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to overcome the limitations of the GT methodology and optimize the production schedule to increase efficiency.  
We propose a high-variation, low-volume K-means clustering (HVLV-Motor-KC) algorithm, which is a K-
means clustering algorithm that focuses on high-variety, low-volume data. This algorithm helps to optimize 
production by placing motors with similar characteristics in the same cluster.  
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1  Introduction 
The development of intelligent manufacturing and 
smart machines in modern industry has been fuelled 
by the integration of artificial intelligence (AI) and 
big data methodologies, [1]. It is anticipated that this 
AI-supported Industry 4.0 revolution will enhance 
industrial productivity by at least 30% within a few 
years of its implementation, [1]. This innovation 
employs the use of artificial intelligence (AI) to 
reduce the incidence of machine failure, enhance 
quality control, boost productivity, and markedly 
reduce product costs. Consequently, humanity is 
undergoing a significant transformation that will 
fundamentally alter the future and our way of life, 
[2]. 

This trend is also bringing significant changes to 
modern manufacturing. Firstly, the development of 
smart factories capable of collecting and storing 
process data in real-time through information 
automation technology has advanced, [2]. These 
intelligent factory operation technologies can create 
value-added data through big data analysis, thereby 

improving quality within the production process. 
Furthermore, in the era of the Fourth Industrial 
Revolution, production methods are shifting from 
mass production of a few varieties to small-batch 
production of various varieties, [3]. This illustrates 
that an era has arrived where it is necessary to 
secure not only product quality but also service 
quality and brand quality through the evolution of 
technologies such as sensors, the Internet of Things, 
and big data utilization. Consequently, the speed of 
quality transformation must be swiftly adjusted to 
meet customer preferences, [3]. In line with these 
trends, modern manufacturing is increasingly 
transitioning to a system of small-batch production 
of various varieties to meet diverse customer 
demands and respond quickly to market changes. 

The objective of this study is to examine the 
factors contributing to the observed decline in 
productivity at the Korean motor manufacturer K, 
resulting from the practice of small-batch 
production for a range of different types of small 
motors. In the case of mass production of standard 
items, a standardized production flow can be 
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designed and standardized as the same product is 
continuously manufactured on a single piece of 
equipment, [4]. 

However, in small-batch production processes 
of various types, products with different 
characteristics are mixed and manufactured. In one 
case, a company reported that the model is changed 
more than 10 times per day on average per 
production line, [2]. Each time this occurs, the 
preparation and production flow must be adjusted 
continuously, resulting in only 5% of the 
manufacturing time being spent on actual processing 
and preparation, while the remaining 95% is non-
processing time, leading to waste. 

Manufacturers producing small-batch, multi-
variety products apply the concept of Group 
Technology (GT) to solve the aforementioned 
problems and achieve their goals, [5], [6]. By 
classifying similar parts based on shape, dimensions, 
or processes, and applying optimized part design, 
machine allocation, tools, and work methods to each 
group, this methodology minimizes the radius of 
action and setup time, thereby enhancing 
productivity. This methodology reclassifies parts 
into part families with similar design or 
manufacturing characteristics to maximize 
efficiency, [5], [7]. However, there are several 
issues with the GT methodology. 

Firstly, it should be noted that the results may 
vary depending on the subjective judgment, 
experience, or preferences of the individual 
responsible for classifying the parts, [7]. Secondly, 
the process of analysis and grouping is inherently 
time-consuming and costly, and it can be 
challenging to analyse when the data volume is 
large or complex. Finally, the costs associated with 
data collection and processing may be considerable. 
While the GT methodology is suitable for small 
quantities of data, it may be challenging to apply to 
large-scale data sets. 

To address the shortcomings of the GT 
methodology, the K-means clustering algorithm, a 
fundamental tool in machine learning, can be 
employed. 

In this study, the efficacy of the K-means 
clustering algorithm was assessed using the 
Silhouette Score as a post-hoc evaluation metric. 
The analysis yielded a Silhouette Score of 0.9158, 
indicative of a robust clustering effect. This 
indicates that the K-means clustering algorithm is an 
effective method for classifying data and can be 
used to complement the GT methodology, as 
previously demonstrated in [8], [9]. 

The structure of the paper is as follows: Section 
2 covers several key topics, Group Technology, K-

means Clustering, and Hierarchical Clustering. 
Section 3 describes the proposed HVLV-Motor-KC 
framework in detail.  Section 4 describes the 
experimental environment, datasets, evaluation 
measures, and results of the three experiments. 
Finally, Section 5 presents the conclusions of the 
three experiments and future research directions. 
 
 
2  Related Work 
 
2.1 High-Variety Low-Volume Production 
The advent of Industry 4.0 has ushered in a new era 
of technological advancement, with market trends 
shifting from mass, low-mix production to high-mix, 
low-volume (HMLV) production, [8]. Small-batch, 
multi-variety production refers to the method of 
producing multiple types of products in small 
quantities, diversifying the production process to be 
flexible and not limited to a single type, [6]. This 
approach enables manufacturers to respond flexibly 
to fluctuations in market demand for customized 
products. In a small-batch, multi-variety production 
environment, it is common for order sizes to be 
small, the number of orders to be high, and the 
variability of products to increase. This enables the 
enhancement of production efficiency and 
maximization of resource utilization. 
 

 
Fig. 1: Types of Manufacturing and Service 
Processes Based on the Number of Varieties and 
Production Volume 
 

Figure 1 illustrates the types of manufacturing 
and service processes based on the diversity of 
varieties and production volumes in manufacturing. 
Four characteristics—Volume, Variety, Variation, 
and Visibility—are interrelated, [10]. Volume and 
Variety generally have an inverse relationship 
within a single operational process, determining the 
position of a specific operational process along this 
continuum. Both manufacturing and service process 
types can be identified along this continuum. 
Manufacturing processes are categorized into 
Project, Jobbing, Batch, Mass, and Continuous 
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processes, while service processes are divided into 
Professional, Service, and Mass services. These 
process types are determined by the inverse 
correlation between Volume and Variety. After 
determining the appropriate process type, another 
crucial factor is the layout. The choice of layout is 
closely linked to the process type and is generally 
determined based on the process type. The most 
common layout types are Fixed Position, Functional, 
Cellular, and Product layouts. 

As consumer demands become more diverse 
and specific, manufacturers are introducing a variety 
of products and launching high-performance 
customized products. Small-batch, multi-variety 
production reflects this trend and is utilized in 
various fields such as clothing, jewellery, cosmetics, 
ships, and robotic devices. In small-batch, multi-
variety production, customers directly determine the 
design, specifications, production volume, and 
delivery time of products, making management for 
companies very complex and uncertain. 
Furthermore, frequent job changes and different 
specifications and standards require advanced 
technology. These challenges necessitate 
manufacturers to adopt more flexible and efficient 
management systems. 

[8], discusses the importance of small-batch, 
multi-variety systems and the technical 
requirements to support them. This study explains 
how small-batch, multi-variety production systems 
should be designed and operated to meet the 
demand for customized products. Additionally, [11], 
emphasizes the optimization of production 
schedules and the efficiency of personalized product 
manufacturing by introducing digital twin 
technology. 
 
2.2  Group Technology 
GT is a concept based on the principle of processing 
similar products in a similar manner. 

 

 
Fig. 2: Group Technology 

 
Figure 2 illustrates two major methodologies in 

GT. The first methodology is cluster analysis, which 
groups objects into similar clusters based on their 
characteristics, [12]. This method is used to 
minimize setup times and tool change times 

according to the types and quantities of 
manufacturing parts, [7]. Through cluster analysis, 
machines and workstations can be rearranged. In 
frequently changing production environments, 
virtual rearrangement can provide a number of 
benefits. Formal methods for clustering machines 
and parts include matrix, mathematical 
programming, and graph methods. The second 
methodology classifies parts into groups based on 
their design characteristics. This approach includes 
visual methods and coding methods. The visual 
method groups similar parts based on their 
geometric shapes. This method is suitable when the 
number of parts is small, but can vary depending on 
the subjective judgment of the classifier. The coding 
method assigns numerical or alphabetic codes based 
on characteristics such as geometric shape, 
complexity, and machining precision of parts or 
products. The Opitz coding system is a 
representative example. 

Thus, GT rationalizes design and allocates 
appropriate production facilities and tools to each 
classified group, thereby reducing setup times, inter-
process transportation, and machining waiting times, 
[5]. This increases the lot size compared to a 
disordered production method, achieving an effect 
similar to mass production and enhancing 
productivity. Additionally, in production preparation, 
for previously designed and produced repeat or 
similar parts, GT allows the calculation of part 
design, process planning, manufacturing cell design, 
and estimated manufacturing costs based on data 
retrieved from part production information, [13]. 
 
2.3  K-means Clustering 
Although clustering algorithms have been 
developed for decades, the K-means algorithm 
remains widely used due to its simple principles, 
convenience, and high efficiency, [14]. The K-
means clustering algorithm, [15], is one of the 
unsupervised learning algorithms used in machine 
learning. It groups similar data points by leveraging 
their characteristics, [8], [15]. This algorithm 
partitions a dataset so that data points with similar 
attributes belong to the same cluster, [8]. It provides 
a method to divide points in a multi-dimensional 
space into k clusters. The algorithm classifies n 
points into k clusters, ensuring that points within 
each cluster share similar characteristics and exhibit 
different attributes from points in other clusters. 
This results in the formation of clusters where 
similar data points are grouped together.   

K-means clustering has the advantage of being 
easy to apply to large-scale and high-dimensional 
data. However, it has the disadvantage that the 
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number of clusters must be predetermined by the 
analyst. In addition, the randomness of the initial 
centroid selection can lead to different results each 
time it is run. To mitigate these drawbacks, 
initialization methods such as K-means++ and 
various modified algorithms have been proposed to 
achieve more stable and consistent clustering results. 

 

 
Fig. 3: Steps in Performing K-means Clustering 
 

Figure 3 shows the steps involved in performing 
K-means clustering. There are four steps in the K-
means clustering process. Firstly, a number of 
clusters or a value of k are determined, chosen by 
empirical methods or domain knowledge. In the 
second step, initial centroids are randomly assigned 
and all data points are assigned to the most closely. 
The third step is to calculate the average of the data 
points classified to the respective clusters and to 
update the centroids in accordance with this 
calculation. Finally, the fourth step repeats the third 
and fourth steps until the centroids stabilize, 
meaning the algorithm continues iterating until there 
are no changes in the centroids, confirming 
convergence. Through this process, the final cluster 
for each data point is determined. 
 
2.4  Hierarchical Clustering 
Hierarchical clustering is an algorithm that merges 
or splits data samples into groups based on their 
similarity to form a hierarchical structure, [16]. 
 

 
Fig. 4: Hierarchical Clustering Algorithm 
 

As shown in Figure 4, this algorithm captures 
various levels of relationships between clusters and 
creates clusters through a step-by-step merging 

process of data samples. For example, when there 
are n samples, initially each sample starts as an 
individual cluster. Subsequently, the most similar 
pair of clusters is repeatedly merged to reduce the 
number of clusters, continuing this process until 
only one cluster remains. This continuous merging 
process is central to hierarchical clustering and is 
useful for understanding the structure of clusters 
based on data similarity, [17], [18]. 

 

 
Fig. 5: Hierarchical Clustering Dendrogram 
 

The aforementioned process allows for the 
generation of a dendrogram, as illustrated in Figure 
5, which provides a visual representation of the 
complete clustering process and offers an intuitive 
understanding of the relationships between clusters. 
This hierarchical approach is an effective method 
for discovering and understanding the inherent 
structure of the data. 

The field of hierarchical clustering is 
characterized by two principal approaches: 
agglomerative clustering, as outlined in [19] and 
divisive clustering, as detailed in [20]. In the context 
of agglomerative clustering, the process commences 
with each data point constituting an independent 
cluster. Thereafter, the most analogous clusters are 
repeatedly merged. In the initial stage of the process, 
each data point is represented by a distinct cluster. 
The procedure continues until all points are merged 
into a single cluster. In contrast, divisive clustering 
commences with all data points in a single cluster 
and proceeds to repeatedly divide the most disparate 
clusters, continuing until each data point becomes 
its own distinct cluster. Figure 6 illustrates the 
process of agglomerative hierarchical clustering, 
accompanied by a visual representation of the 
resulting dendrogram. 

Hierarchical clustering forms clusters based on 
the Euclidean distance between data points or 
clusters without the use of an objective function. 
This method circumvents the issue of initial 
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parameter determination, thereby distinguishing it 
from K-means clustering. The outcome of K-means 
clustering is contingent upon the initial parameter 
settings, which may result in disparate clustering 
outcomes for the same dataset. In contrast, 
hierarchical clustering is not susceptible to the 
influence of initial parameter settings, thereby 
ensuring the generation of consistent clustering 
results. Nevertheless, hierarchical clustering is not 
without its limitations, particularly in regard to its 
applicability to large datasets. The computational 
complexity of this method increases exponentially 
with the number of data points, due to the necessity 
of calculating and storing the distance for every pair 
of data points. Consequently, this significantly 
increases the demand on memory and the time 
required for computation, rendering it inefficient for 
large datasets. 

 
 

 
Fig. 6: Agglomerative Hierarchical Clustering & 
Dendrogram 
 
 
3  HVLV-Motor-KC 
 
3.1  Methodology 
HVLV-Motor-KC proposes a method that can 
efficiently and flexibly handle complex datasets, 
such as those of high-variety low-volume motor 
data. Figure 7 provides an explanation of the 
methodology. 

Previously, the GT method was used. This 
method mainly relies on subjective judgment and 
experience, which poses limitations when dealing 
with complex patterns or large volumes of data. 
Managing data through Excel sheets is time-
consuming and costly, and it is difficult to apply this 
method across various environments or fields. 
Therefore, classifying high-variety, low-volume 
motor items through GT is challenging. 

The framework of HVLV-Motor-KC has the 
following features. First, it automates the clustering 
process to minimize human intervention, improving 
processing speed and efficiency. Second, K-means 
clustering groups data points more accurately based 
on similarity. Third, it performs clustering 
considering the characteristics of diverse data, 

making it applicable to various types of data. 
Fourth, it provides the ability to process large-scale 
datasets quickly and effectively. Finally, it is 
designed to respond swiftly to changes in data.  

This methodology can be particularly useful in 
areas such as production line optimization, 
inventory management, and product development. 
The data insights obtained through clustering can 
enhance production efficiency, improve product 
customization, and contribute to a more accurate 
understanding of customer needs. 

 

 
Fig. 7: HVLV-Motor-KC Framework 
 
3.2  K-means Clustering 

HVLV-Motor-KC algorithm is a K-means algorithm 
that clusters data points through multiple stages. 
Figure 8 explains the algorithm. 

Figure 8 compares the general K-means 
clustering algorithm with the HVLV-Motor-KC 
algorithm to help clearly understand the differences 
and characteristics of each algorithm. The data input 
for the general K-means clustering algorithm is 
based on the initial dataset. This algorithm is 
executed to divide the given dataset into k clusters. 
In Figure 8, the number of clusters is set to 3. As a 
result, the data points are grouped into three clusters, 
with each cluster represented in a different color. 

The data input for the HVLV-Motor-KC 
algorithm is based on the same dataset as the 
general K-means clustering algorithm. In Figure 8, 
the number of clusters is set to 3 for all levels. In the 
first level of clustering, the initial dataset is divided 
into three clusters. Each cluster formed at the first 
level becomes the dataset for the second level. 
Therefore, the number of clusters for the next level 
is the same as the k value set in the previous 
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clustering, which is 3 in Figure 8. Within each 
cluster, repeated clustering allows for further 
refinement in motor classification. To classify these 
multi-variety motors, we iteratively train the K-
means algorithm to find patterns in each motor and 
classify them by their unique characteristics.  
 

 
Fig. 8: K-means Clustering Algorithm 
 
 
4  Experiment and Results 
 
4.1  Experimental Environments 
As shown in Table 1, the hardware configuration is 
based on a 12th Gen Intel® Core™ i7-1260P CPU, 
Intel® Iris® GPU, 16 gigabytes (GB) of RAM, and 
an M.2 SSD for storage. 

 
Table 1. Hardware Configuration 

Item Description 

CPU 12th Gen Intel(R) Core(TM) i7-1260P 
GPU Intel(R) Iris(R) Xe Graphics 
RAM 16.0GB 

Storage M.2 SSD 
 

The software environment was configured as 
follows. The operating system used was Windows 
11, and Python 3.10.12 was adopted as the 
programming language. For data analysis and 
visualization, libraries such as Numpy 1.25.2, 
Pandas 2.0.3, scikit-learn, UMAP, Matplotlib, and 
Seaborn were utilized. The development 

environment used was Jupyter Notebook, and the 
virtual environment was set up through Anaconda. 
This software configuration facilitates the efficient 
execution of various data processing and analysis 
tasks. Table 2 summarizes the software 
configuration environment. 
 

Table 2. Software Configuration 
Item Description 

Operating System Windows 11 
Programming Language Python 3.10.12 

Libraries NumPy 1.25.2, Pandas 2.0.3 
Dev Environment Google Colaboratory 

 
Experiments were conducted in the hardware 

and software environment configured as described, 
enabling smooth execution of various data 
processing and analysis tasks. This environment 
configuration enhances the reproducibility of the 
experiments and is suitable for meeting diverse data 
processing and analysis requirements. 
 
4.2  Datasets 
The dataset collected for this study is based on the 
production data of a Korean small and medium-
sized enterprise (SME) K, a manufacturer of high-
variety, low-volume motors, primarily consisting of 
small, medium, and ultra-small motor product 
families.  
 

Table 3. Motor Dataset 
ITEM_GUBN ITEM_SERIES EQUIP_CD 

SMALL KAFZ EQ004 
SMALL KAFZ EQ004 

MEDIUM PSMR EQ001 
ULTRA-SMALL PSMS EQ007 

MEDIUM RTSE EQ015 
 

As shown in Table 3, the items used to 
differentiate the data in the actual field include 
ITEM_CD (item code), ITEM_REV (item revision), 
ITEM_NM (item name), PROD_GUBUN 
(production classification), ITEM_GUBUN (item 
classification), ITEM_SERIES (item series), 
LEAD_TIME (production time), and EQUIP_CD 
(equipment code). 

A total of 909 motor data records were collected. 
Of these, 727 records (80%) were used as training 
data, while the remaining 182 records (20%) were 
utilized as test data for performance evaluation. 

To train the HVLV-Motor-KC algorithm on the 
motor data, we performed several preprocessing 
steps. First, we removed rows that contained 
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missing values for EQUIP_CD and ITEM_GUBUN, 
which are essential fields for the analysis.  

Then, we converted the categorical data, 
EQUIP_CD, ITEM_GUBUN, and ITEM_SERIES, 
into a and converted them to numeric codes by 
applying data scaling.  

The main variables used in the experiment are 
ITEM_GUBUN, EQUIP_CD, and ITEM_SERIES. 
Table 4 shows the variables used for each primary 
and secondary clustering. 

 
Table 4. Variables for Clustering 1 and 2 

Clustering ItemGubun EquipCd ItemSeries 

1 ● ● x 
2 ● ● ● 

 
4.3  Evaluation Metrics 
The silhouette coefficient is an indicator of how 
closely a data point is clustered based on its distance 
from data points in similar clusters, [21] and how far 
it is distributed from data in other clusters. The 
silhouette coefficient can have a value between -1 
and 1, with values closer to 1 indicating better 
clustering. The HVLV-Motor-KC algorithm was 
evaluated using the silhouette coefficient above. 
 

𝑎(𝑖)  =  
1

|𝐶|  −  1
∑ d(i, j)

𝑖∈𝐶,𝑖≠𝑗

 (1) 

b(i) =
𝑚𝑖𝑛

𝐶` ≠ 𝐶

1

|𝐶`|
∑ 𝑑(𝑖, 𝑗)

𝑖∈𝐶`

 (2) 

s(i) =  
𝑏(𝑖) − 𝑎(𝑖)

max(𝑎(𝑖), 𝑏(𝑖))
 𝑤ℎ𝑒𝑟𝑒 − 1 ≤ 𝑠(𝑖) ≤ 1 (3) 

Silhouette Score =  
1

𝑛
∑ 𝑠(𝑖)

𝑛

𝑖=1

 (4) 

 

4.4  Visualization of Clustering Numbers 
To find the optimal number of clusters for the 
HVLV-Motor-KC algorithm, we used the silhouette 
and elbow methods. 
 

 
Fig. 9: Elbow Method 

 

The first silhouette measured the number of 
clusters with the highest silhouette score, while the 
second elbow method measured the number of 
clusters with a point where the Within Cluster Sum 
of Squares (WCSS) decreases sharply. 

 

 
Fig. 10: Silhouette 

 
We experimented with finding the optimal 

number of clusters using the above method and 
determined that seven clusters was the best number, 
as shown in Figure 9 and Figure 10. 

Table 5 shows the SSE (Within-Cluster Sum of 
Squares) and silhouette scores for different numbers 
of clusters. When the number of clusters is 7, the 
SSE sharply decreases to 18.0726, indicating that 
data points are more closely grouped around each 
cluster center. The silhouette score is the highest at 
0.9188, indicating the best separation between 
clusters. 

Additionally, the initial values for the cluster 
centers (init) were set using the k-means++ 
algorithm. This approach selects the initial cluster 
centers in a better way to improve the performance 
of clustering. The number of times to use different 
initializations was set to the default value of $10$. 
The maximum number of iterations (max_iter) was 
set to 300 to allow sufficient iterations for the 
algorithm to converge. 
 

Table 5. Comparison of Elbow Method  
and Silhouette 

n-

Clusters 
SSE Silhouette Score 

2 315.73772788646966 0.7707042591059704 
3 175.85620616762893 0.79852165813859 
4 86.75635309788157 0.7439876446148647 
5 42.993683685000555 0.7369224511116048 
6 29.25106647321429 0.8081641831658453 
7 18.072619525625903 0.9188765290433094 
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In summary, by setting the optimal number of 
clusters to 7, the motor data could be grouped most 
effectively according to similar characteristics. 
 

4.5  First Classification 
Figure 11 presents the results of the initial clustering 
process. Each cluster is delineated by a distinct 
colour, facilitating the identification of its 
distribution and boundaries in relation to other 
clusters. The size of the data points is adjusted 
proportionally to the number of samples within the 
corresponding cluster; that is, the more samples in a 
cluster, the larger the size of the data point. This 
visualization allows for an immediate understanding 
of the relative size and density of each cluster.  
 

 
Fig. 11: First Classification on ItemGubun and 
EquipCd 

 
Table 6 shows the exact number of data points 

belonging to each cluster, providing specific 
information on the cluster distribution. This helps to 
clearly understand the composition and distribution 
of each cluster.  

 
Table 6. Comparison of Elbow Method  

and Silhouette 
n-Clusters Sample Count 

0 102 
1 84 
2 109 
3 21 
4 122 
5 105 
6 185 

 
Cluster 6, consisting of 185 data points, forms 

the largest cluster and accounts for a significant 
portion of the total data. The next largest cluster is 
Cluster 4, which includes 122 data points. In 

comparison, the data points in cluster 3 show the 
smallest number of data points, 21. The first 
clustering result from K-means gives a silhouette 
score of 0.9188, which is very close to 1, indicating 
that the boundaries between clusters are clear and 
the data is well distributed. 
 

4.6  Second Classification  
Based on the actual classification of motors in 
Company K, we performed primary clustering by 
equipment code and item classification, and then 
secondary clustering by item series. When we made 
multiple classifications, such as primary, secondary, 
and so on, we were able to make more detailed and 
sophisticated clustering. In the second stage, the 
ITEM_SERIES variable was incorporated into the 
process to facilitate a more refined clustering 
approach. Any missing values in the ITEM_SERIES 
field were treated as Other. 

 
 

 
Fig. 12: Second Classification on ItemGubun, 
EquipCd and ItemSeries 
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In the second stage of the clustering process, 
each cluster generated in the initial stage was further 
subdivided in order to identify more detailed 
patterns within the motor production data. A further 
iteration of K-means clustering was conducted 
within each cluster, incorporating the 
ITEM_SERIES variable. In order to ascertain the 
optimal number of clusters, the elbow method and 
silhouette analysis were employed, in a manner 
analogous to that undertaken in the initial stage of 
clustering. The initial value settings and other 
optimal algorithm settings were maintained in 
accordance with those employed in the initial stage 
of clustering. 

Figure 12 visualizes the results of the second-
stage clustering based on the first-stage clustering. 
Each cluster is represented in a different color and 
visualized in 3D. This visualization allows the 
silhouette scores of each cluster to be confirmed, 
enabling a more detailed grouping of the motors. 

 
Table 7. Comparison of Silhouette 

n-Clusters Silhouette Score 

0 0.913 
1 0.840 
2 0.923 
3 0.944 
4 0.848 
5 0.911 
6 0.888 

 
Table 7 shows the number of clusters and 

silhouette scores for the second-stage clustering. 
The number of clusters was determined to be 
between 6 and 9, and all clusters had silhouette 
scores above 0.8, indicating that the clustering was 
very successful. Particularly, Cluster 3 recorded the 
highest silhouette score of 0.9444, indicating that 
the data points within this cluster are very densely 
packed and clearly distinguished from other clusters. 
 
4.7  Results 
We applied the HVLV-Motor-KC algorithm to 
optimize the production of 900 small, medium, and 
ultra-small motors by classifying them into 
equipment codes, item categories, and item series. 
As the results of the experiment show in Table 8, 
both primary and secondary clustering in the 
training data showed the highest silhouette score of 
0.91742, which is consistent with the process of 
classifying multi-variety motors into seven motors 
by field workers in the actual field, thus increasing 
the applicability in the real industry.  
 

Table 8. Comparison of Silhouette Score 
 Silhouette Score 

train_data 0.9174270361483706 
test_data 0.9195868772687471 

 
Figure 13 shows, keeping the number of clusters 

at 7, applying the test data resulted in a high 
silhouette score of 0.91958, demonstrating that the 
proposed HVLV-Motor-KC algorithm can classify 
new varieties into similar types of varieties even 
when new varieties are introduced. 

 

 
Fig. 13: Clustering Comparison of Training and Test 
Data 
 
 
5  Conclusion 
The HVLV-Motor-KC algorithm demonstrated high 
performance on training and test data from a large 
variety of low-volume motors, showing that it can 
efficiently classify complex and large volumes of 
motor data to optimise production management.  

Further research is required to enhance the 
algorithm's performance by conducting a 
comparative analysis with alternative data types and 
clustering techniques. This will assist in further 
verifying the versatility and stability of the HVLV-
Motor-KC algorithm. Moreover, further 
experiments will be conducted with the objective of 
enhancing the practicality of the algorithm and 
advancing the research in order to increase its 
applicability in real industrial environments. 

Finally, a user-friendly interface will be 
developed to facilitate straightforward utilisation in 
practical applications. In order to achieve this, tools 
that provide a visual representation of the 
algorithm's results will be developed, thereby 
enabling users to directly control and analyse the 
clustering process. 
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