
Estimation of states under Colored Measurement Noise (CMN) using
UFIR and Kalman Filters modified

Abstract: The estimate process of a moving target trajectory is a well-known problem, where the main objective
is to improve the estimation of object position. During the tracking are presented errors or variations between the
true position and the estimated. In this paper, we treat such variations as a Gauss-Markov colored measurement
noise (CMN). The estimation process is performed in predict and update, where the prediction indicates the next
position of the bounding box, and the update is a correction step, which includes the new measurement of the
tracking model and helps to improve the estimation. Looking for this improvement we use Kalman and Unbiased
Finite Impulse Response filters in the standard version and modified for CMN to demonstrate the filter with the
best performance. To test the most robust filter we use a high coloredness factor. The tests were carried out with
simulated data (ideal and no ideal conditions) and with benchmark data (no ideal conditions). The UFIR modified
for the CMN algorithm showed favorable results with high precision and low RMSE in the object tracking process
with benchmark data and under no ideal conditions. While KF CMN showed better results under ideal conditions.
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1 Introduction
The object tracking process is a widely researched
topic and has a wide range of applications in the fields
of visual navigation, robotics, intelligent transporta-
tion, and security, among others [1, 2]. There are dif-
ferent research approaches, however, it continues to
present challenges in their treatment, there is no single
approach capable of overcoming all the impact factors
that affect the tracking algorithm’s performance.

Object tracking can be defined as the problem
of estimating the trajectory of an object as it moves
around a scene [3, 4]. This process is usually ac-
companied by variations in position, that is, the tar-
get is not tracked exactly. There are variations in the
estimate, that is, there is a discrepancy between the
real position and the estimated position. These varia-
tions can be considered as colored measurement noise
(CMN) that is not white [5].

The variations in object tracking can be more
clearly identified, during the tracking process, if we
use a bounding box to contain the information of the
object to be tracked. The bounding boxes generated
by the tracking algorithm do not always detect the tar-
get object, theymay detect another object in the scene,
or they do not detect the exact shape of the target.
This may be due to various factors affecting the track-
ing process, such as camera movement, occlusion, or
blurred scene, among others. In this sense, a method

that has proven to be effective in avoiding large errors
in the tracking process is the use of a motion model
and state estimators. [5–9]. If the state-space model is
correct, it can very accurately represent the trajectory
of the tracked object. However, the performance of
the tracking algorithm will still depend on measure-
ment and process noise.

For these reasons, in this paper, we use Kalman
(KF) and Unbiased Finite Impulse Response (UFIR)
in their versions standard and modified to minimize
the error in the estimation, seeking to stabilize the tra-
jectory and size of the bounding box to obtain an algo-
rithm that produces greater precision in tracking tasks.
The process of state estimations were performed in
two phases of recursions and iterations: ”predict” and
”update”. Using root mean square errors and the pre-
cision to measure the performance of the algorithms.

2 Object processing
In order to carry out the object-tracking process, it is
necessary to identify the object to track. The image
processing operations look for the best recognition of
the objects tracked. Therefore, it is necessary to iden-
tify the appropriate characteristics to differentiate the
target from other objects and the background scene.
The content of an object can be described through its
properties. There are different ways to locate a tar-
get, for example, its contour or finding the pixels of
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the object, one of the most used shape parameters in
object tracking is the bounding box, [10].

2.1 Bounding box
The bounding box (BB) is a rectangular box that en-
closes all the objects in a scene and can be used to
represent an object during tracking. Using the BB as
a shape parameter in the tracking process, the infor-
mation about the position of the objects is contained
in an array of bounding boxes. The BB matrix con-
sists of 4 columns and n rows, the number of rows
corresponds to the total number of detections, while
the columns represent the dimensions of the bounding
boxes: coordinate ”x”, coordinate ”y”, width (xw),
height (yw) [11].

The information about the ”x”, ”y” coordinates,
the height and the width of the BB, is used to estimate
the position of the object during the tracking process.
However, there may be errors in the position estima-
tion. In this sense, the use of a filtering method is
an effective method, its aim is to mitigate the noise
present in tracking process. A filtering method is
used to predict the coordinates of BB. The estima-
tion method consists of 2 steps: prediction and cor-
rection. The prediction indicates the next position of
the bounding box based on its previous position. The
update is a correction step, which includes the new
measurement of the tracking model and helps to im-
prove the estimate of the filtering [12, 13].

3 State-space model of tracking
object

We consider a moving object with observation cor-
rupted by CMN can be represented in discrete-time
state-space with the following state and observation
equations:

xn = Anxn−1 +Bnwn , (1)
vn = Ψnvn−1 + ξn , (2)
yn = Cnxn + vn , (3)

where xn ∈ RK is the state vector, yn ∈ RM is the
observation vector, vn ∈ RM is the colored Gauss-
Markov noise, and An ∈ RK×K is the state transi-
tion matrix, Bn ∈ RK×P is the gain matrix model,
Cn ∈ RM×K is the measurement matrix. Measure-
ment noise transfer matrix Ψn is chosen such that the
colored noise vn remains stationary. The zero mean
Gaussian noise vectors wn ∼ N (0, Qn) ∈ RP and
ξn ∼ N (0, Rn) ∈ RM have the covariances Qn and
Rn and the property E{wnξ

T
k } = 0 for all n and k.

We will consider the following estimates: the prior
estimate x̂−n ≜ x̂n|n−1, posterior estimate x̂n ≜ x̂n|n,
prior estimation error ϵ−n = xn − x̂−n , the posterior

estimation error ϵn = xn− x̂n, the prior error covari-
ance P−

n ≜ Pn|n−1 = E{ϵ−n ϵ−T
n }, and the posterior

error covariance Pn ≜ Pn|n = E{ϵnϵnT }.
The matrices for the model were built considering

a constant velocity model [14]. For the moving object
state space model, the state transition A is a block di-
agonal matrix with: [

1 τ
0 1

]
, (4)

where τ is the sample time. This block is repeated for
the 4 coordinates of the bounding box.

The matrix B is given by equation (5), this set of
3 by 1 is repeated for each coordinate of bounding
box corners. Finally, it will obtain a matrix with di-
mensions 12 by 4 , in which the equation (5) forms a
diagonal.

B =

[
τ2

2
τ

]
, (5)

The observation matrix (C) is defined as shown be-
low:

C =

 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0

 . (6)

3.1 Avoid the CMN
To avoid the CMN vn in yn is necessary the model
modification using measurement differencing. For
which, it is considered a new observation zn as a mea-
surement difference.

zn = yn −Ψnyn−1 ,

= Cnxn + vn −ΨnHn−1xn−1 −Ψnvn−1 ,(7)

and transform (7) to

zn = Dnxn + v̄n , (8)

where Dn = Hn − Γn, Γn = ΨnHn−1F
−1
n , v̄n =

ΓnBnwn + ξn, noise v̄n is now white with the prop-
erties

R̄n = E{v̄nv̄Tn } = ΓnΦn +Rn , (9)
E{v̄nwT

n } = ΓnBnQn , (10)

where Φn = BnQnB
T
nΓ

T
n , and model (1) and (2) has

thus two white and time-correlated noise sources wn

and v̄n.

4 Kalman Filter modified for CMN
In estimating the system state through the coordinates
of the BB, we can use the Kalman filter(KF). Within
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which the state is assumed to be distributed by white
Gaussian noise with mean zero. The estimate pro-
cess consists of two steps, prediction, and update. In
this case, the KF is recursive [15], which means that
the previously estimated state must be combined with
new observation to calculate the best estimate of the
current state. One of the important aspects to con-
sider when using the KF algorithm is that it requires
knowledge of the system parameters, initial values,
and measurement noise.

The KF can estimate the state dynamics of the sys-
tem iteratively [16]. Assuming that the process noise
wn is white Gaussian with zero mean, the prior state
estimate is computed by (11).

x̂−n = Ax̂n−1 +Bnwn (11)

Next, in the update step, the current prior predictions
are combined with the current state observation to re-
define the state estimate and the error covariance ma-
trix. To obtain the optimal state estimate is combined
the prediction with the current observation, and now
it is called the posterior state estimate. The measure-
ment zn is corrupted by a factor of colored measure-
ment noise Ψn(12).

zn = yn −Ψnyn−1 (12)

The residual covariance matrix is obtained as follow:

Sn = CnP
−
n C

T
n +Rn (13)

The measurement residual is

sn = zn −Dnx̂
−
n

= DnAnϵn−1 +DnBnwn + v̄n , (14)

the innovation covariance Sn is given by

Sn = E{snsTn}
= DnP

−
n D

T
n +Rn + CnΦn +ΦT

nD
T
n ,(15)

and the estimation of KF for CMN is

x̂n = x̂−n +Knsn
= Anx̂n−1 +Kn(zn −DnAnx̂n−1) , (16)

where Kn is the bias correction gain that should be
optimized for correlated wn and v̄n. the estimation
error ϵn can be written as

ϵn = xn − x̂n
= (I −KnDn)Anϵn−1

+(I −KnDn)Bnwn −Knv̄n (17)

and the error covariance Pn = E{ϵnϵTn} transformed
to

Pn = P−
n − (P−

n D
T
n +Φn)K

T
n −Kn(P

−
n D

T
n +Φn)

T

+KnSnK
T
n , (18)

where P−
n is given by (18) and Sn by (14). The opti-

mal gainKn is given by

Kn = (P−
n D

T
n +Φn)S

−1
n (19)

and (18) becomes

Pn = P−
n −Kn(DnP

−
n +ΦT

n ) . (20)
A pseudo-code of the KF algorithm for CMNwith

correlatedwn and v̄n is listed as Algorithm 1. It can be
observed, if the valueΨn = 0, the algorithm becomes
the standard Kalman filter algorithm.

Algorithm 1: KF for CMN and Correlated
wn and v̄n
Data: yn, x̂0, P0, Qn, Rn

Result: x̂n, Pn

1 begin
2 for n = 1, 2, · · · do
3 Dn = Hn −ΨnCn−1A

−1
n

4 zn = yn −Ψnyn−1

5 P−
n = AnPn−1A

T
n +BnQnB

T
n

6 Sn = DnP
−
n D

T
n+Rn+CnΦn+ΦT

nD
T
n

7 Kn = (P−
n D

T
n +Φn)S

−1
n

8 x̂−n = Anx̂n−1

9 x̂n = x̂−n +Kn(zn −Dnx̂
−
n )

10 Pn = (I −KnDn)P
−
n −KnΦ

T
n

11 end for
12 end

5 Unbiased Finite Impulse Response
Filter modified for CMN

In the same way as the KF, the UFIR filter can also
be generalized to colored measurement noise, consid-
ering that the unbiased average ignores zero average
noise. Next, we work with a modification to the UFIR
filter for CMN.

As already mentioned, the KF requires noise in-
formation. In the case of the UFIR filter, this require-
ment is not necessary, except for the assumption of a
zero mean [2, 4, 9, 17, 18]. For this reason, it is con-
sidered to be more suitable for use in object track-
ing as databases with incomplete information or in
time tracking, in which information about measure-
ment and process noises is not always known exactly.
In the UFIR filter, wk, and v̂n can be ignored and
therefore the UFIR is unique for correlated and no-
correlatedwk, and v̂n. So its equation of state is given
by xn = Fnxn−1.

The state estimation is done in two steps. In the
prediction step, only the state (5) is calculated a pri-
ori, because the UFIR filter does not require know-
ing the statistical noise information. However, UFIR
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requires an optimal averaging horizon [m, n] to min-
imize the mean square error (MSE), that is, it oper-
ates simultaneously with N measurements on a hori-
zon [m, k] ofm = k−N +1. The UFIR filter cannot
ignore the CMN vn, which violates the zero-mean as-
sumption at short horizons [19, 20].

Since we use an iterative algorithm using recur-
sion, in the update step, the state estimate is combined
with the actual observation state to refine the state.
The estimate is iteratively updated in a posteriori state
using: Matrix G, measurement residuals, and the bias
correction Gain.

A Matrix G or better known as generalized noise
power gain (GNPG) (21), the measurement residual,
and the bias correction gain.

Gl = [DT
l Dl + (FnGl−1F

T
l )−1]−1 (21)

The measurement residual zl is given by:

zl = yl −Ψlyl−1 (22)

In the UFIR filter, the estimation errors are taken into
acount only on the horizon [m, k] and it is computed
in term of GNPG. The bias correction gain can be ex-
pressed as:

Kl = GlD
T
l (23)

Then, it is computed the a posteriori state estimate as
follow:

x̄l = x̄−l +Kl(zl −Dlx̄
−
l ); (24)

Since the CMN is present in the tracking process
data, The recursive computation of the posterior es-
timate to avoid the CMN can be summarized in the
following pseudo-code, as shown in Algorithm 2. To
initialize the iterations, the algorithm requires a short
measurement vector y(m.k) = [ym…yk]

T and a ma-
trix (25).

Hm,s =


Dm(Fs...Fm+1)

−1

...
Ds−1F

−1
s

Ds

 . (25)

Note that CT
m,sCm,s is singular if s−m < K−1, and

thus the generalized noise power gain Gs cannot be
calculated on horizons shorter than K points. In the
same way as with the KF filter modified for CMN,
when the coloredness factorΨn = 0, the Algorithm 2,
UFIRmodified for CMN, becomes the standard UFIR
filter [19, 20].

Since UFIR filter operates on the horizon [m, k] of
the total horizon N. To minimize MSE, the horizon to
work with must be optimized as Nopt. According to
[5] we can determineNopt, by the following equation:

Nopt =
12σξ
τ2σw

(26)

Algorithm 2: UFIR Filter for CMN
Data: N , yn
Result: x̂n

1 begin
2 for n = N − 1, N, · · · do
3 m = n−N + 1 , s = n−N +K

4 Gs = (CT
m,sCm,s)

−1

5 x̄s = GsC
T
m,sYm,s

6 for l = s+ 1 : n do
7 Dl = Hl −ΨlHl−1F

−1
l

8 zl = yl −Ψlyl−1

9 Gl = [DT
l Dl + (FlGl−1F

T
l )−1]−1

10 Kl = GlD
T
l

11 x̄−l = Flx̄l−1

12 x̄l = x̄−l +Kl(zl −Dlx̄
−
l )

13 end for
14 x̂n = x̄n
15 end for
16 end

Another method to calculate the optimal horizonNopt

is using measurement residuals, given the property
that the derivative of its trace with respect to the
length of the horizon reaches a minimum when N
tends toNopt. This allows determining Nopt, through
the minim value of MSE. This is a useful property
when ground truth is not available. [5, 20].

6 Performance metrics of tracking
algorithm

A widely used statistical metric to evaluate the track-
ing algorithm performance, from an overall perspec-
tive, is the root mean square error (RMSE). But, the
most common metric used to evaluate tracking per-
formance is precision.

6.1 Precision
Performance evaluation of tracking algorithms can be
evaluated by precision metric. Precision can be de-
fined as the percentage of the number of correct pre-
dictions over the total number of predictions. [21,22].

Before establishing the precision calculation, it is
necessary to obtain another metric, intersection over
union (IoU). The IoU can be defined as the percentage
overlap of the predicted bounding box over the true
bounding box (TBB). The equation for the calculation
of IoU is shown below:

IoU =
IA

(TBB − EBB)− IA
(27)

Where the IA is the area of intersection between the
bounding box of the target object, the true bounding

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS 
DOI: 10.37394/23209.2022.19.25

Eli G. Pale-Ramon, Yuriy S. Shmaliy, 
Luis J. Morales-Mendoza, Mario González-Lee, 

Silverio Pérez-Caceres, 
Efrén Morales-Mendoza

E-ISSN: 2224-3402 251 Volume 19, 2022



box (TBB), and the estimated bounding box (EBB).
The TP is a true positive, and FP is a false positive.

As already mentioned, the precision is calculated
from the IoU value for which it is necessary to estab-
lish an evaluation parameter, for this, an IoU thresh-
old is established [21, 23]. The equation for calculat-
ing precision is:

Precision =
ΣTP

ΣTP +ΣFP
(28)

Where TP is True Positive, that is a correct detection
of a bounding box, that is, the IoU between the EBB
and TBB is greater than or equal to the established
threshold value. FP is False positive, which is an
incorrect detection of an object or an off-site detec-
tion. The IoU is less than the given threshold value
but greater than zero. FN is a false negative.

7 Object tracking test results
7.1 Results of simulation test
The simulation was performed using the object track-
ing model can be described by (1) and (2) and the
known matrices. For the first simulation test, we
considered that a target is disturbed by white Gaus-
sian acceleration noise with a standard deviation of
σw = 2m/s2. The data noise originates from white
Gaussian with σξ = 30m. The trajectory simulation
was 2000 points with sample time T = 0.05 seconds,
P0 = 0, Q = σ2w, R = σ2V , on a short horizon
Nopt = 60.

The RMSE obtained by the standard and modified
filters for CMN, KF and UFIR, from the coloredness
factorΨ0 to 0.95 are shown in Fig. 1 a). The Nopt for
UFIR has used the same size for the entire range ofΨ.
Standard UFIR results are shown with a magenta line,
standard KF with a black line, and UFIR CMNwith a
red line. For the KF CMN, the object tracking model
were established under ideal conditions, p = q = 1,
and with no ideal conditions, p ̸= 1, represented with
blue line, and q ̸= 1 with blue dotted line.

Assuming that noise information is incomplete, in
Fig. 1 a) are shown the relevant filtering errors pro-
duced by substitutingQwith p2Q andRwith q2R for
{p, q} > 0 [5, 19]. As can be seen, even slight mod-
ifications in error factors (p = 2, q = 0.5) make the
KF CMN less accurate than the UFIR CMN. It even
has poorer performance than standard filters. The
UFIR and KF algorithms produced a high values of
RMSE with similar behavior on the all coloredness
factor Ψ range. Therefore, we consider that tmodi-
fied filters foe CMN showed better results with lower.
under ideal conditions the performance of KF CMN
is slightly lower than UFIR CMN, remembering that
this depends largely on the correct dynamic model.

To corroborate the effect of incomplete noise in-
formation. We performed another test considering
the relevant filtering errors produced by substituting
in the algorithms Q with p2Q and R with q2R for
{p, q} > 0, (p = 2, q = 0.5), and (p = 0.5, q = 2)
The results obtained are shown in Fig. 1 b).

As can be seen, a slight modification of the er-
ror factor generates a significant change in the per-
formance of the KF CMN, with which a worse per-
formance was obtained than that obtained under ideal
conditions. With this we can corroborate that the per-
formance of the KC CMN is highly related to the cor-
rect establishment of the state model. On the other
hand, UFIR is more robust when the noise informa-
tion is not available. Also, the UFIR filter does not re-
quire knowing the noise conditionsQ and R it shows
that the UFIR CMN is preferable for object tracking.
This gives another proof that the UFIR CMN is more
suitable for object tracking in real case or with bench-
mark data without complete noise information.

(a) KF and UFIR standard and modified filters

(b) KF and UFIR modified for CMN with the incomplete infor-
mation

Figure 1: RMSE results obtained by the KF and UFIR
standard and modified filters
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7.2 Results of benchmark data test
In this section, we used for test benchmark data [24].
The data is called ”SUV”. Taking into account the
tests carried out in the previous subsection, the test
was performed with the highest coloredness factor
Ψ = 0.95 in order to evaluate the robustness of the
algorithms.

The object tracking model considered that the car
target is disturbed by white Gaussian acceleration
noise with the standard deviation of σw = 3m/s2.
The data noise (CMN) originates from white Gaus-
sian σv = 2m. The trajectory is measured each sam-
ple time T= 0.05 seconds, P0 = 0,Q = σ2w, R = σ2V ,
on a short horizon Nopt = 60. The model of a mov-
ing object is completed according to the section 3.

Then, to compare the performances of the UFIR
and Kalman filters consider the moving vehicle track-
ing problem, we examine the results of the benchmark
SUV test, where we used the bounding box coordi-
nates as a tool for metric evaluation. In Fig.2 to plot
the true estimated object trajectory, we use the bound-
ing box centroids, where the gray line is the ground
truth, the black line is KF standard (KF std), the blue
line is KF modified for CMN (KF CMN), the ma-
genta line is UFIR standard (UFIR Std) and the red
line is UFIR modified for CMN (UFIR CMN). The
graphed trajectories correspond to the coordinates on
the ”x” and ”y” axis of the centroid of each one of
the bounding boxes of the tracking of the moving
object. The trajectory followed by the object does
not correspond to a straight line; we can observe
curved paths. The standard algorithms UFIR and KF
present greater differences concerning the true trajec-
tory; while UFIR CMN and KF CMN presented a
closer estimate. Given the type of trajectory made
by the object, visual analysis is difficult, the differ-
ence between the estimates is especially neatly with
the root mean square error results. The RMSE val-
ues were 51.00 for UFIR CMN, 55.67 for KF CMN,
57.97 for UFIR std, and 79.97 for KF std. Over the
entire trajectory, the standard filters generates larger
errors than the filter modified for CMN. According to
these results, we consider that the algorithms modi-
fied for CMN presented a good performance with a
high value of ψ. While, the KF std showed a poor
performance.

To have a better perspective of the performance
of the algorithms, Fig.3 shows the bounding boxes of
a random point in the trajectory, in which it can be
seen that UFIR CMN presents a closer estimate, fol-
lowed by KF CMN, while KF std shows poor perfor-
mance on position and size compared to the ground
truth bounding box. One of the improvements ex-
pected by the algorithms used is the stabilization of
the bounding boxes both in their trajectory and in their
size. From these results, we can see that UFIR CMN

Figure 2: Centroids estimation in the x-y plane
(Nopt = 60),with Ψ = 0.95.

and KF CMN provide an improvement in object es-
timation. To determine the algorithm that presented
the best performance, the precision metric is used as
shown below.

Figure 3: Bounding box estimation.

The filter precision in the entire intersection over
the union (IoU) threshold range is shown in Fig.4.
The UFIR CMN and KF CMN filters presented the
best precision with a similar behavior up to the thresh-
old of 0.2, this means that the precision is close to 1
when the Predicted Bounding Box (PBB) overlaps at
least over 20% of true Bounding Box (TBB). At this
threshold level, it can be inferred that in each algo-
rithm both standard and modified for CMN present
good results, however the most used thresholds as a
parameter to measure the performance of the algo-
rithms are 0.5 and 0.75 [21], being 0.5 the most con-
ventional. Taking as reference the threshold of 0.5,
which can be inferred that the PBB overlaps at least
the 50% of the TBB. With these results, we can deter-
mine that the UFIR CMN filter has a higher precision
than KF CMN, with a significant difference. If we
take into account a threshold of 0.75, we again find
that UFIR CMN presents the best performance with
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Figure 4: Precision of benchmark ”SUV”(Nopt =
60),with Ψ = 0.95.

a precision close to 0.7, while the precision for KF
CMN is around 0.3. UFIR CMN performs best un-
til the 0.8 threshold, although its precision value at
this point is around 0.5. Therefore, we consider that
the UFIR CMN algorithm provided better results in a
wide threshold range, followed by KF CMN, which
we consider had an acceptable performance up to the
threshold of 0.5, which corresponds to the most used
threshold IoU range for evaluate the performance of
algorithms. On the other hand, the UFIR and KF
filters in their standard version showed poor perfor-
mance, since at the threshold of 0.5 the precision of
the standard UFIR is less than 0.5 and the precision
of the standard KF is close to 0.3. Since, the preci-
sion focuses on the percentage of the true bounding
box detected. From this test, it can be determined that
under a high coloredness factor Ψ = 0.95 the UFIR
CMN filter obtained the best performance.

8 Conclusions
It was shown that the modified KF and UFIR algo-
rithms derived from the differentiation of measure-
ments for the colored measurement noise are better
than the standard KF and UFIR filters, both analyti-
cally and numerically, for the estimation of states in
the object tracking process.

The examples of simulations of the tracking prob-
lem confirm the theoretical inferences that under ideal
conditions, with complete noise information, the KF
CMN filter presents a better performance with lower
typical RMSE values.

According to the second experiment with data sim-
ulation under non-ideal conditions, it is verified that
the UFIR CMN works better in scenarios where the
information is not complete and is more robust to an
inadequate establishment of the dynamic model. be-
cause the UFIR filter does not require knowing the
statistical noise information.

In addition, with the experimental example of vi-

sual object tracking based on the benchmark ”SUV”
in presence of CMNwith the highest coloredness fac-
tor. It is shown that the modified KF and UFIR al-
gorithms adjusted correctly have the ability to sup-
press CMN efficiently and provide state estimation
with higher precision than standard filters.

Based on the results of this work, we found that the
UFIR modified for CMN presented a better perfor-
mance, since it provides an estimation of the state with
greater precision and lower estimation error based on
RMSE. It is proving to be more robust under scenar-
ios of incomplete or unknown noise information and
with the highest coloredness factor. These character-
istics make it a highly applicable algorithm in cases
with tracking models where the information is not
well known or complete information is not available.

Therefore, we conclude that the use of modified
UFIR for CMN would contribute to the development
of applications and research and the improvement of
tracking tasks. We are currently working on mod-
ifications to the UFIR CMN algorithm, focused on
improving estimates when the values of Ψ and IoU
threshold are the highest.
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