
 

 

The first public key encryption algorithm (Public Key

 

Encryption, hereinafter PKE) was proposed by Whitfield 
Diffie and Martin Hellman at Stanford University. They, as 
well as independently Ralph Merkel, developed its basic 
concepts in 1976. The advantage of PKE is that there is no 
need for secret key transfer. PKE is based on the 
unsolvability of the problem of decomposing a natural 
number into prime factors. 

One of the first attacks on the RSA system was an 
attempt to factorize n.  If the thief can do it, he will easily 

calculate ( )n  and easily find the secret key d by the 

formula  1d e mod n . But the problem of factorizing 

large natural numbers is still unresolved. On the other hand, 
if it is possible to factorize 1n , and these factors are not 

greater than some number m, then the factorization of the 

number n can be carried out for a time not greater than 
3m . 

One of the most advanced and promising methods of 
number factorization is the GNFS algorithm, which will be 
described at the end of the monograph as the most complex 
and effective method. 

 

Let us consider the essence of the algorithm. Firstly, we 
have to find numbers that are complete squares in the ring  

and its extension    in this method of factoring numbers. 

Then we will find their homomorphic 2 2,l m  images in n . 

Accordingly to the property of homomorphism, they are also 

complete squares in n . Then the difference of these squares 

modulo n is formed . The expansion of these numbers by the 
difference of the squares and gives the expansion of the 

number by factors. To find square numbers in  and    

will use expansions of numbers into elements from factor 
bases. Elements that decompose into the product of elements 
from factor bases are called smooth with respect to these 
factor bases.   

To find items that are both relatively smooth factor 
database screening algorithm in which selected only those 

couples  ,a b  that   mb   and   b   are relatively 

smooth relevant factor bases. Then will apply homomorphic 

mapping  a b   and reduction modulo n. After that, 

congruent pairs of complete squares are obtained in  
n
.  
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To find such smooth elements that are complete squares 
in the corresponding extensions, a system of linear equations 
is solved, where the coefficients are the degree of occurrence 
of a prime number from the factor base in the schedule of the 
selected number by the factor base.     

We present ordered sets of degrees of decomposition of 
numbers into elements from the factor base in the form of 

vectors  
0

p
p P




, where 
i  it is a vector of degrees of 

occurrence and the - th number from the factor base in the 

number selected for verification on a full square. 
0P . is the 

number of coordinates in the vector  ,0 2j jj
z v mod  

where  jV  . It is clear that for the solvability of the 

system it is enough if  V P . 

This can be achieved by increasing the size of factor 
bases. This is a large sparse system of equations over the 

field 
2

. The solution of which is a subset W V , for 

which: 

0,
W

v


  

These numbers will be complete squares in the above 
rings. Whence we obtain 

 2 2 mod .nx y  

This lead us to factorization 

   mod .nx y x + y-  

Only in case x y  these multipliers equal to p and q. 

 

Definitions 3.1. A ring A is called a Noetherian if it 
satisfies the following three equivalent conditions: 
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- An arbitrary non-empty set in A  is stabilized. 

- An arbitrary growing chain of ideals A  is 
stabilized. 

- An arbitrary ideal A  is completely generated. 

Proposition 3.1. Let A   be a Noetherian ring, is its 
homomorphic image, with some homomorphism  . Then 

A  is a non-shaded netting ring.  

The well-known concept of a prime ideal is considered a 
generalization of the concept of a prime number. But the 
concept of phantom ideal is a generalization of the power of 
a prime number. 

Definition 3.2 . An ideal q in the ring A is said to 
be primary ideal if  xy q  it follows that either x q  or 

ny q  for some n . 

Definition 3.3 . Discrete field normalization K is called 
as the image of a group of v of group K

*
, where K

*
 is a 

multiplicative group of a field K and v has the following 
properties: 

1)      v xy v x v y  that is that 𝜈 is a homomorphism of 

groups. 

2)       min , .v x y v x v y   

Definition 3.4 . A discrete normalized ring is a set for 

which a is a field. 
*x K for which   0v x   and K is a 

field. 

Definition 3.5 . A Dedekind ring is a Noetherian one-
dimensional region for which the following conditions are 
equivalent: 

- A is closed.  

- An arbitrary phantom ideal is a degree of a prime 
ideal. 

- An arbitrary nonzero ring  , 0A    is a 

discretely normalized ring. 

Consider nonzero ideals in a Dedekind ring, for example 

in 
5

2m
 
  

.  

Proposition 3.1 . For every nonzero ideal in  
K

 there 

exists a prime p and integer k such that   k
K GF p


. 

Definition 3.6. The norm of the ideal ℑ is determined by 

equality KNorm


.  

Definition 3.7. A prime ideal   is called a prime  ideal 

of the first degree if  

 
 

kk GF p
G

 
 
 


I

 where p is a prime number. 

Definition 3.8. A rational factor base is a finite set of 
prime numbers. 

That it is  

 : P,    p p p M  R , 

where P  is the set of primes. 

 

Definition 3.9 . An algebraic factor base is a finite subset 
of an algebraic extension such that for 

 A a b Z       satisfies the condition for 

, , a b G a b     and    , ,  ,  a b A c d Z      and 

,c d A   is such that , : c d cd a b  . 

For this reason, it is customary to call the element 𝑎 +
𝑏𝜃 generating a prime ideal. 

As is well known, in a quadratic field (and not only in a 
quadratic field ) a prime ideal of a Dedekind ring of at most 2 
is generated. 

Example 3.1. An example of a prime ideal that cannot be 
generated by a single element. In a Dedekind ring, which is 

not a ring of principal ideals, namely, 
71

2

 
 
 

to consider 

an ideal,  
71

2,
2

p


 it, of course, cannot be generated by 

any one of these elements by means of which the extension 
was formed. 

Definition 3.10 . The norm of the number of 

, z a b r r G     is called an integer number a
2
+rb

2
 and 

is denoted as  
2 2 2N z z a rb    (for example, 

7a b   (or equivalent to it 7a bi  )) has a norm 
2 27a b  ).  

Remarks 3.1 . Note that the norm of an element z is in 
fact equal to the product of all elements conjugate to it, 
taking into account itself.  

Example. 3.2  
1 5 1 5

1, 2 2 2 4
2 4

N N
  

      
 

, 

for a quadratic extension number of the main field has two 
conjugated elements. In general, 

or    , , :n

Ka N a a n K   . 

Examples of Euclidean rings with norms: 

- Ring of integers with Euclidean norm 

   , , 0N a      [23]. 

- Ring of polynomials 

      , 0N f x degf x f x  .   

- Gaussian integer ring  i  with Euclidean norm 

   2 2,  , 0N a bi a b a bi G i a bi       .. 

Each Euclidean ring is factorial, and therefore for 
arbitrary nonzero elements there is their greatest common 
divisor.   
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A partial case of the norm of numbers is the norm in the 
expansion of Galois fields. That is, in what is a normal and 
separable extension. Consider this rule on the example of the 

expansion of Galois 5 2 
 

.The elements of this field look 

like  4 5

0
, .2

i

i i ii
q q Q


  Let 

1, 2 , 3 4 5, .,   are all 

isomorphisms from 
5

2 
  

 in . 

 

Lemma 3.1. Let ,a b . Then the norm of the element 

formed using the generative 52
l

 the basis of the extension has 
the following form  

 

To prove, consider that the elements ,a b from the 

main field under the action of automorphisms remain 
motionless. And the fact that the roots of a polynomial pass 
into those roots that are associated with them, that is, differ 
by a factor that is an element of the group of roots from the 
unit of the fifth order. It is known that the product of all these 
roots is 1. 

    

 

55 5

55
5 55

1

2 2

2 2 .

l l
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Norm a b b Norm

b

a a
b b

b b

 
    

 

    
            


 

Therefore, opening the brackets in the last equation and 
reducing such received the desired rate.  

Assertion.3.3. The norm of an ideal generated by a 
number will be equal to the norm of that number. 

Definition 3.11. In the general case, the norm of a 
number (element) is a determinant of a linear operator that 
acts on the elements of the extension base in the same way as 
this number when multiplying by these base elements. 

In the expansion of the 3-rd degree, for example in 
1˘
3d

 
 
 

y where the elements have the form: 

1
2

3 3a a bd cd    the norm of the element is more 

convenient to calculate by the second definition, because 
there will be 3 conjugates to each element of the base, so the 
element α itself will have 27 conjugates. And by the second 

definition  N   is the following: 

 

The determinant is constructed according to the action of 
the operator on the elements of the expansion base: 

1 2

3 31 a bd cd     

1 1 2

3 3 3d dc ad bd     

2 1 2

3 3 3d bd cdd ad     

 

Theorem 3.1      ( )N ab N a N b , in particular, if a | b 

then N (a) | N (b). 

The norm of the element 1 7   in the Galois extension 

is the product of the conjugates to this element and itself, i.e. 

      1 7 1 7 1 7 1 7 8N           because 

1 , then it is conjugate to itself and has no other 
conjugates, the number of conjugates is equal to the degree 
of expansion of the main field. 

Definition 3.12. The number of elements in the factor 

ring A
I

called the norm of ideal I and denote  N I . 

The main property of the norm of the ideal is its 
multiplicity. 

Theorem 3.2. For ,  I J A   is a ring, the multiplicative 

property           N IJ N I N J   is fulfilled. 

Here    
˘ ˘

1 2

1 2 0,: d d

d d iy x x a a a a y   

      is 

algebraic extension of the ring 
˘

y . 

Definitions 3.13. Element   l Z    is called smooth 

over the algebraic factor base A if W⊂And such that 

   ,
 

c d W
П c d l


   

Definition 4.1. A rational factor base is a finite set of 
prime numbers that is no larger than a given prime number. 

That is it    : P,    R p p p M   . 

Definition 4.2. An algebraic factor base is a finite subset 

of an algebraic extension    
˘

 A a b   y  such that for 

˘

  , , a b y a b    satisfies the condition for 

   
˘

  , ,  ,     ,  a b A c d y іс d A    such that 

, :c d c d a b    and ,c d A . 

For this reason, it is customary to call the element 

  a b  generating a prime ideal. 

Definition 4.3.     Element l Z     is called smooth 

over the algebraic factor base A if W A  and such that 

   ,
 

c d W
П c d l


  . 

Theorem 4.4.(On the bijection between the elements of 
an algebraic factor base and a finite set of pairs). Let the 
polynomial f(x) with integer coefficients such that 

  
5

55 2 2
l

la
Norm a b b

b

  
       

3 3 2 3  3 .

a dc bd

N b a cd a db d c dabc

c b a

    

4. Methods of Optimal Formation 

 of a Rational Factor Base. 
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 ,     0J f   . Then the set of pairs   ,  p r , where p is 

prime and r is such that 
nr ,     0f r modp  is in 

bijective correspondence with the algebraic factor base 

 
˘

 a b y   . 

This theorem makes it possible to represent the algebraic 

factor base as a set of pairs   ,  p r  that satisfy the 

requirements of the theorem. 

Remark 4.1. In expansion  
˘

y   the factor base may 

become smaller than in 
˘

y because the number that was 

prime in  may not be the case in the extended field  
˘

y  . 

Technique of finding elements with a given value of 
smoothness. 

To find complete squares you need to find pairs of 

numbers  
˘

a b y   , which is smooth in some algebraic 

factor base A and   a bm  is smooth in some rational factor 

base  . 

Let the algebraic factor base A  be represented by a set of 

pairs   ,i ip r , the rational factor base be represented by a 

set of prime numbers  ip . 

Theorem 4.2. Let the element c d A  , such that has 

a representation  ,  r p , then the element   c d  divides 

 
˘

a b y   then and only if  a br modp  . 

Theorem 4.3. Finite set U of pairs    
˘

,r p y   is a 

complete set of number divisors  
˘

a b y   if and only if: 

       ,
,  deg

i i

d

ir p U
aП p b f d f

b
   . 

Remarks 4.2. The prime number q will divide   a bm  

if and only if:  moda bm q  . 

 

The main parameters of the algorithm are: the first 
parameter d  is the degree of the polynomial that defines the 

mapping   :f x X X . 

Remarks 5.1. In order for the chosen polynomial  f x  

to be optimal, it is expedient to first determine its degree d . 

 

 

The main parameters of the algorithm are: the first 

parameter d  is the degree of the polynomial that defines the 

mapping   :f x X X . 

Experimentally established its dependence on the value of n 

(table 6.1) 

 

Table 6.1 

 

The 

number of 

characters 

in n 

<52 
<52-

82 

<82-

112 


112 

Power 

 f x  
2 3 4 5 

 

The second parameter is a natural number  m  which satisfies 

the condition: 

   0f m modn  

The number  m  is chosen after d is determined taking into 

account    0f m modn  and so that it is performed 

dm n , to optimize time estimates it is advisable to [5] 

put 
  

1
33 1 log

log log

o n
d

n

 
  
 
 

. In fact, we form a schedule of 

the number n:   1

1 0

d d

d dn f m a m a m a

     

By definition, the function   f x  is: 

  1

1 0

d d

d df x a x a x a

    

And ( )n f m  Ago    0f m modn  and they are 

endowed with these properties everywhere in this text. You 

can better choose polynomials, as developed in [5], namely, 

by choosing d , we find the smallest integer k  such that

kd e , we put 
kd ee sr   and determine f and m by

,  d kf X t m r   . 

 

Analytical approach to improving the time parameters 

of the algorithm and the possibilities of its 

parallelization. 

Based on the table of timings (Table 6.1.) For all stages of 

the algorithm, we see that the process of sieving pairs (𝑎, 𝑏) 

for smoothness takes the largest share of time, and namely, 

about 70-80%. Therefore, the algorithm will be significantly 

improved if the time parameters of the screening process 

can be improved. 

 

The algorithm was tested on a cluster consisting of a main 

node on two AMD processors, with hyper trading, having 2 

cores each. In addition, the cluster has 59 auxiliary nodes, 

which are built on AMD processors and also have 2 cores. 

The clock frequency of each node is 2 x 3.0 GHz AMD, 

DDR-512 ECC SDRAM (3 GB) RAM used. 

Table 6.2 

 

The 

numb

er of 

digits 

in the 

numb

er 

Scree

ning, 

с 

Relatio

n, 

with, 

с 

Lanco

sh 

block, 

с 

Square  

     root, 

  c 

Tota

l, 

с 

Filtered 

 total, 

% 

5. Optimization of Other 
 Parametrs of Alghoritm. 

6. Experiments and Results 
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30 26,4 3.6 0.1 2.0 32.3 82 

39 15 3.1 0.1 1.4 19.7 76.1 

45 184.2 45.8 4.1 15.7 250 74 

51 222.4 63.9 7.3 18 
311.

5 
71.4 

61 3620 591.7 32,6 57,4 
4320

,4 
84 

76 
26477

,8 
8563,6 1226,3 904,2 

3717

1,9 
71,2 

98 
17300

,7 
2716,8 504,6 268,9 

2079

,09 
83,2 

30 26,4 3.6 0.1 2.0 32.3 82 

 

 

Because there is no relationship between generating 

different pairs (𝑎, 𝑏)  for subsequent sieving, the parallel 

platform is ideal for the process of improving the GNFS 

algorithm. The only question left is the optimal number of 

connections between the slave workstations (nodes). 

The parallel algorithm uses one server and the number of 

workstations is limited to 32. Workstations are not directly 

connected to each other only through a server. Each 

workstation has its own subspace of values of the number b, 

obtained by dividing the entire space of values of b into p 

stations by the formula: 

1 0
j

b b
b

p


 . 

Each workstation looks for a relationship within the range of 

its value space. 

 

 

0 1, _b Minb b Max b   

1 2, ;a N a N    

1 0

0

0

0

_ _     /

ParalMode_   _ _

      :       : 

        _ _

       :

         1 _ _

         1

     1 :

( )

( )

( )

( )

( )

( )  

j

j

j

num of b b b k

B num of b

for i intaskid if b n

n i num of b b

if b n

b i num of b

b b

while

 

  

  

 

   

  



 1

2

       

         1 

          : 

           

       _ ,     _ , :

           :

              

( )

: 

  

( )

a a

a a

if a a

break

if Smooth R a b and Smooth A a b

if master

if master

 

  

  



 

 



              _ _ ,b

                 ,  

            : 

 

( )

( )

(               )_ ,b

RE cu

save a b

else

send













МРІ а

МРІ а
 

0 1, _b Minb b Max b  , 

where aralMod ( _ _ )P _ B num of bs  is a function that passes 

the bs of the intervals bs to all subordinate nodes for further 

processing of the corresponding values from these intervals, 

and task id is the identifier of the task which each node 

already knows. 
The analysis of sequential sieving timings shows that the 

total time for large numbers increases noticeably faster than 
the total time corresponding to them increases with the 
growth of small numbers (Fig. 6.1). 

 

Figure 6.1 
Graph on Fig. 6.1 of the dependence of the sifting time 

on the bit size of the factorized number and the number of 
processors. The bit size of n = 35, 55, 61. The conclusion for 
the asymptotic approximation to the OX graph is not enough 
just to increase the number of processors for screening, we 
need to synchronize these processes. 

The graph of parallel execution of the sieving step has a 

shape similar to the branch of the hyperbola 
1

  y
x

 , which 

in asymptotic, shows us that with increasing number of 

processors time of factorization decrease by hyperbolic law, 

approaches the OX axis, although the speed of this 

approximation depends on the bit size of the factorized 

number. The schedule of parallel execution of the whole 

algorithm is very similar to the schedule of parallel 

execution of the screening stage, because it is the most time-

consuming in the algorithm. With one difference, the 

asymptote of this graph is not the OX axis, but a parallel 

line that passes slightly above the OX axis. 

So we have n length intervals, each of which has bs values 

of the sifted value and n intervals as. Therefore, if we do the 

sieving process sequentially, the time complexity is  2O n , 

because we search 2 arrays of n elements. 

If we have k processors for parallel processing, then each 

processor deals with the range of intervals  / ,  jn k b   and 

 / ,  jn k a  then the expected time complexity is as follows:  

O(n
2
/p). 

 

Effective choice of polynomials to improve time 

efficiency 

Parallel execution time can be improved by considering that 

there are many stages of information transfer between the 

server and slave nodes. In fact, each such node must send 

back to the server the sieving result for each b. The sieving 

results include 3 packets. Therefore, the total time of 
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sending these packets to the server 3(𝑏1 − 𝑏0)(𝑘 − 1)/𝑘 is 

significant and it is important that the transmission time will 

increase with increasing value of n. 

The second reason for the significant delay is the 

asynchrony of steam processing. In fact, the sieving time is 

different for each pair, so the master node (server) cannot 

start the next sieving until all subordinate nodes have 

completed their smoothness check. Meanwhile, most of all 

processors are not busy. This asynchrony can be eliminated 

by better balancing the screening process. It is also 

important to choose the optimal parameters of the 

polynomial. For example, it is proved that if we reduce the 

coefficients of the polynomial 

  1

1 0...d d

d df x a x a x a

    , then we get not large 

numbers: 

 
 ,j j

j j

a b V

a b 


 . 

This will speed up the work. The choice of the degree of the 

polynomial is as described above. 

Maximum values   ,iF a b should not be large, where 

(𝑎, 𝑏) - pairs mutually prime numbers such that  

 
 ,j j

j j

a b V

a b 


   and   
 ,j j

j j

a b V

a b 


  are squares in [α] 

and  [θ], respectively, it is to these squares and we will 

apply the homomorphism with  [α] and [θ] in n. In 

addition      , ,id

i i
xF a b y f x y

y
   – these are 

homogeneous parts of the polynomial fi(x), and in the 

General case for NFS to form polynomials as follows: 

 

 

1

1 ,1 1,1 1,0

1

2 ,2 1,2 1,0

... ,

... .

d d

d d d

d d

d d d

f x a x a x a

f x a x a x a



 



 

   

   
 

Where  
1,1ka   , 

1 2( ) ( )f x f x   both are irreducible over 

. 

In addition, their content   ic f x in tableau (6.1) and the 

number m is the common root of mod n for f1(x), f2(x).  

      , 1, ,0, , ... , 1, 1,2i d i d i dc f x LCM a a a i    (6.1) 

In particular, for SNFS, you can find the coefficients of 

polynomials without the help of a computer. 

For GNFS, you can make a successful choice of 

polynomials to find polynomials as follows: 

We put 1

1
[ ]dm n .  

Choose the coefficients of the polynomial such 0 ≤ 𝑎𝑑,𝑖
≤

𝑚 that п decomposes as follows: 
1

,1 1,1 1,0...d d

d d dn a m a m a

      

Then 

  1

1 ,1 1,1 1,0...d d

d d df x a x a x a

     , 

 2f x x m  . 

 

From this method of the task it follows that ad,1=1 [21, 22]. 

 

In addition, in [21, 22] there is another method (more 

general) for choosing polynomials with more than 1 senior 

coefficient and which allows negative coefficients here only 

 1

1
1d

O n
 

 
 

 acceptable options for choosing the coefficient

  2

1 2,1 1,1 0,1f x a x a x a   , 

   2

2 2,2 1,2 0,2f x a x a x a x    . 

This method is based on Montgomery's idea to choose 

polynomials of the form (6.6.2) and (6.6.3), which must 

have a common root m modulo n, if and only 

when the vectors   0 ,1 1 ,1 2 ,1, ,
T

a c c c  and  0,2 1,2 2,2, ,
T

b c c c  
 

are orthogonal to  21, ,
T

m m  over 
n
. 

  2

1 2,1 1,1 0,1f x a x a x a   ,   (6.1.2) 

   2

2 2,2 1,2 0,2f x a x a x a x    . (6.1.3) 

 

We suppose that     1 2f x f x   both polynomials are 

irreducible over  and their contents are equal to 1. 

It is not difficult to show that it is practically possible to find 

a=(c0,1,c1,1,c2,1)
T
 and  0,2 1,2 2,2, ,

T

b c c c , whose coefficients 

are approximately equal 
1

4( )O n . Thus, space is orthogonal 

to vectors  0,1 1,1 2,1, ,
T

a c c c    
   and   0,2 1,2 2,2, ,

T

b c c c  has 

rank 1. If  c a b   (vector product), then c must be a 

multiple 2( )1, , Tm m over 
n

. 

The fact that the polynomials   

  2

1 2,1 1,1 0,1f x a x a x a    
and  

   2

2 2,2 1,2 0,2f x a x a x a x    . 

not multiples of each other, guarantees that 0.c   

Good are polynomials that have real roots approximately 

equal

max | |

max | |

a

b  This is shown by the diagram (Fig.6.2), 

constructed for two polynomials, one of them 

  5 4 3 2

1 4 3 3 1f x x x x x x      , which has 5 valid roots, 

was 60,000 values are sifted a and 8625 values b , to 

factorize 119 significant numbers. It is those pairs  ,a b  for 

which the values  a
b

 are approximately equal to the roots 

of the polynomial, gave a larger number of ratios, as shown 

in the graph (Fig.6.2), which has 5 corresponding to the 

roots of the convex waves. 

 

Polynomials with roots of small prime numbers (mostly 

different) are better than those that do not. 
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Fig 6.2 

 

It is investigated that more dependences will be found if we 

choose such polynomials of fixed degree, the order of the 

Galois group of which is as small as possible. 

Recall that the Galois group is a group of automorphisms (in 

the extended field) of the roots of the polynomial by which 

this extension is constructed. 

For different types of polynomials, these groups are 

different. Thus, for a cyclotomic polynomial of prime order, 

the Galois group is cyclic of the same prime order. For 

instance the cyclotomic polynomial 
7

6 51
... 1

1

x
x x x

x


    

  
has a Galois group a cyclic group of order 7. A non-

decomposable cyclotomic polynomial of degree n has a 

Galois group of order n. A folding cyclotomic polynomial of 

degree n has a Galois group of order n! 

And the cyclotomic polynomial of not prime order is set 

recurrently: 

   
1 !

! !

n

d n
d n

x n

f x r n r





  

The order of his group
 

 n . A polynomial
  

   ,jf x x     has a primitive root of 1.
 

In addition, it should be borne in mind that polynomials of 

degree which are irreducible and non-cyclotomic have the 

order of the Galois group n! Tha1t is, their Galois group is 

large enough. 

Conclusion: It is advisable to choose a indecomposable  

cyclotomic polynomial. 
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