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Abstract: - The Design of Experiments (DOE) is a method that is widely used due to its effectiveness in 
selecting optimum conditions in the design stage of product development. On the other hand, fast, low-cost, 
labor-saving, and energy-saving innovative development is also required in the industry. In previous research, a 
program for quickly searching the optimum condition using the design of experiments is developed and 
evaluated. Relationships between each parameter and the final property are firstly cleared for an algebraic 
formula by using the design of experiments. Then the optimum conditions for each parameter were decided by 
using these formulas in the program. However, when each parameter has several errors in the data, the search 
accuracy becomes very low. In this research, the improvement for the searching accuracy using the law of error 
propagation was developed and evaluated. Relationships between each parameter error and the final property 
are firstly cleared for high-accuracy searching by using the law of error propagation and the previous results in 
the previous research. And each parameter influence for the final property was cleared. It was found that the 
large parameter effects could be improved for high-precision search by using high-precision instruments, 
increasing the number of trials N, and taking measurements in an optimal environment. Relationships between 
each parameter error and the final property were investigated and evaluated for the proposed method by using a 
mathematical model. It is concluded from the result that (1) the proposed method is effective for clearing the 
relationships between each parameter error and the final property, and (2) the proposed method is effective for 
searching the optimum condition. 
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1   Introduction 
Design of experiments is often used in industry to 
efficiently determine the optimal combination of 
level values of control factors, [1], [2]. In addition, 
quality engineering (static property) is a highly 
robust design method that incorporates the concept 
of error factors based on the design of experiments 
and has been the subject of much research, [3], [4], 
[5], [6], [7], [8], [9], [10], [11], [12]. However, most 
of these studies are limited to obtaining the factor 
effect diagram as an effective case study and using 
it to perform a two-stage design. Further practical 
research and development are desired in the 
industrial world. 

In contrast, as a new method, the authors used 
the design of experiments to clarify the functional 
relationship between the final property value and 
each control factor by curve-fitting work and 
additivity and developed a method to obtain the 
optimal final property value using the functional 
relationship.  However, when errors were included 
within the level value of each control factor, the 
accuracy of the functional relationship equation was 
reduced and the optimization of the final property 
value could not be guaranteed. 

In this study, we apply Taylor's law of error 
propagation to the functional relationship between 
the final property value and each control factor 
obtained in the authors' previous study, [13] to 
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formulate the functional relationship of the effect of 
the error of each control factor on the final property 
value. Then, we develop and evaluate the 
technology to control the final property value with 
high accuracy and to improve the accuracy of the 
optimum final property value. In this paper, 
orthogonal tables are also used, and if there are 
interaction or synergy effects between control 
factors, the proposed method will be affected, [12]. 
In this research, it is assumed that there are no 
interaction or synergy effects between the control 
factors. 

This research proposes a method that allows 
qualitative and quantitative consideration of the 
influence of control factors to improve the accuracy 
of the final property values, something that 
conventional experimental design methods, [1], [2] 
and quality engineering, [3], [4], [5], [6], [7], [8], [9], 
[10], [11], [12] have failed to do. By introducing the 
proposed method through WSEAS, many 
researchers, engineers, scientists, postgraduate 
students industrial engineers, and managers will be 
able to contribute to rapid and accurate development 
research. 
 
 
2 Explanation of the Program to 

Search the Optimal Condition using 

the Design of Experiments 
 
2.1 The Design of Experiments 
In this section, the optimum conditions 
identification program used for the proposed method 
is explained. 

The Design of Experiments (DOE) is commonly 
used, based on a small number of experiments or 
CAE analyses, to estimate an optimum parameter 
combination for the generation of new designs. The 
control factors (A to D) and their levels (A1 to A3, B1 
to B3, C1 to C3, and D1 to D3,) are shown in Table 1 
(Appendix). The orthogonal table is used to set up 
the control factors and their levels in Table 1 
(Appendix), as shown in Table 2 (Appendix). The 
experiments are then carried out according to the 
numbers in the orthogonal table. The results are also 
given in Table 2 (Appendix) as final properties P. 
From the principle of orthogonal tables, the 
relationship between the influence E (=EAx, EBy, ECz, 
EDw) of each control factor and the final property 
values PAx∙By∙Cz∙Dw is shown in Equation (1). 

 
 
 
 

 
EA1 = (PA1∙B1∙C1∙D1+PA1∙B2∙C2∙D2+PA1∙B3∙C3∙D3) / 3 

EA2 = (PA2∙B1∙C2∙D3+PA2∙B2∙C3∙D1+PA2∙B3∙C1∙D2) / 3 
EA3 = (P A3∙B1∙C3∙D2+PA3∙B2∙C1∙D3+PA3∙B3∙C2∙D1) / 3 
EB1 = (PA1∙B1∙C1∙D1+PA2∙B1∙C2∙D3+PA3∙B1∙C3∙D2) / 3 
EB2 = (PA1∙B2∙C2∙D2+PA2∙B2∙C3∙D1+PA3∙B2∙C1∙D3) / 3 
EB3 = (PA1∙B3∙C3∙D3+PA2∙B3∙C1∙D2+PA3∙B3∙C2∙D1) / 3 
EC1 = (PA1∙B1∙C1∙D1+PA2∙B3∙C1∙D2+PA3∙B2∙C1∙D3) / 3 
EC2 = (PA1∙B2∙C2∙D2+PA2∙B1∙C2∙D3+PA3∙B3∙C2∙D1) / 3 
EC3 = (PA1∙B3∙C3∙D3+PA2∙B2∙C3∙D1+PA3∙B1∙C3∙D2) / 3 
ED1 = (PA1∙B1∙C1∙D1+PA2∙B2∙C3∙D1+PA3∙B3∙C2∙D1) / 3 
ED2 = (PA1∙B2∙C2∙D2+PA2∙B3∙C1∙D2+PA3∙B1∙C3∙D2) / 3 
ED3 = (PA1∙B3∙C3∙D3+PA2∙B1∙C2∙D3+PA3∙B2∙C1∙D3) / 3 

 
Then, the final property values can be estimated 

based on the additivity of the orthogonal sequences, 
which is the most important feature of the design of 
experiments. Therefore, the relationship between the 
influence E of each control factor and all final 
property values PAx∙By∙Cz∙Dw can be estimated by 
Equation (2). 
 

PAx∙By∙Cz∙Dw =EAx+EBy+ECz+ECw－(4－1) Pave       

(2) 
 

Where, Pave is the average of the final property 
values (the average of the final property values 
shown in Table 2, Appendix). In the design of 
experiments, the additivity of the orthogonal 
sequences can be used to estimate all combinations 
results (81 different results in this case) from a small 
number of experimental results. Therefore, the best 
combination search can be performed among all 
combination results, however it is not the optimal 
condition. 
 
2.2 The Program to Search the Optimal 

 Condition using the Design of 

 Experiments 
The additivity (equation (2)) of the orthogonal 
sequences was used for the optimal condition 
identification program. In the previous explanations, 
all control factors had three levels. By increasing the 
number of these levels, the accuracy of the causal 
relationship increases, however, it requires a long 
working time and a large cost. The relationship 
between the influence E (=EAx, EBy, ECz, EDw) of 
each control factor and each level (Ax, By, Cz and 
Dw) of each control factor was then displayed as 
four curves (f (Ax), g (By), h (Cz ), i(Dw )) by curve 
fitting, [13]. In this way, the influence of an infinite 
number of level values can be processed quickly 
Equation. (2) is accordingly rewritten as Equation 
(3). 
 

 

(1) 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS 
DOI: 10.37394/23209.2024.21.40 Ikuo Tanabe, Hiromi Isobe

E-ISSN: 2224-3402 439 Volume 21, 2024



PAx∙By∙Cyz∙Dw=f(Ax)+g(By)+h(Cz)+i(Dw)-(4-1)Pave       (3) 
 

This allows us to estimate the final properties for 
an infinite number of combinations within the range 
of levels in Table 1 (Appendix). This is the optimal 
condition identification program used in the 
proposed method. This is the author's original 
technology, which allows us to search for optimal 
conditions. 
 
 
3 Explanation of the Algorithm for 

 Improving the Accuracy of the 

 Searching for Optimal Condition 
 
3.1 Understanding the Relationship between 

 Control Factors Errors and Final 

 Property Values using Taylar’s Law of 

 Error Propagation 
In this chapter, based on Equation (3) for the 
relationship between the influence E of each control 
factor and final property values P in the previous 
section, Taylor's law of error propagation is used to 
clarify the effect of the level value error of each 
control factor on the final property value error. If the 
error in the final property value PAx∙Bx∙Cz∙Dw is δ 
PAx∙Bx∙Cz∙Dw, and the error in the level values Ax, By, 
Cz, and Dw of each control factor is δAx, δBy, δCz 
and δDw respectively, then by assuming that the 
error is sufficiently smaller than the value of the 
variable of interest, Equation (4) is obtained by 
dropping the higher-order terms in the Taylor 
expansion. 
 
δPAx∙Bx∙Cz∙Dw= 

(∂PAx∙Bx∙Cz∙Dw/∂Ax)δAx+(∂PAx∙Bx∙Cz∙Dw/∂By)δBy 

+(∂PAx∙Bx∙Cz∙Dw/∂Cz)δCz+(∂PAx∙Bx∙Cz∙Dw/∂Dw)δDw  (4) 
 
Where ∂PAx∙Bx∙Cz∙Dw/∂Ax denotes the partial 
differentiation of PAx∙Bx∙Cz∙Dw by Ax. Since the error 
can be positive or negative, Equation (5) is obtained 
by taking the absolute value of each term. 
 
|δPAx∙Bx∙Cz∙Dw| ≦

|(∂PAx∙Bx∙Cz∙Dw/∂Ax)δAx|+|(∂PAx∙Bx∙Cz∙Dw/∂By)δBy| 
+|(∂PAx∙Bx∙Cz∙Dw/∂Cz)δCz|+ |(∂PAx∙Bx∙Cz∙Dw/∂Dw)δDw| (5) 

 
Equation (6) is obtained by substituting Equation (3) 
into Equation (5). 
 
|δPAx∙Bx∙Cz∙Dw|≦ |(∂f(Ax)/∂Ax)δAx|+|(∂g(By)/∂By)δBy| 

+|(∂h(Cz)/∂Cz)δCz |+ (∂i(Dw)/∂Dw)δDw| (6) 
 

From this Equation (6), it can be seen that the 
errors δAx, δBy, δCz and δDw contained in each of 
the level values Ax, By, Cz, and Dw of each control 
factor propagate to the error δPAx∙Bx∙Cz∙Dw contained 
in the final property value PAx∙Bx∙Cz∙Dw. 
 
3.2 High Accuracy of Final Property Values 

 using Error Management of Control 

 Factors 
In this section, as shown in Table 3 (Appendix), the 
relationship between the impacts (∂f(Ax) /∂Ax, 
∂g(By) /∂By, ∂h(Cz)/∂Cz, ∂i(Dw) /∂Dw) of the control 
factor errors and the final property value error δ 
PAx∙Bx∙Cz∙Dw are firstly calculated using Equation (6). 
Then, referring to the impact, to reduce the error δ 

PAx∙Bx∙Cz∙Dw of the final property value PAx∙Bx∙Cz∙Dw as 
much as possible, measures are taken to reduce the 
error δAx, δBy, δCz and δDw of the level value of 
each control factor. The countermeasures include 
(1) changing the equipment to increase the accuracy 
of the level values of the control factors, and (2) 
increasing the number of experiments (N values) to 
increase the accuracy of the level values. Measures 
to improve the accuracy of the final property values 
can be determined using the error δ PAx∙Bx∙Cz∙Dw of 
the final property values in Table 3 (Appendix) as a 
guide, taking into account cost-effectiveness, time 
gain and effort required. The proposed method can 
contribute to the development. Studies of many 
researchers, engineers, scientists, and industrial 
engineers. 
 
 
4 Explanation of the Algorithm 

 Evaluation of the Proposed 

 Method using a Mathematical 

 Model 
 
4.1 Effect of Control Factor Errors on Final 

Property Values 
Two structural equations, Equations (7) and (8), are 
used to evaluate the influence of the error of the 
control factor on the final property value. These two 
equations are prepared to evaluate individually the 
influence of the error of the control factor on the 
final property value for two problems of a 
completely different nature, respectively, and there 
is no interrelationship between Equations (7) and 
(8). 

PA∙B∙C = A2 + 9A－B2－3B +5C－46                 (7) 
 

PA∙B∙C = 6 e 0.1A + 2B2 + 5B + 6C                    (8) 
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The procedure of searching the functional 
relationship equation between the final property 
value and each control factor is explained using the 
authors' previous study, [13]. The previous Equation 
(7) or Equation (8) is a functional relationship 
between the final property value and each control 
factor, respectively, which is used here for 
calculation when carrying out Taylor's law of error 
propagation. The control factors and their level 
values in Table 4 (Appendix) were used. Table 5 
(Appendix) shows the combinations of the level 
values of each control factor according to the L9 
orthogonal table. The final property values P(7) and 
P(8), calculated using the structure Equation (7) and 
Equation (8) respectively, are also shown. Figures 1 
and Figures 2 in Appendix show the relationship 
between the final property values P(7) and P(8) in    
Table 5 (Appendix) and the control factor influence 
E. The equations obtained by an automatic curve-
fitting operation, [13] are also shown in the figures.  
Also shown in the titles of Figures 1 and Figures 2 
in Appendix are the functional relationships between 
the final property value PAx,By,Cz and the control 
factors Ax,  By, Cz in each figure, and the mean value 
of the final property value P(7)ave' and P(8)ave' are also 
shown. As Equation (8) contains an exponential 
function, it was difficult to separate the influence of 
each control factor contained in the exponential 
function on the mean value of Eave, so the 
coefficients of the exponential part are different 
between Equation (8) and the calculated functional 
equation, however, it is believed that this does not 
have a significant effect. So far, this is the procedure 
to search for the functional relationship between the 
final property value and each control factor in the 
author's previous work, [13]. Then, based on 
Equations (7) and (8) of the structural equation, 
errors ±ΔAS, ±ΔBT and ±ΔCM were added to the 
level values of each control factor as shown in 
Equations (9) and (10). 
 

FL＝(AS±ΔAS)2+9×(AS±ΔAS)－(BT±ΔBT)2 

－3×(BT±ΔBT)+5×(CM±ΔCM)－46          (9) 
 

(Where L = 1 ~ 9; S, T and M = 1, 2 or 3) 
FL＝ 6 e 0.1(AS±ΔAS) + 2×(BT±ΔB T)2 + 5×(BT±ΔB T)  

+ 6×(CM±ΔCM)                                         (10) 
 

        (Where L = 1 ~ 9; S, T and M = 1, 2 or 3) 
 

Equations (9) and (10) respectively. The relation 
of the two final property values P’ was calculated 
and compared with the final property value P of the 
structure Equation (7) and Equation (8) without the 

error term, respectively, and the error of the 
calculation was determined. The accuracy was 
evaluated as the mean value and standard deviation 
of 10 calculations. 

Figure 3 (Appendix) shows the relationship 
between the error in the final property value and the 
error in the level value of each control factor. In the 
structural equation of Figure 3(a) in Appendix, when 
the error included in the level value of the control 
factor is less than ±3 %, the estimation can be done 
with good accuracy, however, when the error is ±5 %, 
the mean value of the calculation error is 5.1 % with 
a standard deviation of 2.2 %. In the structural 
equation in Figure 3(b) in Appendix, even when the 
error contained in the level value of the control 
factor is ± 3 %, the mean value of the calculation 
error is 7.5 % with a standard deviation of 2.8 %, 
which is large. This is a major problem in the 
authors' previous study, [13]. This is also a major 
problem in the industry, where the design of 
experiments and quality engineering are used in 
research and development. Therefore, as a 
countermeasure, the number of trials is increased (N-
value is increased) without any reason, and the 
measurement equipment and facilities are renewed 
as much as possible with high accuracy without any 
clear reason. In this research, it is provides the 
technology to carry out effective and efficient 
countermeasures in the right place by clarifying the 
basis and the reason for the countermeasures. 
 
4.2  Evaluation of the Proposed Method 
Two structural equations of the previous section are 
used to evaluate the proposed technique. 
Substituting Equations (7) and (8) into Equation (5) 
respectively, we obtain Equations (11) and (12), 
respectively. 
 
|δPAx∙Bx∙Cz| ≦ |(∂f(Ax)/∂Ax)δAx|+|(∂g(By)/∂By)δBy| 

+|(∂h(Cz)/∂Cz)δCz|  
        ＝|(2Ax+9)δAx|+|(－2By－3)δBy|+|5δCz |         

(11) 
 

|δPAx∙Bx∙Cz| ≦ |(∂f(Ax)/∂Ax)δAx|+|(∂g(By)/∂By)δBy| 
+|(∂h(Cz)∂Cz)δCz | 

        ＝ | (0.6 e 0.1Ax)δAx|+|(4By+5)δBy|+|6δCz|     
(12) 

 
From these equations, by examining the 

coefficients of the three terms on the right-hand side 
of each equation, it is possible to understand how 
the errors δAx, δBy, and δCz of the control factors A, 
B, and C, respectively, propagate concerning the 
error in the final property value |δPAx∙Bx∙Cz|. 
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Table 6 in Appendix shows, based on Table 4 
(Appendix), the control factors, their level values, 
and the error of each level value. In Table 7 
(Appendix) each level value including the error is 
set according to the L9 orthogonal table. The errors 
are the values +3 %, +6 % and +10 % of each level 
value, which is considered to have the greatest 
influence within the error range. Table 8 and Table 
9 in Appendix show the results of the evaluation of 
the proposed a technique using the structural 
Equations (7) and (8) respectively. The final 
property values P(7) and P(8) when the error is 0 % 
are taken from the results in Table 5 (Appendix). 
The final property values P(7)’ and P(8)’ when the 
error is +3 %, +6 %, and +10 % are calculated using 
the mathematical model Equations (9) and (10) and 
Table 6 and Table 7 (Appendix). After calculating 
the influence of the error |P(7)-P(7)’| and |P(8)- P(8)’| 
from the difference between the values with and 
without the error, the error of the final property 
value errors |δ PAx∙Bx∙Cz(11)| and |δPAx∙Bx∙Cz(12)| from 
Equations (11) and (12), and compared them. There 
is a good correspondence between |P(7)-P(7)’| and 
|δPAx∙Bx∙Cz(11)| in Table 8 (Appendix) and |P(8)-P(8)’| 
and |δPAx∙Bx∙Cz(12)| in Table 9 (Appendix). The 
proposed law of error propagation can be effectively 
used to consider the effect of level error in the 
control factors. |P(7)-P(7)’| in Table 8 (Appendix) and 
|P(8)-P(8)’| in Table 9 (Appendix) are random data 
generated by using computer-generated random 
numbers, whereas |δPAx∙Bx∙Cz (11)| in Table 8 
(Appendix) and |δPAx∙Bx∙Cz(12)| in Table 9 (Appendix) 
use the maximum (fixed) value within each level 
error range, so that |P(7)-P(7)’|≥|δPAx∙Bx∙Cz(11)| and |P(8)-
P(8)’| ≥ |δPAx∙Bx∙Cz(12)|. The same results as in Table 9 
(Appendix) are obtained by replacing 6.0001 e 0.1A 
in the first term of the right-hand side of the 
calculated (estimated) structural Equation (8)’ in 
Figure 2 (Appendix) with 6 e 0.1A in the first term of 
the right-hand side of the original structural 
Equation (8). 

Figure 4 (Appendix) shows the effect of each 
term on the final property value errors |δPAx∙Bx∙Cz(11)| 
and |δPAx∙Bx∙Cz(12)|, focusing on the three terms on the 
right-hand side of each of Equations (11) and (12) 
(corresponding to the level values of the control 
factors A, B, and C) applying the proposed law of 
error propagation. The errors of the final property 
values, |δPAx∙Bx∙Cz(11)| and |δPAx∙Bx∙Cz(12)|, are also 
shown as black lines in the figure (the black line is 
the sum of the effects of the level values of the 
control factors A, B, and C). The vertical axis is a 
logarithmic scale. The parameters are the error of 
each level value of the control factors +3 %, +6 %, 
and +10 %. First of all, both Equations (11) and (12) 

of the proposed law of error propagation show that 
the effect of the level error of the control factor A is 
very large, and therefore it is effective in increasing 
the accuracy of the level of the control factor A to 
obtain accurate final property values. The control 
factors A and B in Figure 4(a) in Appendix are both 
quadratic equations in the structural Equation (7), 
however, the value of the target level value of 
control factor A is larger than that of control factor 
B. This is because of the error δAx > δBy in Equation 
(11). The control factor B in Figure 4(a) (Appendix) 
has some influence on the error of the final property 
values |δPAx∙Bx∙Cz(12)| compared to the control factor 
B in Figure 4(b) (Appendix). This is because the 
second term on the right-hand side of Equation (12), 
|(4By+5)|, is larger than the second term on the right-
hand side of Equation (11), |(-2By-3)|. In both 
structural equations, the level value of the control 
factor C and the level value error have a very small 
influence on the final property value. These trends 
can also be seen in Table 8 and Table 9 in Appendix, 
however, Figure 4 (Appendix) is physically easier to 
understand. Thus, the proposed Equations (11) and 
(12) of the law of propagation of error are useful for 
considering and examining the relationships between 
the final property values, errors, control factors, and 
level values in the search for optimal conditions 
using the design of experiments. Then, when 
managing the level value error of each control factor, 
we first select and focus on the control factor that is 
effective in improving the accuracy of the final 
property value from Figure 4 (Appendix), and then 
increase the number of trials (increase the N value) 
or consider the use of a measurement device with 
high accuracy to reduce the level value error of that 
control factor. In this case, the accuracy of the final 
property value can be improved by a factor of N0.5 
by increasing the N value, however, this requires a 
great deal of time and effort. It is also possible to 
improve the accuracy of the final property value 
with high-precision equipment and measuring 
instruments, but this requires a great deal of money 
and there are limits to the accuracy of the equipment 
and measuring instruments. Then, in this process, it 
is possible to decide the most appropriate 
countermeasure from among many options, 
considering cost performance and life cycle 
assessment (LCA) while using Figure 4 (Appendix). 
   Traditionally, the accuracy of the final property 
values has been improved by trial and error over a 
long period and at great expense and effort. However, 
the proposed method can easily provide qualitative 
and quantitative measures to improve the accuracy of 
the final property values.  
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As a practical application of the proposed 
method, we are planning to improve its forced 
cooling characteristics (heat transfer coefficient) to a 
high degree of accuracy by using the previous study 
on "forced cooling of strong alkaline water mist", 
[13], which will be reported in the next paper. 
 
 

5  Conclusion 
By managing the error of each control factor, the 
property value can be managed accurately, and the 
technology to increase the accuracy of the optimum 
final property value was developed and evaluated. 
The following conclusions were obtained. (1) Using 
Taylor's law of propagation of error, the effect of the 
error of each control factor on the final property 
value is formulated as a functional relationship, and 
by efficiently managing each control factor, it is 
possible to achieve high accuracy of the optimum 
property value. (2) About the calculation accuracy 
using two structural equations, without using the 
proposed technique, the errors of the respective final 
property values within the range of ±1 %, ±3 %, 
±5 %, and ±10 % for the errors ΔAS, ΔB T and 
ΔCM contained in the control factors A, B, and C 
are ±0.9 to 2.0 %, ±3.4 to 7.5 %, ±5. 1 to 11.0 % 
and ±8.1 to 18.34 %, respectively. By using the 
proposed technique, the error of the final property 
value can be improved preferentially and efficiently. 
(3) By using the proposed law of error propagation, 
the qualitative and quantitative effects of the level 
error of the control factors on the final property 
value can be understood in advance, which can be 
effectively used for the error management and error 
control of the final property value. 
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APPENDIX 

 
Table 1. Control factors and these levels 

Control factors 
Name A B C D 

Levels 
A1 B1 C1 D1 

A2 B2 C2 D2 

A3 B3 C3 D3 

 
Table 2.  Orthogonal array and final properties 

 Control factors 
Final properties P 

No. A B C D 
1 A1 B1 C1 D1 PA1∙B1∙C1∙D1 

2 A1 B2 C2 D2 PA1∙B2∙C2∙D2 

3 A1 B3 C3 D3 PA1∙B3∙C3∙D3 

4 A2 B1 C2 D3 PA2∙B1∙C2∙D3 

5 A2 B2 C3 D1 PA2∙B2∙C3∙D1 

6 A2 B3 C1 D2 PA2∙B3∙C1∙D2 

7 A3 B1 C3 D2 PA3∙B1∙C3∙D2 

8 A3 B2 C1 D3 PA3∙B2∙C1∙D3 

9 A3 B3 C2 D1 PA3∙B3∙C2∙D1 

 
Table 3. Control of all control factor errors for searching the optimum conditions with high accuracy using the 

Equation (6) with the law of propagation of error 
Relationship between each control factor level Ax , By, Cz, Dw and the final property PAx∙Bx∙Cz∙Dw :                                            

PAx∙Bx∙Cz∙Dw= f (Ax)+ g (By )+h(Cz )+ i (Dw ) － (4－1) Pave                  (3)                                                   
Relationship between each control factor’s level error δ Ax, δ By, δ Cz, δ Dw  and the final property error δ PAx∙Bx∙Cz∙:                                                                                                                                                                                                            

| δPAx∙Bx∙Cz∙Dw | ≦ | (∂ f (Ax) /∂Ax) δAx | + | (∂ g(By) /∂By) δBy | + | (∂ h(Cz) /∂Cz) δCz |+ | (∂ i(Dw) /∂Dw) δDw |   (6) 
Control 
factors 

Each 
levels 

Each control 
factor’s level 

error 

Influence and impact of each 
control factor’s level error for 

the final property error δ 
PAx∙Bx∙Cz∙Dw 

Control of all control factor errors for 
searching the optimum conditions with high 

accuracy 

A Ax δ Ax ∂ f (Ax) /∂Ax Influences and impacts of each control 
factor’s level error were referred. Then 
effectively control factor’s level errors for the 
small influences were improved. 

B By δ By ∂ g(By) /∂By 
C Cz δ Cz ∂ h(Cz) /∂Cz 
D Dw δ Dw ∂ i(Dw) /∂Dw) 

 
Table 4. Control factors and these levels 

Control factors 
Name A B C 

Level 1 40 8 5 
Level 2 50 12 5.5 
Level 3 60 16 6 

 
Table 5. Orthogonal table and final properties (P(7)ave=2807.5, P(8)ave=1615.214） 

L9 A B C P(7) P(8) 

1 40 8 5 1851 526 
2 40 12 5.5 1762 709 
3 40 16 6 1640 956 
4 50 8 5.5 2844 1091 
5 50 12 6 2754 1274 
6 50 16 5 2625 1512 
7 60 8 6 4036 2625 
8 60 12 5 3939 2799 
9 60 16 5.5 3818 3046 
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Table 6. Control factors with level errors. 
Control factors 

Name A B C 
Level 1 A1=40 B1=8 C1=5 

Level 2 A2=50 B2=12 C2=5.5 

Level 3 A3=60 B3=16 C3=6 

C
on

tro
l f

ac
to

r l
ev

el
 e

rr
or

 

 

+3% 
δA1=1.2 δB1=0.24 δC1=0.150 

δA2=1.5 δB2=0.36 δC2=0.165 

δA3=1.8 δB3=0.48 δC3=0.180 

+6% 
δA1=2.4 δB1=0.48 δC1=0.30 

δA2=3.0 δB2=0.72 δC2=0.33 

δA3=3.6 δB3=0.96 δC3=0.36 

+10% 
δA1=4.0 δB1=0.8 δC1=0.50 

δA2=5.0 δB2=1.2 δC2=0.55 

δA3=6.0 δB3=1.6 δC3=0.60 

 
 

Table 7. Orthogonal table using the control factor with level errors 

 
 

Table 8. The calculated the final property values P(7)’ using Table 6, Table 7 and Equation (7) .  The final 
property values P(7) is in Table 5. |P(7)－P(7)’| is the level error influence in the final property P(7)’. The 

final property error |δPAx∙Bx∙Cz(11)| is calculated using  Equation (11) by the proposed law of error 
propagation. The proposed law of error propagation is very useful for grasping of the level error 

influence in the final property values P(7)’; |P(7)－P(7)’| ≒|δPAx∙Bx∙Cz(11)| 
Lever 
error 

Equations (7) & (11) 
0 % 3 % 6 % 10 % 

L9 P(7) P(7)’ 
|P(7)－

P(7)’| 
|δPAx∙Bx∙C

z(11)| 
P(7)’ 

|P(7)－

P(7)’| 
|δPAx∙Bx∙C

z(11)| 
P(7)’ 

|P(7)－

P(7)’| 
|δPAx∙Bx∙C

z(11)| 
1 1851 19558 104 112 2063 212 224 2210 359 374 
2 1762 1861 99 117 1963 201 235 2102 341 391 
3 1640 1732 92 125 1827 187 249 1956 316 415 
4 2844 3005 161 169 3172 328 338 3400 557 563 
5 2754 2911 156 174 3072 318 348 3293 539 580 
6 2625 2774 149 181 2928 303 362 3139 514 604 
7 4036 4268 232 238 4506 470 475 4833 797 792 
8 3939 4165 226 243 4398 459 485 4718 779 809 
9 3818 4037 219 250 4262 444 500 4572 754 833 

 

 

 

L9 A B C 
1 A1+δA1 B1+δB1 C1+δC1 
2 A1+δA1 B2+δB2 C2+δC2 
3 A1+δA1 B3+δB3 C3+δC3 
4 A2+δA2 B1+δB1 C2+δC2 
5 A2+δA2 B2+δB2 C3+δC3 
6 A2+δA2 B3+δB3 C1+δC1 
7 A3+δA3 B1+δB1 C3+δC3 
8 A3+δA3 B2+δB2 C1+δC1 
9 A3+δA3 B3+δB3 C2+δC2 
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Lever 
error 

Equations (8) & (12) 
0 % 3 % 6 % 10 % 

L9 P(8) P(8)’ 
|P(8)－
P(8)’| 

|δPAx∙Bx∙

Cz(12)| 
P(8)’ 

|P(8)－
P(8)’| 

|δPAx∙Bx∙

Cz(12)| 
P(8)’ 

|P(8)－
P(8)’| 

|δPAx∙Bx∙

Cz(12)| 
1 526 577 52 54 634 109 112 721 195 199 
2 709 771 62 64 839 130 132 939 231 233 
3 956 1032 76 79 1115 159 161 1236 280 281 
4 1091 1246 154 165 1423 332 346 1703 612 634 
5 1274 1439 165 175 1627 353 367 1922 648 668 
6 1512 1691 179 189 1894 381 394 2209 696 714 
7 2625 3112 487 532 3694 1069 1128 4649 2024 2115 
8 2799 3296 498 542 3888 1090 1148 4858 2059 2148 
9 3046 3558 512 556 4165 1119 1176 5154 2109 2195 

 

Table 9. The calculated the final property P(8)’ using Table 6, Table 7 and Equation (8) .  The final 
property P(8) is in Table 5. |P(8)－P(8)’| is the level error influence in the final property P(8)’. The 
final property influence |δPAx∙Bx∙Cz(12)| is calculated using Equation (12) by the proposed law of 

error propagation. The proposed law of error propagation is very useful for grasping of the level 
error influence in the final property P(8)’; |P(8)－P(8)’| ≒|δPAx∙Bx∙Cz(12)|. 

 

Fig. 1: Relationship between the control factors A, B, C and the final property P using the 
experimental design 

          Structural equation (7) : PA∙B∙C = A2 + 9A－B2－3B +5C－46, and P(8)ave = 2808 

          Calculated equation (7)’ : PA∙B∙C = A2 + 9A－B2－3B +5C－46, and P(8)ave' = 2808 

 

EA= f (Ax)= A2 + 9A－210 
EB =g(By)=－B2－3B + 2998 

EC = h (Cz)= 5C + 2780  

(a) Control factor A                                     (b) Control factor B                                    (c) Control factor C 

 

EA=f (Ax)= 47.12e 
0.067A 

EB =g (By)= 2B2+5B+1245 

EC =h (Cz)= 6C+1582 

(a) Control factor A                                 (b) Control factor B                                          (c) Control factor C 

Fig. 2: Relationship between the control factors A, B, C and the final property P using the experimental 
design       Structural equation (8): PA∙B∙C = 6 e 0.1A + 2B2 + 5B + 6C , and P(8)ave=16158.214                                                             

Calculated equation (8)’: PA∙B∙C = 6.0001 e 0.1A + 2B2 + 5B + 6C－0.0001, and P(8)ave'= 16058.234 
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Fig. 4: The final property errors |δPAx∙Bx∙Cz(11)| and |δPAx∙Bx∙Cz(12)| were influenced by 3 paragraphs the right side of 
the Equations (11) and (12). The influences of 3 paragraphs were clearly shown in this figure. 
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|δPAx∙Bx∙Cz(12)| 

40                      50                    60     
Control factor level Ax                                  

8                       12                          16 
Control factor level Bx 

5                           5.5                       6  
Control factor level Cx 

Control factor C  

Error %＝Σ1~10 (ΣL1～L9│P(8)－P(8) ’│÷P ×100 )÷9 ) ÷10 Error %＝Σ1~10 (ΣL1～L9│P(7)－P(7) ’│÷P ×100 )÷9 ) ÷10 
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Control factor’s level error ±% 
(a) PA∙B∙C = A2 + 9A－B2－3B +5C－46                                  (b) PA∙B∙C = 6 e 0.1A + 2B2 + 5B + 6C   

Fig. 3: Relationship between the control factor’s level error and the final property error. When the control factor’s 
level error became gradually large, the final property error also became large. Therefore, the control of all 

control factor errors for searching the optimum conditions with high accuracy was required. 
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