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Abstract: - Extracting subgraphs from graph data is a challenging and important subgraph mining task since 
they reveal valuable insights in many domains. However, in the data sharing scenario, some of the subgraphs 
might be considered as sensitive by the data owner and require hiding before publishing the data. Therefore, 
subgraph hiding is applied to the data so that when subgraph mining algorithms, such as frequent subgraph 
mining, subgraph counting, or subgraph matching, are executed on this published data, sensitive subgraphs will 
not appear. While protecting the privacy of the sensitive subgraphs through hiding, the side effects should be 
kept at a minimum. In this paper, we address the problem of hiding sensitive subgraphs on graph data and 
propose an Edge deletion-based heuristic (EDH) algorithm. We evaluate our algorithm using three graph 
datasets and compare the results with the previous vertex masking heuristic algorithms in terms of execution 
time and side effects in the context of frequent subgraph hiding. The experimental results demonstrate that the 
EDH is competitive concerning execution time and outperforms the existing masking heuristic algorithms in 
terms of side effects by reducing information loss of non-sensitive patterns significantly and not creating fake 
patterns. 
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1  Introduction 
Graphs are effective tools for modeling complex 
structures in distinct domains, such as molecules in 
chemo informatics [1], protein networks in 
bioinformatics [2], [3], and social networks [4]. 
Subgraphs can be used in a variety of applications 
that are anomaly detection [5], cluster analysis [6], 
graph classification [7], [8], and community 
detection [9], [10]. 

Although subgraphs allow for identifying 
patterns and extracting useful insights, publishing 
graph data may raise privacy concerns. Privacy-
preserving publishing of graph data is mostly related 
to anonymization, and perturbation, generalization, 
and cryptographic-based anonymization techniques 
have been proposed [11], [12], [13], [14], [15]. All 
of these studies focus on data hiding. Few works 
concentrate on knowledge hiding [16]. The study 
[16] dealt with subgraph hiding and developed 
hiding techniques to protect the privacy of sensitive 
subgraph patterns in data-sharing scenario. 

The existing algorithms to hide sensitive 
subgraphs while publishing graph data mask the 
vertices of the graph using different heuristics, [16]. 
They follow the blocking-based approach that may 

bring out privacy breaches, [17]. The output graph 
data shows the touched vertices and produces fake 
subgraphs with masked vertex labels after the hiding 
process. Our motivation is (i) to develop an 
algorithm that can be used to hide sensitive 
subgraphs as a precaution to subgraph mining 
algorithms like frequent subgraph mining [18], 
subgraph counting [19], [20], and subgraph 
matching [21], [22], etc., (ii) to concentrate on the 
edges rather than the vertices of the graph because 
modifying an edge has less effect on the graph 
structure than affecting all the edges of a vertex, and 
(iii) to delete edges instead of updating the labels 
with a symbol, and (iv) not to create fake subgraphs 
on the shared data. With this motivation, the 
algorithm we designed and implemented differs 
from the existing subgraph hiding algorithms by 
dealing with the edges of the sensitive graphs rather 
than the vertices, performing deletions instead of 
masking, and not generating new fake patterns as a 
masking symbol is not used. 

Our study focuses on subgraph hiding on graph 
data to preserve the privacy of sensitive subgraphs. 
We offer a new Edge deletion-based heuristic 
(EDH) algorithm to hide sensitive subgraphs by 
decreasing their frequencies below a disclosure 
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threshold defined by the data owner. We conduct 
experiments to compare EDH with the available 
heuristic algorithms [16], and to be consistent, 
explanations and experiments are given in the 
frequent subgraph hiding context. We measure the 
execution times and side effects of the algorithms. 
The results point out that EDH achieves significant 
improvement on the side effects with quite less 
information loss and not causing fake patterns and 
results in similar execution times. 

The organization of the paper is as follows. 
Section 2 provides a background to help in 
understanding the key concepts, and explains the 
problem and measures. Section 3 describes the 
proposed EDH algorithm. Section 4 presents the 
performance evaluation of the EDH and existing 
algorithms on three datasets. Section 5 contains the 
related work, and Section 6 gives the conclusion and 
future work. 
 
 
2 Background 
This section provides the background information 
with the basic definitions of terms and concepts, 
states the subgraph hiding problem in the context of 
frequent subgraph hiding (FSH) and introduces the 
performance measures used in this context. 
 
2.1 Basic Definitions 
Graph concepts: A graph is composed of a 
nonempty vertex (or node) set V and an edge set E, 
in which the vertices are linked by the edges. When 
no direction is associated with the edges of a graph, 
the graph is called an undirected graph. Otherwise, 
it is a directed graph. 

In a labeled graph, labels are assigned to the 
vertices or edges from a set of symbols. An 
unlabeled graph has no such labeling. Figure 1a and 
Figure 1b display vertex and edge-labeled graph 
examples. 

 

 
Fig. 1: A subgraph isomorphism example 

Subgraph isomorphism: Let H and G be graphs. 
These graphs are isomorphic if there is a bijection f 
between the vertex sets of H and G (indicated as f: 
V(H) → V(G)) such that any two vertices (u and v) 
are adjacent in graph H if and only if f(u) and f(v) 
are adjacent in G. If the graphs have vertex and edge 
labels, the vertex labels of u and f(u), and the edge 
labels of (u,v) and (f(u),f(v)) must also be equal. The 
subgraph isomorphism problem determines whether 
a graph includes a subgraph that is isomorphic to a 
given graph. Figure 1 shows a subgraph 
isomorphism example. 

A subgraph is an induced subgraph if it has the 
correspondence of all the edges connecting the 
corresponding vertices in the graph. Figure 1 is not 
an example of induced subgraphs since the edge 
(2,4) in the graph is missing in the subgraph. 
Frequent subgraph: A graph dataset D is a 
collection of graphs (called graph transactions). The 
frequency (freq) of a subgraph is the number of 
graphs containing the subgraph, and the support of a 
subgraph is a ratio of freq to |D|, where |D| is the 
total number of graphs in the dataset. 

If the support (supp) of a subgraph H is greater 
than or equal to a specified threshold (σ, minimum 
support threshold), that is supp(H) ≥ σ, then it is a 
frequent subgraph. A frequent subgraph mining 
algorithm obtains the set of frequent subgraphs. 
Sensitive pattern: Let D be a transactional graph 
database. A set of sensitive patterns, indicated by 
SP, is defined by the data owner and should be 
hidden. In [16], SP ⊂ FP, where σ is the minimum 
support threshold, and FP is a set of all frequent 
subgraph patterns that can be mined from D based 
on σ.  
Disclosure threshold: A disclosure threshold, 
denoted by ψ, is a hiding threshold; and used to hide 
all the sensitive patterns in SP. A sensitive pattern P 
is hidden by decreasing its frequency below the 
given disclosure threshold, hence freq(P) < ψ. 
Sensitive graph: Let G be a graph in a transactional 
graph database D, and SP be a set of sensitive 
patterns. If there exists a sensitive pattern P ∈ SP 
and P is a subgraph of G, then G is called a sensitive 
graph. That is, if a graph in D supports a sensitive 
pattern in SP, then it is a sensitive graph. 
 
2.2  Frequent Subgraph Hiding 
The frequent subgraph hiding (FSH) problem 
transforms a graph database D into a sanitized graph 
database D′ such that no sensitive pattern is 
disclosed when a frequent subgraph mining 
algorithm is applied to the D′, and it has as little 
impact as possible on the original data and non-
sensitive patterns.  
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The FSH process is illustrated in Figure 2. It 
takes a graph database D, a sensitive pattern set SP, 
and a disclosure threshold ψ as the inputs, and 
produces the sanitized database D′ as the output. 
Now, D′ is ready to be shared since if a subgraph 
mining algorithm is applied, only non-sensitive 
patterns can be extracted. 

There are two subproblems to solve the FSH 
problem. The first subproblem is to find the 
sensitive graphs for sanitization in the database for 
each sensitive pattern. The second one is the 
sanitization of an identified sensitive graph so that 
the graph no longer supports the sensitive pattern. 

The vertex masking-based heuristic algorithms 
for the FSH problem are proposed by following the 
blocking-based approach, [16]. The study selects the 
sensitive graphs with fewer matches to sanitize and 
introduces three heuristics for the sanitization of a 
sensitive graph. The heuristics are Heuristic 1, 
Heuristic 2, and Heuristic 3. 
 Heuristic 1: It finds the distinct vertex labels in 

the pattern, and for each label, counts the number 
of vertices in the graph. It masks all the vertices 
having the label with the least occurrence in the 
graph. 

 Heuristic 2: The most frequent graph vertex in all 
the matches of the sensitive pattern is detected. 
The label of this vertex is masked in the graph, 
and the matches containing the vertex are deleted 
from the match set. It repeats until the match set 
is empty. 

 Heuristic 3: The frequency of every distinct 
graph vertex in all the matches of the sensitive 
pattern is calculated. The frequencies are sorted 
in decreasing order. The first i vertices are 
chosen for masking such that the sum of 
frequencies of these i vertices is not less than the 
match set size. But, these vertices may be within 

the same matches, and the procedure, including 
the subgraph matching, is repeated until the 
match set is empty. It requires running a 
subgraph-matching algorithm multiple times. 

Figure 3 gives an illustrating example of sanitization 
of a sensitive graph with Heuristic 2. Suppose the 
subgraph in Figure 1b is the sensitive pattern and 
the sensitive graph in Figure 3a is given. There are 3 
matches of the pattern in this graph, that are {2:0, 

0:1, 3:2}, {2:0, 1:1, 3:2} and {5:0, 0:1, 4:2}. The 
idea of Heuristic 2 is to choose the most frequent 
vertex in the matches. If there is more than one such 
vertex, it selects randomly. One of the most frequent 
vertices of the graph in the matches is vertex 2 
which is included in 2 matches. Heuristic 2 first 
masks it on the graph. Then, 1 match is left and 
Heuristic 2 masks the vertex 5. The graph sanitized 
with Heuristic 2 can be seen in Figure 3b. This 
hiding may produce artifact patterns with the 
missing vertex label as shown in Figure 3c and 
Figure 3d.  
 
2.3 Performance Measures 
To evaluate the performance of an FSH algorithm, 
the following measures are used, which are adapted 
from [23]. 
Hiding Failure (HF). The ratio of sensitive patterns 
that are discovered after sanitization. It is computed 
as; HF = |SP′|/|SP|, where |SP′| and |SP| are the 
number of sensitive patterns that are discovered 
from the sanitized database D′ and the original 
database D, respectively.  
 

 

 

 

 

 

Fig. 2: Frequent subgraph hiding process 
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Artifact patterns (AP). The number of the 
discovered patterns that are artifacts and have 
missing vertex labels due to masking with a symbol. 
It is calculated as; AP = |FP′|−|FP∩FP′|, where  
|FP′| and |FP| are the number of frequent patterns 
that are discovered from the sanitized database D′ 
and the original database D, respectively. 
Information Loss (IL). The ratio of non-sensitive 
patterns that are hidden accidentally during 
sanitization. It is computed as; IL = ((|FP| − |SP|) − 

(|FP∩FP′|−|SP′|))/ (|FP|−|SP|), where it excludes 
frequent patterns containing the masking symbol 
with the |FP∩FP′| to find how many of the frequent 
patterns in the original database are present in the 
sanitized database. The equation is obtained 
according to the side effects calculation in [24]. The 
loss of a frequent pattern that includes a sensitive 
pattern is not considered since it will be inevitably 
hidden when the sensitive one is hidden, [24]. 
Distance (Dist). The total number of vertices and 
edges that are changed (masked or deleted) during 
the sanitization, and calculated as; Dist = |V | − |𝑉𝑈

′ | 

+ |E| − |𝐸𝑈
′ |, where 𝑉𝑈′  is the set of the vertices 

unchanged in the sanitized database, and 𝐸𝑈′  is the 
set of the edges unchanged in the sanitized database. 
It is defined to compare the distance of subgraph 
hiding algorithms based on distinct approaches 
using graph concepts.  
 
 
3 Edge Deletion-Based Heuristic 

 (EDH) Algorithm 
A frequent subgraph-hiding algorithm hides a set of 
sensitive patterns by reducing the frequency of 
every sensitive subgraph pattern below a predefined 
disclosure threshold. The frequency of a sensitive 

pattern decreases one if all of its matches are 
removed from a sensitive graph in the database. 
Following this idea, the Edge deletion-based 
heuristic (EDH) algorithm selects the most frequent 
edge in all the matches of the sensitive subgraph 
pattern in the input graph. Removing the most 
frequent common edge in the matches of the 
sensitive pattern from the graph will handle most of 
the matches of the sensitive pattern at the same time. 
With single and most effective removal of common 
victim edge will have little impact on the input 
graph. In other words, while hiding the sensitive 
patterns, the non-sensitive patterns can be preserved 
in the database to the maximum possible extent with 
the removal of a minimum number of edges.  

EDH is primarily composed of five major steps 
as follows: 

Step1: Compute the relevance of the data graphs 
and the relevance of the sensitive patterns. To find 
the relevance of each data graph to the sensitive 
pattern set, the number of matches of all the 
sensitive patterns in each data graph is calculated. 
Likewise, the relevance of each sensitive pattern to 
the graph dataset is found. Thus, for each sensitive 
pattern, the number of matches of the pattern in all 
the graphs is calculated.  

Step2: Sort the data graphs. The data graphs are 
sorted in increasing order of their relevance 
numbers computed in Step 1.  

Step3: Sort the sensitive patterns. The sensitive 
patterns are sorted in increasing order of their 
relevance numbers computed in Step 1.  

Step4: Compute the number of sensitive graphs 
to be sanitized. According to the given disclosure 
threshold ψ, the number of graphs that need to be 
sanitized to hide each sensitive pattern P is 
computed by freq(P)−ψ+1.  

Fig. 3: An illustrating example of sanitization; (a) a sensitive graph with the matches of the sensitive pattern in 
Figure 1b, (b) the graph after masking based sanitizing with Heuristic 2, and Figure (c)-(d) possible artifact 

patterns 
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The disclosure threshold here is a direct measure, 
not a percent to balance between the disclosure and 
privacy which means no sensitive pattern is 
disclosed.  

Step5: Sanitize a sensitive graph. This step takes 
a sensitive graph and a sensitive pattern as inputs 
and performs sanitization on the graph by removing 
all the matches of the pattern. The edge distortion-
based approach that we propose relies on edge 
deletions from the graph. 

Our edge deletion-based subgraph hiding 
algorithm EDH is illustrated in Algorithm 1. In step 
1, the relevance of the data graphs and the relevance 
of the sensitive patterns are calculated, which can be 
seen in lines 1 to 9. The matchNum is the number of 
matches of a sensitive pattern in a graph of the 
database. For each pattern, the matchNum value is 
summed through all the graphs in the dataset, and 
assigned to P.macthes. Also, for each data graph, 
the G.matches are accumulated across all the 
sensitive patterns. In step 2, the data graphs are 
sorted in increasing order of G.macthes (line 10). In 
step 3, the sensitive patterns are sorted in increasing 
order of P.macthes (line 11). Then, for each 

sensitive pattern P∈SP, in Step 4, 
NumGraphsToSanitize is found at line 13 as the 
number of graphs to be sanitized. 
NumGraphsToSanitize sensitive graphs are sanitized 
for each pattern by removing all of its matches. For 
this, in Step 5, local sanitization of a sensitive graph 
is performed in lines 16-30: 
1. All the matches of the sensitive pattern in the 

graph (M) are found. A match in M consists of 
the pairs of graph vertex id and its corresponding 
pattern vertex id. The keys of each match are 
replaced with their values, and M is sorted by the 
values. 

2. In lines 20-26, all the graph edges in M are 
determined. 

3. The most frequent edge of the graph in M is 
determined. If there is more than one edge 
having the same frequency, the first one in the 
list E is selected. 

4. The edge is deleted from the graph. 
5. The matches containing the edge are removed 

from M, and it is iterated from 2 until no match is 
left. 
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Let us give an illustrating example of sanitizing 
the sensitive graph in Figure 3a by using our edge 
distortion-based approach. All the matches of the 
sensitive pattern in Figure 1b are removed, as 
described in Step 5. First, EDH finds the three 
matches of the pattern in the graph. All the edges of 
the graph in these matches are detected. EDH finds 
(2, 3) as the most frequent edge of the graph in the 
matches, and deletes it. The matches including the 
edge (2, 3) are removed from the match set. Then, 
EDH finds (0, 5) as one of the most frequent ones in 
the remaining one match, and deletes it. The graph 
sanitized with an edge distortion-based approach 
can be seen in Figure 4. This distortion approach 
does not generate new artifact patterns. 

 
Fig. 4: The graph after sanitizing with the edge 
distortion based approach 
 
 

Fig. 5: Sensitive patterns chosen from Chemical, Movielens and NCI109 datasets (from top to 
bottom) 
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4  Performance Evaluation 
We compare our edge deletion-based algorithm 
EDH with three heuristics of the vertex-masking 
algorithm [16], which are described in section 2.2. 
We name Heuristic 1, Heuristic 2 and Heuristic 3 as 
VMask1, VMask2 and VMask3, respectively. We 
implement the algorithms in Python. All the 
experiments are performed on a PC with an Intel 
Core i7 8750 2.2 GHz CPU and 16GB RAM, 
running Windows 10. 
 
4.1 Datasets 
We carry out our experiments on three real datasets 
that are Chemical [25], Movielens [26] and NCI109 
[27].  

The characteristics of the datasets used in this 
study can be seen in Table 1 where Chem, Movie, 
and NCI represent Chemical, Movielens, and 
NCI109, respectively. 

In Chemical dataset, a graph corresponds to a 
chemical compound. Vertices represent atoms and 
edges represent bonds between atoms. A vertex 
label represents the atom type, and an edge label 
represents the bond type. It is a sparse dataset. 
Movielens dataset includes the movie tags assigned 
by users and times when the tags were assigned. It is 
a single graph with 47,957 tag assignments between 
two specific dates. From the single graph, a graph is 
created for each day, where a vertex is a tagged 
movie on the day and an edge is placed if two 
movies have the same tag. A vertex label 
corresponds to the movie id, and the edges do not 
have labels, that is only ‘0’ is used as the label and 
the number is specified as 1 in the table. After 
deleting graphs with no edges, the dataset contains 
802 graphs in total. NCI109 is a commonly used 
cancer screen dataset. 
 

4.2 Experimental Results 
In the study [16], three measures (execution time, 
number of masking symbols, and ratio of preserved 
frequent patterns) were used. To evaluate the 
performance of blocking and distortion-based FSH 
algorithms, we use the measures explained in 
Section 2.3. In addition, the execution times of the 
algorithms are tested. The recorded execution times 
are CPU times. Since all the algorithms hide all the 
sensitive patterns, hiding failure is 0% for all of 
them. That is why, the algorithms are compared in 
terms of (i) execution time, (ii) information loss, 
(iii) artifact patterns, and (iv) distance. 

We run the gspan [28] algorithm to find the 
frequent patterns from the three datasets. Five 
sensitive subgraph patterns are selected randomly 
for each dataset. Figure 5 shows the selected 
sensitive patterns from Chemical, Movielens, and 
NCI109 datasets (from top to bottom). The 
frequency of each sensitive pattern is written below 
it. In VMask2, VMask3, and EDH, to obtain the 
matchings of a subgraph in a graph, VF2 [29] 
algorithm is used. The experiments are done to see 
how the varying disclosure thresholds affect the 
performance of the algorithms for the datasets. 

 
Table 1. Characteristics of the datasets 

 Chem Movie NCI 
# of graphs 340   802 4127 
# of vertices 9189   29001 122494 
# of edges 9317   202263 132603 
Avg # of vertices 27  36.2 29.7 
Avg # of edges 27.4  252.2 32.1 
# of dist. vertex labels 66 5800 38 
# of dist. edge labels 4 1 3 
 
 
 
 

 

Fig. 6: Execution time (ms) vs disclosure threshold 
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Every result is obtained by an average of five 
executions. Support and disclosure thresholds are 
kept the same while measuring the information loss 
and artifact patterns. The experiments of Movielens 
are done for the disclosure thresholds between 7 and 
12 because frequent patterns within the dataset 
cannot be found for threshold 6 in our computer, 
and the frequency of the pattern with the least 
frequency is 12. 

Figure 6 demonstrates the execution times (in 
ms) of VMask1, VMask2, VMask3, and EDH 
algorithms on Chemical, Movielens, and NCI109 
datasets for different threshold values. It can be seen 
that VMask1 has the best execution time since it 
does not consider the matchings of a sensitive 
pattern in a sensitive graph so it does not execute a 
subgraph-matching algorithm. VMask3 has the 
worst execution time since it may need to run a 
subgraph-matching algorithm multiple times. 
VMask2 and EDH show similar execution time 

results. We also see that the execution times of the 
algorithms decrease while the disclosure threshold 
increases because sanitization is applied to less 
number of graphs. Additionally, the difference 
between the results is more on the Chemical and 
NCI109 datasets than that on the Movielens dataset 
because a vertex in a graph in that dataset is a 
movie, and each movie ID (vertex label) can be 
included at most once in each graph, resulting in at 
most one match for a sensitive pattern. Moreover, 
the Movielens dataset has very low support values 
for patterns. 

The information loss measure quantifies the ratio 
of non-sensitive frequent patterns hidden 
unintentionally during sanitization. Figure 7 
illustrates the information loss (%) of the algorithms 
on Chemical, Movielens, and NCI109 datasets for 
different threshold values.  

 
 

Fig. 7: Information loss (%) vs disclosure threshold 

Fig. 8: Artifact patterns vs disclosure threshold 
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According to the figures, the EDH outperforms 
the other algorithms on all the datasets since it takes 
into account deleting edges rather than masking the 
labels of the vertices. If a vertex is masked, the 
edges associated with that vertex are also affected 
since non-sensitive frequent patterns in the original 
data containing that vertex cannot be extracted so its 
edges will be indirectly impacted as well. However, 
when EDH removes an edge, most of the non-
sensitive patterns can be discovered with the other 
edges. That is why, it shows the best performance 
with regard to the preservation of the non-sensitive 
patterns. The ratio changes almost from 1.5 to 2.5 
for VMask2 and VMask3, and from 2 to 4 for 
VMask1 on the Chemical dataset. The ratio is 
approximately 2 for the disclosure thresholds 
between 7 and 9 and decreases as the disclosure 
threshold gets closer to 12 on the Movielens dataset. 
Next, the ratio is roughly 3 for VMask2 and 
VMask3 and increases to almost 4 for VMask1 on 
the NCI109 dataset. Moreover, as shown in the 
figures, when the other heuristics are compared, 
VMask2 and VMask3 have similar information loss, 
and VMask1 has the worst result. 

Blocking the labels of the vertices in the 
sensitive graphs with a symbol that is not included 
in the vertex and edge labels results in many 
vertices having this symbol, and frequent patterns 
containing this symbol appear after sanitization. 
Figure 8 depicts these artifact patterns of the 
algorithms for different disclosure thresholds on the 
datasets. It can be viewed from the figures that EDH 
does not produce artifact patterns, whereas the 
masking-based heuristics cause them since EDH 
hides sensitive subgraphs by deleting the chosen 
edges so it does not use a masking symbol. 
Therefore, no new patterns appear after the hiding 
operation. For the other algorithms, the number of 

artifact patterns decreases as the disclosure 
threshold increases because a smaller number of 
masking symbols is inserted due to sanitizing less 
number of graphs. 

The distance between the original database and 
the sanitized database should be minimal and they 
should be similar. The distance is found by counting 
the total number of altered vertices and edges. That 
is, in blocking-based approaches, it is the total 
number of masked vertices, and in our approach, it 
is the total number of deleted edges. Figure 9 
presents the distance of VMask1, VMask2, 
VMask3, and EDH for the datasets, which are less 
in the higher disclosure thresholds because of 
sanitizing fewer graphs. Although the values are 
close to each other, deleting/masking an edge affects 
the graph structure to a smaller extent than that of a 
vertex. Additionally, the values for the Movielens 
dataset are the same for all the algorithms. 
 
 
5  Related work 
This section examines the related work. The focus 
of the study in our paper is somewhat related to (i) 
anonymization on graphs, (ii) community hiding, 
and (iii) frequent pattern hiding. 

Social networks have attracted a great number of 
users with advanced features. The privacy of the 
users of social network data is an important concern. 
The threats for the users are classified into three 
categories [30]: (1) identity disclosure, (2) link 
disclosure, and (3) attribute disclosure. To protect 
the users’ information, anonymization is done 
before publishing the data. Only changing the users’ 
identifiable information like name, email address or 
phone numbers with random information does not 
guarantee privacy, which is known as naive 

Fig. 9: Distance vs disclosure threshold 
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anonymization, since an adversary can utilize 
structural information of the graph for re-identifying 
the users from the anonymized graph [31]. An 
adversary can use background knowledge about the 
users to perform an attack on the released graph, 
such as structural information (degree, 
neighborhood), external auxiliary information, 
subgraphs, etc. [32]. 

Anonymization on social network data problem 
can be defined as: Given a social network graph and 
adversary background knowledge, create an 
anonymized form of the graph, which allows the 
data analysis while preserving the privacy of the 
users. There are various privacy-preserving 
techniques for graph anonymization. They can be 
primarily classified into four approaches: (i) 
clustering (generalization) based approaches [33], 
[34], (ii) differential privacy-based approaches [35], 
(iii) randomization (random graph editing) 
approaches [36], [37], and (iv) constrained 
approaches [38], [39], [40], [41]. Further, the last 
class, called k-anonymity, can also be categorized as 
degree, neighborhood, and subgraph anonymization. 

Community detection helps us understand the 
network structure and discover meaningful 
communities. But, it raises privacy issues such as 
revealing of sensitive community information, such 
as undercover police community. Hence, hiding a 
target community in other communities of a 
network to avoid it from being extracted by a 
community detection algorithm is critical, [42]. 
According to [43], the indicators of good hiding of a 
target community C are: (1) reachability, the 
members of C are still in the same connected 
component, (2) spreading, the members of C spread 
into as many communities as possible, and (3) 
hiding the members of C in the largest communities. 

The study [44], offers a heuristic algorithm DICE 
(randomly disconnecting d links internally and 
connecting b − d links externally with a budget b) 
and uses a measure of concealment to understand 
how well a community is concealed. [43], 
introduces community safety to determine the least 
safe members and update their links. This approach 
does not need global knowledge of communities. 
They propose a greedy algorithm based on 
community safety that enables hiding by rewiring 
links with a budget. [42], devises a new safeness 
function, and their algorithm Hs hides a target 
community through a certain number of link 
perturbations. It deletes intra-C links (links within 
the community) and adds inter-C links (links 
between communities). To choose the most proper 
links, the safeness gain function is employed. 
Besides, methods based on graph neural networks 

have been proposed. [45], generates adversarial 
graphs by attacking the deep graph-based model in 
order to hide targeted individuals in a community. A 
graph auto-encoder is proposed to hide the global 
community structure in [46]. Further, hiding against 
overlapping community detection is considered and 
an algorithm to hide a node in an overlapping area is 
developed in [47]. 

Before moving to subgraph hiding, we 
investigate the studies on association rule hiding and 
frequent itemset hiding to comprehend also the 
tabular data solutions. The approaches can be 
divided into five classes: (1) Border-based 
Approaches, [48], [49], [50], [51] focus on 
modifying the borders in the lattice of frequent and 
non-frequent itemsets of the dataset. (2) Exact 
Approaches, [52], [53], [54] express the hiding 
problem as a constraint satisfaction problem that is 
solved by integer programming. In spite of ensuring 
optimal solutions, if exist, they need high 
computations. (3) Reconstruction Based Approaches 
[55], [56] re-generate the sanitized database from 
the non-sensitive frequent itemsets. (4) Evolutionary 
Approaches [57], [58], [59] have been proposed for 
sensitive pattern-hiding problems using genetic 
algorithms, particle swarm optimization-based, and 
ant colony system-based algorithms. (5) Heuristic 
Approaches contain the fast and efficient 
algorithms. They have two particular subgoals 
during the hiding process that are hiding as many 
sensitive rules as possible, and minimizing the side 
effects, but they do not ensure optimality. Two types 
of heuristic approaches are distortion-based [23], 
[60], [61], [62], [63], [64] and blocking-based 
approaches [65], [66]. Blocking-based approaches 
replace the real values (0 or 1) of items with the 
unknowns (i.e., question marks) in the chosen 
transactions, but they do not insert false information 
into the database. Distortion-based approaches place 
0s to 1s or vice versa in the chosen transactions. 

When we turn our attention to subgraph hiding, 
the problem is introduced in [16]. The authors 
develop blocking based heuristic algorithms that 
mask the vertices of the selected graphs to hide 
sensitive subgraphs. These algorithms can hide all 
the sensitive subgraphs, but they produce fake 
subgraphs, they affect all the edges of masked 
vertices, and they might cause privacy breaches. 
 
 
6  Conclusion 
The privacy of sensitive subgraphs is an important 
issue when the data is published. Thus, they need to 
be hidden before releasing the data. The most 
related study is based on the blocking approach that 
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may cause side effects and privacy breaches. In this 
study, we offer an edge deletion-based subgraph 
hiding algorithm called EDH. Then, we compare 
our algorithm with the blocking-based algorithms on 
three real datasets for varying disclosure thresholds. 
The measures used for comparison are execution 
time, information loss, artifact patterns, and 
distance. According to the experimental results, 
while giving similar execution results, the EDH 
algorithm achieves fewer side effects. 

In the future work, we plan to extend the EDH 
for hiding multiple sensitive subgraphs by deleting 
overlapping edges of sensitive subgraphs in order to 
minimize side effects. Another axis of future work 
can be to demonstrate the impact of subgraph hiding 
in a specific problem like a community detection 
attack. 
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