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Abstract: - Semiautomata are abstractions of electronic devices that are deterministic finite-state machines having
inputs but no outputs. Generalized semiautomata are obtained from stochastic semiautomata by dropping the
restrictions imposed by probability. It is well-known that each stochastic semiautomaton can be decomposed into
a sequential product of a dependent source and deterministic semiautomaton making partly use of the celebrated
theorem of Birkhoff-von Neumann. It will be shown that each generalized semiautomaton can be partitioned into
a sequential product of a generalized dependent source and a deterministic semiautomaton.
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1 Introduction

The theory of discrete stochastic systems has been
initiated by the work of Shannon [[14] and von Neu-
mann [|10]. While Shannon has considered memory-
less communication channels and their generalization
by introducing states, von Neumann has studied the
synthesis of reliable systems from unreliable compo-
nents. The fundamental work of Rabin and Scott [[12]
about deterministic finite-state automata has led to
two generalizations. First, the generalization of tran-
sition functions to conditional distributions studied by
Carlyle [3] and Starke [[15]. This in turn yields a gen-
eralization of discrete-time Markov chains in which
the chains are governed by more than one transition
probability matrix. Second, the generalization of reg-
ular sets by introducing stochastic automata as de-
scribed by Rabin [[11].

By the work of Turakainen [[16], stochastic accep-
tors can be viewed equivalently as generalized au-
tomata in which the ”probability” is neglected. This
leads to a more accessible approach to stochastic au-
tomata [5].

On the other hand, the class of nondeterministic
automata [[13] can be generalized to monoidal au-
tomata, where the input alphabet corresponds to an
arbitrary monoid instead of a free monoid [8, 9, [17].
This leads to the class of monoidal automata whose
languages are closed under a smaller set of operations
when compared with regular languages.

A first step into the study of automata theory are
semiautomata which are abstractions of electronic de-
vices that are deterministic finite-state machines hav-
ing inputs but no outputs [[7, 9]. Generalized semi-
automata are obtained from stochastic semiautomata
by dropping the restrictions imposed by probabil-
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ity [, [16]. It is well-known that each stochastic au-
tomaton can be decomposed into a sequential product
of a dependent source and deterministic semiautoma-
ton [2]. This result makes use in part of the celebrated
theorem of Birkhoff-von Neumann that each doubly
stochastic matrix can be represented as a convex com-
bination of permutation matrices. In this paper, it will
be shown that each generalized semiautomaton can be
partitioned into a sequential product of a generalized
dependent source and a deterministic semiautomaton.

Notation. Let X be a set. The set of all mappings
onX,T(X)={f]f:X — X}, forms a monoid
under function composition (fg)(z) = g(f(x)), x €
X, and the identity functionidyx : X - X :x — =
is the identity element. The monoid T'(X) is called
the full transformation monoid of X.

2 Semiautomata

Semiautomata are abstractions of electronic devices
which are deterministic finite-state machines having
input but no output [[7, 9].

A (deterministic) semiautomaton (SA) is a triple

A= (8% {6, |x€X})
where
* S is the non-empty finite set of states,
3 is the set of input symbols,
* §; : S — Sisa(partial) mapping foreach x € X..

Let X* denote the free monoid over the alphabet 3.
By the universal property of free monoids [4, 9], the
mapping ¢ : ¥ — T(S) : x — d, extends uniquely to
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a monoid homomorphism 6 : £* — T'(S) : u — J,
such that for each word u = z1 ... 2 € X%,

and particularly . = idg. The mapping J is called
the transition function of A. Its image T'(A) = {0, |
u € Y*} is a submonoid of the full transformation
monoid 7'(S) generated by {9, | = € ¥}. The semi-
automaton A is also denoted by A = (S, M,d) or
A= (84, M4, 64).

A semiautomaton A = (S, 3, 0) serves as a skele-
ton of a deterministic finite-state machine that is ex-
actly in one state at a time. If the semiautomaton A is
in state s and reads the word uw € X%, it transits into
the state ' = ,,(s).

Example 1. Consider the semiautomaton A =
(S,%,0) with state set S = {1,2,3}, input alpha-
bet ¥ = {x,y}, and transition function 6 given by the
automaton graph in Fig. [l The associated transfor-
mation monoid is generated by the transformations

1 2 3 1 2 3
(5x:<111> and 5y:<223>.
We have

1 2 3 1 2 3
be=\111) 9w={222)

1 2 3 1 2 3
e=\111) w={22 3
Hence, the transformation monoid T'(A) is given by
{ids, 6:B7 5y7 5my} <>

(1 . )

T T —N
‘”’”&7@ _ @J’

N

Ob}

Figure 1: Semiautomaton.

3 Generalized Semiautomata

Stochastic automata are a generalization of non-
deterministic finite state automata [5]. Generalized
automata can be obtained from stochastic automata
by dropping the restrictions imposed by probabil-
ity [5, [16, [17].

A generalized semiautomaton (GSA) is a triple

A=(53{Q. |z X},

where
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* S is the non-empty finite set of states,
» 3 is the input alphabet, and

* (@ is a collection of n X n nonnegative matrices
Q., x € X, where n is the number of states.

In view of the universal property of free
monoids [4, 9], the mapping Q : ¥ — R™"
x — (g extends uniquely to a monoid homomor-
phism @ : X* — R™ ™ such that for each word
U=2x1...T € X5,

Qu = le t Qa:k (2)

and particularly Q. = I, is the n X n identity ma-
trix. The mapping @ is called the transition func-
tion of A. Tts image T(A) = {Qu | u € ¥*} is
a submonoid of the full transformation monoid 7°(S)
generated by {(Q) | * € X}. The generalized semi-
automaton A is also denoted by A = (5,%,Q) or
A= ($4,54,Q4).

The state set S = {s1,...,S,} can be viewed as
the standard basis for the Euclidean vector space R",
where s; is the basis vector whose ith coordinate is 1
and all others are 0. In this way, the (7, j)the entry of

(w)

i; ) 1s given by sl@ = 57 Qus;.

the matrix Q, = (s ;

Proposition 1. Each deterministic semiautomaton is
a generalized automaton.

Proof. Let A = (S,%,) be a deterministic semiau-
tomaton and let S = {sy,..., s, }. Define the gener-
alized semiautomaton B = (S, X, @)), where for each
x € X, the (¢,7)th entry of Q is 1 if §,(s;) = s;
and otherwise 0. Then the mapping 7'(4) — T'(B) :
0y — @y 1s a monoid isomorphism. O

A generalized semiautomaton A = (S, %, P) is
called stochastic if the matrices P,, * € X, are
stochastic, i.e., P, is a matrix of nonnegative real
numbers such that each row sum is equal to 1. The
product of stochastic matrices is again a stochastic
matrix and so the transition monoid 7'(A) consists of
the stochastic matrices P, u € ¥*. In particular, the
(i,7)th element p(s; | u,s;) of the matrix P, is the
transition probability that the automaton enters state
sj when started in state s; and reading the word w.

Example 2. Let m > 2 be an integer. Put > =
{0,...,m — 1}. The stochastic semiautomaton A =

({s1,s2}, %, P) given by
1 m—x T
Px_m(m—x—l x+1 )’ €2,
is called m-adic semiautomaton. For each word u =

T1...x € 2%,
>,

Wk

P—i mk — wy,
TR\ mF—w, —1 w41
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where wy, = xpmF 1 + ... 4+ xom + x1 and the en-
try #wk corresponds in the m-adic representation
t00.xp ...21. &

A generalized semiautomaton A = (5,%, D) is
called doubly stochastic if the matrices D,, x € 3,
are doubly stochastic, i.e., D, is a matrix of nonnega-
tive real numbers such that each row and column sum
is equal to 1. The product of doubly stochastic matri-
ces is again a doubly stochastic matrix and so the tran-
sition monoid T'(A) consists of the doubly stochastic
matrices D,,, u € X*.

4 Decomposition of Generalized

Semiautomata
The objective is to decompose each generalized semi-
automata into a sequential product of a generalized
dependent source and a deterministic semiautomaton.
The corresponding result for stochastic semiautomata
has been proved by Bukharaev [2].
A generalized dependent source is a triple

=8 {(z]2)|reX zeE},

where ¥ and = are alphabetsand v : X x 2 — R :
(x,z) — 7(z | =) is a mapping which is extended
recursively to 3X* x =* as follows:

¢ '7(6 ’ 6) =1,
e v(v|u)=0forallu € ¥* and v € Z* with
[u] £ o], and

e y(zv | zu) = y(z | 2)y(u | v) forall z € X,
ueX*,ze=zandv € E.

A generalized dependent source I' is also denoted by
= (%,Z2,7).

In particular, a dependent source is a generalized
dependent source I' = (X, =, v), where ¥ and = are
alphabets and for each z € X, y(- | =) defines a (con-
ditional) probability measure on =Z. This measure can
be extended for each v € >* to a (conditional) prob-
ability measure y(- | u) on Z* along the same lines as
above. Note that a dependent source can be viewed
as a stochastic input-output automaton with a single
state [2, §].

The sequential product of generalized dependent
source I' = (X, =, ) and generalized semiautomaton
B = (S,Z,QP) defines a generalized semiautoma-
ton A = (S, %, Q) such that forall z € %,

Ql => zlx)-QF 3)
z€Z
By induction, for all u € 3*,
Qi = vlu-Qr. 4)
veES*
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A permutation matrix P is a square binary matrix
which has exactly one entry of 1 in each row and each
column and 0’s elsewhere. By the Birkhoff-von Neu-
mann theorem [(]], for each n x n doubly stochas-
tic matrix P there exist real numbers o, ...,y >
0 with ZZ]\L 1o; = 1 and permutation matrices
Py, ..., Py such that

P:a1P1+...+OtNPN. (5)
This representation is also known as Birkhoff-von
Neumann decomposition. Such a representation of
a doubly stochastic matrix as a convex combination
of permutation matrices may not be unique. By the
Marcus-Ree Theorem [[I]], N < n? —2n 4 2 for dense
matrices.

A square matrix P is called deterministic if it has
exactly one entry of 1 in each row and 0’s elsewhere.
In particular, each permutation matrix is determinis-
tic. For each n x n stochastic matrix P there exist
real numbers oy, ...,ay > 0 with Zfil o; = 1 and
deterministic matrices P, ..., Py such that

P=a1P+...+anPyn. 6)
Such a representation of a stochastic matrix as a con-
vex combination of deterministic matrices may not be
unique.

A square matrix P is called semideterministic if in
each nonzero row there is exactly one entry of 1 and
0’s elsewhere. In particular, each deterministic matrix
is semideterministic.

Proposition 2. For each nonnegative square matrix
A, there exist real numbers o, ...,an > 0 and
semideterministic matrices Py, ..., Py such that

A= P +...+anPy. )
Proof. For each nonnegative square matrix P = (p;;)
let p; (;) be a minimal nonzero entry in row . Con-
sider the semideterministic matrix D = (d;;) with
d; ;) = 1 for each ¢ and d;; = 0 otherwise. More-
over, put m(P) = min{p;; | pi;; # 0}. Then
P — m(P)D is a nonnegative matrix with at least
one more zero entry than P. Iterating this step a fi-
nite number N of times gives a sequence (Py)1<ip<n
of nonnegative matrices and a sequence (Dj)1<k<N
of semideterministic matrices such that P, = A,
Pk+1 = k — m(Pk)Dk for 1 < k < N, and
Pyny1 = 0. This yields the decomposition of A as
a linear combination of semideterministic matrices
A=W m(P,)Dy. O

For doubly stochastic and stochastic matrices, the
proof is similar.
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Example 3. Consider the nonnegative matrix

2 46
A:(Q 2 8).

3 3 6
A sequence of reductions showing the selected entries

at each step is
4 6 0 4 6
2 81,10 2 8],
3 6 1 3 6

[

03 6 02 6
018 1|,[008
03 6 02 6

yields the decomposition

[SSALNR\]

[=p)[=p (e
N~

1 00 010
A =21100])+1 010
1 00 100
010 010
+1({ 0 1 0 |+2( 001
010 010
0 01
+6( 0 0 1 |.
0 01

Theorem 3. Each generalized semiautomaton A =
(S, %, Q) can be represented as a sequential product
of a generalized dependent source ' = (3,2, ) and
a semideterministic semiautomaton B = (S, 2, 9).

In particular, each stochastic (or strongly stochas-
tic) semiautomaton A = (5,3, P) can be repre-
sented as a sequential product of a dependent source
I' = (3,E,~) and a deterministic (or permutation)
semiautomaton B = (S, =, 9).

Proof. Let {Dy,...,Dy} denote the collection of
n X n semideterministic matrices. Put & =
{1,..., N} and for each x € ¥, write ), as a conical
combination of semideterministic matrices

Qz = Z a(z,z)D,.
ZEE
This defines the generalized dependent source I' =
(X,Z, ), where foreach x € Y and z € £,
V(z | 2) = alz,2),

and the deterministic automaton B = (S, =, §), where
for each z € Z, the transition §, : S — S is given by
the matrix D, as in the proof of Prop. [I. Then we
obtain for each z € ¥,

=> 1z 2)QP.

z€E

The second part is clear from the above remarks. [
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Example 4. Consider the generalized semiautoma-

ton
= ({81752}7 {Il’J:Q}a {Qxlanz})7
where
2 3 1 2
Qm1:<1 0> and Qx2:<0 3>-
Then
1 0 1 0 0 1
Qx1:<1 0>+<0 0>+3<0 0>
and
1 0 0 1
=(01)+2(5 1)
Put = = {z, 25} and
1 0 1 0
Dzlz 1 0 ) 20 — 0 0 y
(01 1 0
DZ3_ 0 0 ’ DZ4 O 1 )
0 1
Du=10 1
Then
Qa:l =D, +D., +3D23 and ng = DZ4+2DZ5

This gives the state transition table of the determinis-
tic semiautomaton B = (S, Z,0), where

(SB ‘ Z1 k9 23 24 &5
S1 | S1 S1 S2 S1 89
S2 |81 — — 82 82

and the transitions of the generalized dependent
source I' = (X, =2, ), where

I

Example 5. Reconsider the m-adic semiautomaton
= ({s1,s2},%, P). Foreachz € %,

o))
(1)

Put = = {z1, 29,23} and

Py =
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Then for each x € %,

m—x—1 1 T
Phb=——D, +—D,, +—D,,.
m m m
This provides the state transition table of the deter-

ministic semiautomaton B = (S, Z, J), where

(53 ‘ Z1 k9 Z3
81 |81 S1 82
82 | 851 S2 82

and the transitions of the dependent source I' =
(X, E,7), where for each x € %,

3
&
!
I
3| &
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