G 
application scenarios, due to a lack of methods and 
specialized equipment; with a negative impact on 
transmission efficiency and, in turn, on coal mine 
output. Consequently, the transmission needs of 
existing underground applications remained 
unaddressed. The above issue could have been 
resolved or at least alleviated through the MEC 
solution based on the 5G wireless base station, so as 
to support the advantages such as edge caching and 
dynamic resource allocation in accordance with the 
coal mine conditions, so as to better promote the 5G 
mobile communication capabilities underground, 
[20]. This average time delay of the task execution 
was 15 ms based on the experiment result, which 
was half of the average delay of whole local 
execution schemes as long as the rated power and 
the transmit power of the current base station were 
kept. Also, none of the MEC execution techniques 
had an average latency worse than this. At the same 
time, one base station could downlink 1.5 Gbps of 
data and uplink 1 Gbps of data. Adopting such an 
approach would also have the potential to improve 
resource allocation efficiency and 5G 
communication system reliability in mining vastly. 
 
 
3   Methodology 
Modeling the system is integral to analyzing 
spectrum allocation in the dense urban 5G network 
environment. This means describing factors such as 
network structure, user type, spectrum band 
resources, and QoS (quality of service) 
requirements. These factors all interact strongly in 
determining how the spectrum might be allocated 
and managed in a large city context. 
 
3.1  Network Architecture 
The second area of application that we will explore 
in this chapter is, in fact, a very dense environment, 
namely the scenario where the topology typically 
consists of BS and UE deployed all across the urban 

landscape — the network architecture of traditional 
dense urban environments. This infrastructure is the 
foundation of a 5G wireless communication system, 
ensuring that networked devices can connect and 
share information instantly. Moreover, cognitive 
radio controllers are dispersed into the architecture 
to provide spectrum management and prevent 
wastage of available resources. By utilizing 
advanced algorithms, these controllers are able to 
learn and adapt to variations in network conditions 
and user requirements, allowing for the reuse of 
spectrum resources without compromising QoS. 
 
3.2  Types of Users 
The system model has two main types of users, one 
is the Primary Users (PUs) and the other is the 
Secondary Users (SUs). Primary users (PU), e.g., 
cellular subscribers, are granted licensed access 
rights to particular frequency bands and are 
generally provided preferred access to spectrum 
resources. On the other hand, secondary users 
(SUs), which represent various devices, such as 
internet-of-things (IoT) sensors and unmanned 
aerial vehicles (UAVs), opportunistically share 
spectrum bands that are not employed by PUs. The 
dynamic spectrum access paradigm allows for 
improved spectrum usage, which is especially useful 
in denser urban environments where spectrum 
shortage is common. 
 
3.3  Spectrum Bands 
The 5G communication in urban areas takes 
advantage of a wide range of spectrum frequencies, 
e.g., Sub-6 GHz, mmWave, etc. Each frequency 
band habits has its own propagation behavior, 
coverage area, and interference resistance. These 
frequency bands operate at sub-6 GHz and provide 
better coverage as well as enhanced indoor 
penetration, which is better for providing 
connectivity in urban areas that are densely packed 
with high-rise buildings. In contrast, mmWave 
bands allow for much higher data rates but are 
subject to increased signal blockage and attenuation, 
especially in dense urban environments where there 
may be buildings and other obstructions. Properly 
managing both types of bands is crucial for 
maximizing spectrum efficiency and for satisfying a 
myriad of urban user connectivity demands. The 
workflow of the proposed model is given in Figure 
2. 
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Networks

Network Architecture Types of Users Spectrum Bands

QoS RequirementsDataset Collection

Dataset Preprocessing Noise Removal - Smoothing 
Technique

Network Architecture

Handling Missing Values - 
Regression Imputation

Handling High-Dimensional State 
Spaces

Feature Normalization - Z-Score 
Normalization

Feature Engineering - Polynomial 
Features

Discretization of Continuous 
Action Spaces

Approximation of the Q-function 
using Neural Networks Success and Versatility of DQN

Efficient Learning of Optimal 
PoliciesTraining PhaseFine-Tuning and Optimization

Deployment in Real-World Scenarios

 
Fig. 2: Workflow of Proposed Model 
 
3.4  QoS Requirements 
The high population density and rich application 
scenarios in dense urban environments create 
stringent QoS demands. QoS metrics include 
latency,  throughput, reliability, and coverage. 
Low-latency communication is essential for real-
time applications, including video streaming, online 
gaming, and augmented reality experiences where 
delays can severely affect user experience. Ensure 
high throughput to accommodate the large amounts 
of data generated by urban users and support 
bandwidth-intensive applications such as HD video 
streaming and file downloads. Through reliability, 
communication can be guaranteed, since data 
packets will be sent and received on a consistent 
basis, despite network congestion or interference. 
This must be covered sufficiently to allow users to 
stay connected anywhere in the city. 

The proposed system model serves to develop a 
clearer understanding of the network context that 
our strategies can be applied to, leading to the 
optimization and implementation of various 
spectrum allocation techniques to overcome the 
unique issues and needs that a dense urban scenario 
presents within near future dense urban 5G system. 

 
 
 

3.5  Dataset Collection: 
To train and validate the DQN agent, we should 
have abundant datasets during the period of an 
urban spectrum shared, including the urban 
spectrum dynamics, urban traffic demands, and the 
urban QoS requirements. Nonetheless, obtaining 
real-world datasets for this goal is challenging and 
may face several issues such as data confidentiality, 
restricted access to network infrastructure, and the 
intricacy of numerous scenarios in an urban area. 
Therefore, synthetic datasets are a practical solution 
to these problems. These synthetic datasets are 
created using simulation tools or models that 
simulate realistic urban network environments with 
different user densities, mobility patterns, and traffic 
loads. With the help of simulation tools, researchers 
are able to virtually draw urban landscapes and 
mimic the actions of network users, both primary 
users and secondary users, under various scenarios 
and environmental conditions. 

Tools like ns-3, MATLAB,  or OMNeT++ can 
be used to develop simulation scenarios in which the 
propagation of electromagnetic waves, user 
mobilities, and network traffictraffic are simulated 
as a function of pre-defined parameters, from which 
synthetic datasets can be generated. When adapted 
accordingly,86 these simulation tools can be setup 
to mirror the density, behavior diversification of the 
usage of the spectrum in accordance with traffic 
activity, QoS, requirements, and constraints in order 
to produce datasets for use in urban 5G networks. 

 
3.6  Dataset Preprocessing 
Synthetic datasets are then preprocessed for quality, 
consistency, and fit for training the DQN agent. 
Preprocessing is a sequence of steps to clean, 
transform and standardize the datasets to render 
them fit for the learning algorithm. 
 
3.7  Noise Removal - Smoothing Technique 
 Noise removal is a preprocessing step for synthetic 
datasets that significantly improves the data quality 
and reliability. Debiasing Dataset Smoothing 
Method This method is used to smoothen a dataset, 
it can be used to remove the irregularities introduced 
by noise, it also helps to improve the dataset 
consistency. 
 
Mathematically, the moving average smoothing 
technique can be written as: 

𝑆𝑚𝑜𝑜𝑡ℎ𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

=
1

𝑛
∑ 𝑥𝑖

𝑡+𝑘

𝑖=𝑡−𝑘
                                                        (1) 
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where 𝑥𝑖  is the value of the data point at i time is 
the size of the window (number of data points 
included in the calculation), k is the half-window 
size (number of data points on each side of the 
current point). 

 
For example, one common smoothing method is 

a moving average, which computes the mean of 
surrounding data values for a desired range of 
points. This helps to eliminate it by smoothing so it 
only registers the long-term trends in the data. 
Moving averages smooth the dataset, revealing 
underlying patterns and trends that may have 
otherwise been obscured by noise, allowing for 
better analysis and modeling. 
 
3.8 Handling Missing Values - Regression 

 Imputation 

Missing values are a very common occurrence in 
real-world datasets and they can adversely affect the 
accuracy and stability of analysis and modeling. 
This problem can be resolved using multiple 
equivocation methods to guess and fill in the 
missing values with the most realistic substitutes. 
Regression imputation: This is a very useful 
technique that utilizes regression to predict the 
missing values based on the relationship between 
variables in the dataset. This method builds a 
regression model with observed values as predictors 
and the model is then used to predict missing values. 

Regression imputation involves predicting 
missing values in regression analysis. The imputes 
value �̂� for a missing value can be obtained by 
fitting a regression model 

�̂� = 𝑓(𝑋)                                  (2) 
where 𝑋 represents the obtained values of other 
variables in the dataset. 

 
First, it relies on active correlations between 

features/variables to predict and make sense of the 
imputation, therefore, leading to a more accurate 
value compared to simpler approaches like mean or 
median imputation. Also, regression imputation has 
the ability to deal with missing observations in both 
continuous and categorical variables, which is a 
very helpful attribute in the multitude of datasets 
that we might be working on. 

 
3.9 Feature Normalization - Z-Score 

Normalization 
This is a very important step to normalize the values 
of your features so that your model will not favor 
one feature due to its scale, thus causing 
instabilities and overfitting in your model. Z-score 

normalization or standardization transforms each 
data to have a mean of zero & std deviation = 1. 

Z-score normalization transforms each feature. 
𝑥 To have a mean of zero and a standard deviation 
of one. The formula for 𝑧- score normalization is: 

𝑧 =
𝑥 − 𝜇

𝜎
                                     (3) 

where 𝑥 Is the original feature value, 𝜇 Is the mean 
of the feature values, 𝜎 is the standard deviation of 
the feature values, 𝑧 Is the normalized feature value. 
As for Z-scores during normalization, we subtract 
the average value of each characteristic divide by 
the standard deviation, and divide by the total value. 
This procedure also ensures that the modified 
features follow a normal distribution with mean 0, 
and a standard deviation 1. Z-score normalization 
has some significant advantages when it comes to 
feature normalization. At first, it preserves the 
relative relationships between features, which 
enables fairly comparing different scale variables. 
Z-score normalization also helps stabilize the model 
training by diminishing the impact of higher scales 
characteristics during the learning process. 
 
3.10 Feature Engineering - Polynomial 

Features 
Feature engineering refers to a very important step 
in preprocessing which is to create new features or 
modify the existing ones to improve the predictive 
power of machine learning algorithms. Polynomial 
features For generating new features, polynomial 
combinations of the existing features are commonly 
being used. For instance, based on a feature x, 
polynomial features will create new features like 
x2, x3, etc. By adding polynomial features to the 
input data, the model can better capture nonlinear 
relationships between variables, which can help it 
better capture complex patterns in the data. 

Polynomial feature engineering refers to the 
steps of making new features by taking polynomial 
combinations of the existing feature. Polynomial 
Features: Polynomial features can be generated for a 
feature up to some degree as follows: 

𝑥𝑝𝑜𝑙𝑦 = [1, 𝑥, 𝑥2, 𝑥3, … , 𝑥𝑑]                   (4) 
where 𝑥𝑝𝑜𝑙𝑦 represents the vector of polynomial 
features, 𝑑 is the maximum degree of the 
polynomial features. 
 

The drawbacks of polynomial feature are less in 
the domain of feature engineering. First of all, 
continues the development of the model to capture 
the complex relationships between the variables that 
can not capture a linear model. Moreover, if we 
happen to be underfitting, polynomial features are a 
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way to mitigate that, too — to add more flexibility 
to how the model represents the data. 

The first three are indeed very important 
preprocessing techniques but the last is completely 
synthetic if not done correctly, hence the need for 
working properly on noise removal, missing values, 
feature normalization, and feature engineering. 
These are suitable to leverage if you want to take 
quantitative changes for proper model efficiency, 
along with model strengthening. 
 

3.11 Cognitive Reinforcement Learning 

Spectrum Allocation (CRLSA) 
CRLSA,  specifically in the context of 5G 
networks, is a novel perspective on the age-old 
challenges of insufficient spectrum availability and 
efficient spectrum utilization in next-generation 
wireless communication systems. This framework 
employs the principles of cognitive radio and 
reinforcement learning (RL) to allocate resources 
dynamically and meet the QoS requirements of 
diverse users and applications, thus optimizing 
spectrum utilization. In high-density urban 5G 
networks specification assignment highly depends 
on the implementation of a proper reinforcement 
learning algorithm. Deep Q-Networks (DQN) is an 
ideal candidate here, due to its ability to learn 
complex policies in high-dimensional state spaces. 
This suits them perfectly for the unpredictable and 
various urban environments. 

The combination of deep learning with 
reinforcement learning, leading to the development 
of Deep Q-Networks (DQN) represents a major 
breakthrough in the domain of reinforcement 
learning, especially for complex decision-making 
tasks in high dimensional state spaces. The essence 
of DQN is that it takes the benefits of deep neural 
networks and applies it to Q-learning, a seminal 
reinforcement learning approach. At the heart of Q-
learning lies its capacity to approximate the value of 
taking certain actions in given states, thereby 
learning optimal policies. We do so by estimating 
the action-value function through reward 
maximization over time. Nevertheless, conventional 
Q-learning approaches may struggle with tasks that 
have high-dimensional state spaces, as such 
environments can easily become too complex for 
traditional tabular Q-learning techniques. Enter 
DQN (Deep Q-Network). Enter Dueling DQN, 
which combines deep neural networks to allow Q-
learning to be applied to even the most difficult 
situations. Deep neural networks have shown have 
shown a great ability to extract complex patterns 
and correlation found in the data, which makes them 

suitable for approximating complex (state, action) 
mappings found in reinforcement learning problems. 

By combining deep neural networks with Q-
learning into DQN, the algorithm can leverage 
high-dimensional state spaces effectively. DQN 
combines with experience replay and a deep Q-
network to learn and approximate the action-value 
function in a huge, complex state space, enabling 
more refined decisions based on the history of 
interactions with the environment. Specifically, 
DQN uses deep neural networks to learn a mapping 
from states to action values, allowing it to represent 
and generalize over high-dimensional state-action 
spaces, which empowers it to make effective 
decisions in very high dimensional spaces by using 
less and higher-level abstract parameters. Finally, 
since DQN uses deep neural networks, they help 
generalize over states and actions and can provide 
the learned policies for actions not encountered in 
training. This capability is critical both for 
addressing challenges faced in the wild the field, in 
which the environment can be stochastic and/or 
variable. By doing so, DQN is able to be both robust 
and flexible in creating a policy that generalizes to 
novel circumstances. 

DQNs are an improvement in RL as a whole, 
yielding more intelligent agents in high-dimensional 
and complex environments. Deep Q-learning (DQN) 
combines the ideas of deep neural networks with Q-
learning; this represents an expansion of the 
reinforcement learning paradigm to solve difficult 
tasks that were previously thought to be infeasible. 
This paves the way for using reinforcement learning 
techniques to address many real-life challenges like 
robotics, autonomous systems, etc., and intelligent 
decision-making in complex domains. 
 
3.12 Reinforcement Learning with an 

Affinely Parameterized Action-Value 

Function 
In the dense urban 5G network spectrum allocation, 
the state space is large scale and high dimensional. 
These are things like spectrum bands and their 
availability, quality of service metrics, interference 
levels, user mobility, traffic demands, etc. This is 
why DQN has a deep neural network architecture: 
because it must handle such complex state spaces. 
DQN is capable of revealing and handling complex 
relationships and dependencies in the environment 
using deep neural networks. This provides the agent 
an architecture to learn the behavior of the wireless 
channels with improved visibility into its decision-
making with respect to spectrum allocation 
strategies. The other unique feature of DQN is that it 
can generalize and learn continually from the 
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changing features, which allows it to work with a 
large variety of high-dimensional state space. 

Let 𝑆 represent the high-dimensional state 
space, where 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛}, and each 𝑠𝑖 
represents a specific state variable. The deep neural 
network 𝑄(𝑠, 𝑎; 𝜃) approximates the action-value 
function, where 𝜃 denotes the variables of the neural 
network. 

𝑄(𝑠, 𝑎; 𝜃) ≈ 𝑄∗(𝑠, 𝑎)                              (5) 
where 𝑄∗(𝑠, 𝑎) is the true action-value function, 𝑎 
represents the action taken by the agent. 
 
3.13 Discretization of Continuous Action 

Spaces 

The problem of applying reinforcement learning to 
spectrum allocation has several challenges,  among 
which one major challenge is represented by 
continuous action spaces where the agent can select 
from an infinite number of actions. DQN overcomes 
this challenge by discretizing the action space into a 
finite number of discrete actions. Do you remember 
from the last class of breaking down the process of 
iteratively solving the environment by teaching 
fancy techniques about Tabular vs. Feature-Based 
(Neural-Networks) approximation of the action-
value function? DQN discretizes the action space so 
that the learning problem becomes easier to handle 
and learn. When the agent can only explore a subset 
of the range of possible actions, finding the best 
strategies for spectrum allocation in congested 
metropolitan areas becomes significantly simplified. 
Moreover, the discretization of the action space 
allows the agent to decide the allocation of the 
spectrum in a more interpretable and actionable 
manner, thus gaining transparency from the learning 
process and increasing the interpretability of the 
results. 
 
For a continuous action space 𝐴, discretization 
divides it into a finite set of discrete actions: 

𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑚}                  (6) 
where 𝑎𝑖 represents a specific discrete action. 
 

3.14 Approximation of the Q-function using 

Neural Networks 
One of the most important constituents of 
reinforcement learning is the Q-function, which for 
a particular state and action indicates the predicted 
cumulative reward for continuing to follow the 
optimal policy. DQN approximates the Q-function 
using deep neural networks, since such networks are 
able to capture complex and complex and nonlinear 
relationships between states and actions. After 
training neural networks to predict Q-values for 

each action in a state, agents can make educated 
judgments with respect to spectrum allocation. The 
Q-function, which given a dense state-action space, 
can be well approximated in such high-dimensional 
and non-linear manner through the DQN with 
feedforward neural networks in such an 
overpopulated city, where the next action (i.e., 
where to move) depends on every aspect of it. By 
teaching the agent to understand intricate patterns 
and relations in the environment, way better and 
more reliable ways of spectrum resource allocation 
emerge[3]. Lastly, neural networks allow DQN to 
generalize learned policies to states and actions that 
have never been never been submitted to it before, 
allowing it to scale better and adapt better than prior 
approaches to the real world. 
 
The Q-function 𝑄(𝑠, 𝑎: 𝜃) is approximated by a 
deep neural network: 

𝑄(𝑠, 𝑎; 𝜃) = 𝔼[𝑟 + 𝛾max𝑎′𝑄(𝑠′, 𝑎′; 𝜃−)]         (7) 
where 𝑟 is the immediate reward received after 
taking action 𝑎 in state 𝑠, 𝑠′ is the next state after 
taking action 𝑎, 𝛾 is the discount factor, 𝜃− 
represents the parameters of the target network. 
 
3.15  Success and Versatility of DQN 
DQN has proven to be powerful and able to 
generalize across a variety of problems, including 
Atari video games and robotic control and driving. 
Since the considered 5G networks are dense and 
operate in urban scenarios, the excellent ability of 
the DQN algorithm to solve high-dimensional state 
problems, discretize the action space of the 
continuous problem and fit the Q function make it 
particularly suitable for solving the optimal 
spectrum allocation decision problem. Ultimately, 
DQNs have been effective in many applications, 
showing that they are a robust and scalable solution 
to many complex issues in reinforcement learning, 
and they are widely used. In addition, its ability to 
perform superb in many existing applications proves 
that DQN can change the game in spectrum 
management and optimization problems for urban 
wireless networks. 

DQN achieves success by optimizing the 
parameter 𝜃 Of the neural network to minimize the 
loss function: 

𝐿(𝜃) = 𝔼 [(𝑟 + 𝛾max𝑎′𝑄(𝑠′, 𝑎′; 𝜃−)

− 𝑄(𝑠, 𝑎; 𝜃))
2

]                         (8) 
 

3.16  Learning Optimal Policies Efficiently 
DQN learns optimal policies in an experience-
based manner and does so very efficiently. The 
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agent refines its policy based on experience over 
time, and ultimately converges on an optimal 
solution through trial-and-error exploration and by 
experiencing the effects of its actions. As the 
strategies would get entrenched in the behavior of 
DQN, thus over time, it would adapt its matters of 
allocating a spectrum as per the experience and the 
needs of the users. Additionally, the learning ability 
can also assist DQN produce near-optimal solutions 
in limited training iterations, especially in executing 
real-time spectrum allocation cases in dynamic 
urban environments. The DQN can learn the 
optimal policies within a limited amount of time 
cost, so that improves the agility and realtime of the 
spectrum allocation systems to ensure the smooth 
and excellent work performance of 5G overhead 
density networks 

DQN learns optimal policies by updating the 
parameter 𝜃 of the neural network using gradient 
descent: 

𝜃 ← 𝜃 − 𝛼∇𝜃𝐿(𝜃)                            (9) 
where 𝛼 is the learning rate, ∇𝜃𝐿(𝜃) is the gradient 
of the loss function with respect to the parameter 𝜃. 
 

3.17  Training Phase 
The DQN agent in CRLSA is trained in the training 
phase to learn sufficient knowledge and strategy to 
make a proper spectrum allocation decision. This 
final step is crucial if the agent is to build effective 
methods for spectrum management on the basis of 
its simulated urban experience. The DQN agent 
interacts with the environment through state 
observation, action selection, reward reception, and 
policy updates during training. The training process 
uses synthetic datasets generated in the virtual city 
environment to train the agent on diverse scenarios 
and challenges that closely resemble real-world 
environments. The training phase allows the agent 
to learn complex correlations between state-action 
pairs, through training the agent on different 
scenarios, the agent is able to learn a good spectrum 
allocation policy. 

During the training stage, a very important step 
is also taken in tuning the parameters of the learning 
algorithm. Key parameters like learning rate, 
discount factor, and exploration-exploitation 
influence how the agent learns and acts 
significantly. Through tuning these 
hyperparameters, practitioners aim to obtain the 
optimal environment performance as well as fast 
and efficient learning of the DQN agent with high-
performance spectrum allocation policies. 
 
 
 

3.18  Fine-Tuning and Optimization 
After the training of the CRLSA framework, it 
enters the fine-tuning and optimization phase to 
refine its performance and efficacy for real-world 
application scenarios. Fine-tuning is the process of 
optimizing the framework for the specific problem it 
is solving, including optimizing hyperparameters, 
reward shaping,  and exploration. Hyperparameter 
adjustment to fine-tune the CRLSA framework 
(such as learning rate, batch size, network 
architecture, etc.) for better convergence and 
performance. Through this hyperparameter 
optimization process, the DQN agent develops the 
ability to efficiently and effectively assign spectrum 
resources in quickly changing urban scenarios. 

Another crucial part of the fine-tuning of 
CRLSA framework is reward shaping. Through 
careful construction of the right reward functions, 
practitioners can encourage useful behaviors and 
deter unwanted actions, ultimately helping the agent 
develop better frequency assignment policies. The 
role of reward shaping is important as through the 
reward shaping the agent learns through its learning 
and thus, it to make a certain kind of decision. 
Moreover, maintaining computational efficiency is 
critical to facilitate real-time decision-making in 
dynamic urban contexts. With efficient algorithms 
and parallel computing, as well as hardware 
accelerators, it enables practitioners to significantly 
boost the computational performance of the 
framework, while also achieving timely 
responsiveness to dramatically changing network 
conditions. Task-based algorithm selection enhances 
the efficiency of the CRLSA framework when 
deployed in realistic settings, allowing for fast and 
adaptable spectrum assignment decisions that cater 
to the changing needs of urban wireless network 
conditions. 

Finally, this training phase of the CRLSA 
framework helps the DQN agent to gain energy and 
devote its fullest attention towards making optimal 
spectrum allocation decisions. Fine-tuning and 
optimizations further improve the performance and 
efficiency of this framework, making it effective in 
real-world deployment scenarios. Fine-tuning 
parameters, designing rewards, and improving 
compute efficiency will allow practitioners to create 
a spectrum allocation framework that adapts to the 
changing conditions of urban wireless networks. 
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4  Results and Discussions 
 

4.1  Simulation Environment Setup 
The simulation environment allows for assessing the 
effectiveness of the CRLSA framework over 
realistic urban settings. With careful design and 
configuration of the simulation environment, 
practitioners are able to simulate real-world 
dynamics and dynamics and challenges of urban 
wireless networks, enabling thorough evaluations of 
the performance of the framework against a variety 
of scenarios. Commonly used simulation tools to set 
up the simulation environment are NS-3 (Network 
Simulator 3), MATLAB, etc. These centralized 
platforms provide a wide range of functions and 
functionalities that empower practitioners to modify 
and adjust numerous dimensions of the simulated 
environment, yielding a simulation that exhibits a 
high degree of fidelity and accuracy in terms of the 
evaluative process. 

The choice of simulation platforms plays a 
pivotal role in establishing the configuration of the 
simulation environment. It is important how 
complex the network model is and which modules 
and libraries are available depending on the type of 
evaluation that you want to perform, this should 
guide whether you choose ns3 or MATLAB. Both 
have powerful simulation capabilities and are 
widely used in academic and research environments 
to simulate a range of network scenarios. The 
network parameters within the simulation 
environment are tuned to appropriately represent the 
characteristics of a dense urban deployment. This 
involves specifying parameters including user 
density, mobility models,  and levels of 
interference. User density characterizes how many 
users exist in the area being simulated, and can vary 
greatly depending on demographics such as 
population density, along with the infrastructure of 
the surrounding urban environment. Mobility 
models characterize how users and devices roam 
around in the network and represent realistic 
applications such as pedestrian movement, vehicular 
traffic, and urban scenarios. Environmental Factors: 
These are interference levels that summarize factors 
such as propagation of signals, co-channel 
interference, and inter-cell interference; all of these 
can have considerable effects on the performance of 
wireless communication systems in urban 
environments. 

In addition, the variety of scenarios and use 
cases that a real urban wireless network would 
experience was generated as part of the simulation 
and is maintained between the two simulation 
toolchains. This includes use cases like populated 

urban areas, built-up urban square, and indoors, and 
outdoor public areas. Use cases could cover 
everything from mobile broadband and IoT 
connectivity to vehicular communication and smart 
city infrastructure. This is how practitioners can 
evaluate the performance of the framework in a 
wide range of deployment scenarios and application 
domains through realistic scenarios and use cases 
that can lead to valid assessments of its 
effectiveness and flexibility in real urban contexts. 

 
4.2  Assessing and Analyzing Outcome 
Simulation based training and performance 
evaluation of the DQN agent Performance 
indicators: Spectrum utilization, QoS satisfaction, 
and interference level. In dense urban 5G networks, 
the measures above are utilized to evaluate the 
performance of the CRLSA framework to fulfill the 
requirements of spectrum allocation.  
 
4.3  Performance Measures and Evaluation 

Standards  
The simulation platform has been provided with 
tools to measure and evaluate key performance 
metrics and measures needed for spectrum 
allocation and network performance. The metrics 
include, but are not limited to, spectrum utilization, 
and QoS metrics, such as latency, throughput and 
reliability, interference level, energy efficiency, and 
fairness. Practitioners can evaluate how well the 
CRLSA framework for enabling innovative 
spectrum sharing to maximize utilization in urban 
wireless networks while accommodating a wide 
range of QoS requirements by quantifying these 
metrics. 
 

Table 1. Comparison of Spectrum Utilization 
Trial CRLSA 

(%) 

RSA (%) SSA (%) 

1 75 60 70 
2 82 55 65 
3 68 58 75 
4 79 62 72 
5 71 57 68 
6 85 63 71 
7 77 59 69 
8 80 61 73 
9 73 56 67 
10 76 64 74 

 
Spectrum utilization across ten experiments, 

reported in terms of CRLSA, Random Spectrum 
Access (RSA), and Spectrum Sensing-based Access 
(SSA), are compared in Table 1 and Figure 3. There 
is variation in the utilization percentages for each 
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method across the trials. CRLSA ranges between 
68% and 85% demonstrate that it is able to 
dynamically access licensed spectrum with a 
relatively high efficiency. RSA indicates a range is a 
little lower from 55% to 64%, which highlights that 
random access to spectrum resources use slightly 
less than cognitive radio-based approaches. In 
contrast, SSA shows values from 65% to 75%, 
denoting it is in the middle of the line of based 
implementations, using sensing strategies, either 
CRLSA or RSA, thereby implying that its 
effectiveness lies between those two. In general, 
trial results indicate cognitive radio-based methods 
outperform random access techniques, while 
spectrum sensing is the middle ground. The 
observed variations are likely a result of the specific 
implementation of each method, environmental 
conditions, and level interferences. When CRLSA 
proves to outperform others in trials, it may suggest 
dynamic spectrum management and interference 
mitigation strategies work well. In contrast, 
situations where RSA or SSA compete with one 
another might indicate conditions where cognitive 
ability factors less into the equation or where 
sensing methods are better able to accommodate 
continually changing spectrum conditions. This 
research highlights the potential significance of 
using intelligent and adaptive spectrum access 
schemes to achieve high utilization efficiency, avoid 
disturber interference, and guarantee the availability 
of spectrum for different communication protocols. 
In addition, future studies and experimental work 
could unlock more understanding of the potential 
for new spectrum utilization approaches across 
wireless communication applications, resulting in 
more efficiency as well as reliability in spectrum 
management schemes. 

This is illustrated in Table 2 and Figure 4, 
where the level of interference measured in decibels 
(dB) is shown and compared for ten trials between 
Cognitive Radio Licensed Spectrum Access 
(CRLSA), Random Spectrum Access (RSA), and 
Spectrum Sensing-based Access (SSA). 

 

 
Fig. 3: Comparison of Spectrum Utilization 

Table 2. Comparison of Interference Levels 
Trial CRLSA (dB) RSA (dB) SSA (dB) 

1 30 40 35 
2 35 45 38 
3 28 42 36 
4 32 38 34 
5 31 41 37 
6 33 43 39 
7 29 39 33 
8 34 44 40 
9 27 37 32 
10 36 46 42 

 
The recorded levels of interference differ from 

trial to trial for each method of access. The CRLSA 
has interference levels from 27 dB to 36 dB which 
are relatively lower than RSA and SSA. This 
indicates that because random spectrum access 
methods do not possess cognitive capabilities to 
mitigate interference, they tend to have higher levels 
of interference (37 dB - 46 dB) as shown in the 
previous metrics of interference levels in this 
simulation experiment. SSA has the performance in 
the intermediate level between CRLSA and RSA 
accounting for an interference of 32–42 dB. This 
indicates that spectrum sensing-based techniques 
can alleviate interference to some degree, although 
they may not provide a level of suppression 
comparable to that of cognitive radio-based 
solutions. These differences in interference levels 
depend on the efficiency of interference detection 
and mitigation techniques, competing users or 
devices in the spectrum, and environmental 
conditions affecting signal propagation and 
interference patterns, which are all factors that 
contribute to the variations.  

 

 
Fig. 4: Comparison of Interference Levels 
 

In conclusion, the results emphasize the need 
for new techniques of spectrum management, which 
should be intelligent and dynamic, like cognitive 
radio, and adapt to the environment in order to take 
care of the interference and have a better quality of 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS 
DOI: 10.37394/23209.2025.22.37

G. M. Karthik, V. Pushpa, R. Rekha, 
C. Nandhakumar, S. Logesswari, 

N. Naga Saranya

E-ISSN: 2224-3402 461 Volume 22, 2025



service in wireless communication. Continuous 
investigation and testing are essential for refining 
interference counteraction techniques and creating 
resilient frequency entry procedures that can adjust 
to evolving and complex wireless scenarios. 
 

Table 3. Comparison of Latency 
Trial CRLSA 

Latency (ms) 

RSA 

Latency (ms) 

SSA Latency 

(ms) 

1 20 35 30 
2 25 40 32 
3 18 32 28 
4 22 38 31 
5 19 34 29 
6 21 36 33 
7 24 39 34 
8 23 37 30 
9 17 31 27 
10 26 42 36 

 
Latency, in milliseconds (ms), for ten trials for 

Cognitive Radio-based Licensed Spectrum Access 
(CRLSA), Random Spectrum Access (RSA), and 
Spectrum Sensing-based Access (SSA) are shown in 
Table 3 and Figure 5. Latency values logged for 
each access method vary between the trials. 
CRLSA shows latency between 17 ms and 26 ms, 
which are lower latency overall concerning RSA 
and SSA. RSA shows greater latency from 31 ms to 
42 ms, indicating that random spectrum access 
techniques cause relatively higher latency due to 
less cognitive techniques that do not allocate 
spectrum effectively. SSA shows latency lying 
between CRLSA and RSA (27 ms to 36 ms); this 
indicates that latency can be reduced to a certain 
extent by implementing spectrum sensing-based 
approaches, however, we cannot say that latency 
reduction in spectrum sensing is always better than 
cognitive radio. It appears that latency differs based 
on aspects like the effectiveness of spectrum sensing 
and allocation algorithms, conflict over spectrum 
resources, and the intricacy of cognitive radio 
decision-making processes. In conclusion, the 
results highlight the significance of using the 
intelligent spectrum management technique of 
cognitive radio to reduce latency and increase the 
timeliness of wireless communication systems. As a 
result, more research and development are essential 
for improving latency reduction approaches and 
creating capable spectrum access methods to satisfy 
the different demands of contemporary wireless 
applications. 

 

 
Fig. 5: Comparison of Latency 
 

Table 4. Comparison of Throughput 
Trial CRLSA 

Throughput 

(Mbps) 

RSA 

Throughput 

(Mbps) 

SSA 

Throughput 

(Mbps) 

1 150 120 130 
2 140 115 125 
3 160 125 135 
4 145 118 128 
5 155 121 131 
6 148 123 129 
7 142 117 127 
8 147 119 132 
9 158 124 136 
10 137 116 133 

 
As outlined in Table 4 and shown in Figure 6, 

this section compares throughput, i.e., megabits per 
second (Mbps) throughput, over ten trials with 
Cognitive Radio-based Licensed Spectrum Access 
(CRLSA), Random Spectrum Access (RSA), and 
Spectrum Sensing-based Access (SSA). Recording 
throughput shows different values between trials 
for every access method. The throughput of CRLSA 
provides a range between 137 Mbps and 160 Mbps, 
so we can say that the CRLSA algorithm offers 
throughput similar to RSA and SSA. The 
throughput levels of RSA, with values between 115 
Mbps and 124 Mbps, are lower than other 
mechanisms because random spectrum access 
mechanisms are usually characterized by inefficient 
spectrum utilization. SSA throughput varies 
between CRLSA and RSA, reporting 125–136 
Mbps. This outcome indicates that spectrum 
sensing-based strategies can be implemented with a 
limited throughput but cannot reach the level of 
throughput achieved by cognitive radio-based 
techniques. Hence these variations in throughput 
output based on the algorithms used in the spectrum 
allocation process and its interferences can also 
have a dynamic nature based on the spectrum 
availability. Thus, the findings show that intelligent 
spectrum management techniques, e.g., cognitive 
radio, can be used for throughput maximization in 
wireless networks and to improve wireless 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS 
DOI: 10.37394/23209.2025.22.37

G. M. Karthik, V. Pushpa, R. Rekha, 
C. Nandhakumar, S. Logesswari, 

N. Naga Saranya

E-ISSN: 2224-3402 462 Volume 22, 2025



communication systems and networks overall. This 
continues to motivate the refinement of throughput 
optimization schemes and the invention of solid 
spectrum access protocols that satisfy the rising 
requirements of high-speed wireless services. 

 

 
Fig. 6: Mean Throughput of Different Methods 
 

Table 5. Comparison of Reliability 
Trial CRLSA 

Reliability 

(%) 

RSA 

Reliability 

(%) 

SSA 

Reliability 

(%) 

1 95 80 85 
2 92 75 80 
3 96 82 87 
4 94 78 83 
5 97 79 84 
6 93 77 82 
7 91 76 81 
8 98 81 86 
9 99 83 88 
10 90 74 79 

 
Figure 7 and Table 5 compare the reliability 

percentages over ten trials with CRLSA, RSA, and 
SSA. You can understand reliability as the ability 
of the communication system to consistently or 
dependably transmit data errors or disruptions. The 
imported reliability values differ within the trials of 
each access method. CRLSA outperformed RSA 
and SSA, with the reliability percentage of the 
CRLSA model between 90% and 99%. Random 
spectrum access methodology is a more unreliable 
one, with RSA showing 74% to 83% reliability 
levels. SSA has a reliability that lies between 
CRLSA and RSA, with values from 79% to 88%. 
These results imply that spectrum sensing-based 
methods can reach moderate reliability but may not 
be as reliable as cognitive radio-based approaches at 
all times. Reliability differences are due to many 
factors such as the quality of spectrum sensing 
techniques, the presence of interference or noise, 
and error correction measures. These results suggest 
that intelligent spectrum management methods 
(cognitive radio) are necessary to maximize the 
reliability of wireless communication services. 

Additional work is needed to improve reliability 
enhancement techniques and build robust spectrum 
access protocols that can endure a wide range of 
environmental and operational challenges. 

 

 
Fig. 7: Mean Reliability of Different Methods 
 
 
5   Conclusion and Future Work 
Spectrum scarcity is one of the formidable 
challenges in the fifth generation (5G) wireless 
communication networks, especially in urban 
scenarios. In addressing this challenge, this work 
presents a CRLSA framework, specifically designed 
to maximize spectrum access while fulfilling QoS 
standards. Using the environment as described in the 
previous section, we build our framework which 
uses Deep Q-Networks (DQN), which is a powerful 
deep reinforcement learning algorithm, to learn 
optimal spectrum allocation policies in urban 
environments. The CRLSA framework shows that 
itsakwazi the dynamic SU spectrum resource 
allocation while meeting strict QoS metrics through 
simulations and experimental results based on a 
simulated urban environment. Such a tradeoff can 
be enabled and fine-tuning can be done based on 
downstream tasks with this framework. CRLSA 
framework crass here efforts for handling the issues 
of spectrum scarcity in order to achieve the best 
possible performance by densifying networks in 
respect of urban 5G. In future work, the CRLSA 
framework can be generalized to new technologies 
such as edge computing and network slicing, further 
increasing its applicability. Moreover, incorporating 
other RL techniques (such as actor-critic methods or 
multi-agent systems) can enhance spectrum 
allocation strategies. By getting access to the space's 
real-time data and running predictive analytics on 
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user behavior (aka supply vs demand), this can be 
possible. Further research on the scalability and 
robustness of large-scale urban and heterogeneous 
network deployments would be beneficial to the 
knowledge in this respect. Lastly, investigating 
synergies with regulation regimes such as dynamic 
spectrum access and spectrum sharing policies may 
facilitate the adoption of industry practices and 
foster spectrum allocation and management with 
actions for fifth-generation networks. 
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