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Abstract: - Semiautomata are abstractions of electronic devices that are deterministic finite-state machines having
inputs but no outputs. Generalized semiautomata are obtained from stochastic semiautomata by dropping the
restrictions imposed by probability. It is well-known that each stochastic semiautomaton can be decomposed into
a sequential product of a dependent source and deterministic semiautomaton making partly use of the celebrated
theorem of Birkhoff-von Neumann. It will be shown that each generalized semiautomaton can be partitioned into
a sequential product of a generalized dependent source and a deterministic semiautomaton.
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1 Introduction
The theory of discrete stochastic systems has been
initiated by the work of Shannon [14] and von Neu-
mann [10]. While Shannon has considered memory-
less communication channels and their generalization
by introducing states, von Neumann has studied the
synthesis of reliable systems from unreliable compo-
nents. The fundamental work of Rabin and Scott [12]
about deterministic finite-state automata has led to
two generalizations. First, the generalization of tran-
sition functions to conditional distributions studied by
Carlyle [3] and Starke [15]. This in turn yields a gen-
eralization of discrete-time Markov chains in which
the chains are governed by more than one transition
probability matrix. Second, the generalization of reg-
ular sets by introducing stochastic automata as de-
scribed by Rabin [11].

By the work of Turakainen [16], stochastic accep-
tors can be viewed equivalently as generalized au-
tomata in which the ”probability” is neglected. This
leads to a more accessible approach to stochastic au-
tomata [5].

On the other hand, the class of nondeterministic
automata [13] can be generalized to monoidal au-
tomata, where the input alphabet corresponds to an
arbitrary monoid instead of a free monoid [8, 9, 17].
This leads to the class of monoidal automata whose
languages are closed under a smaller set of operations
when compared with regular languages.

A first step into the study of automata theory are
semiautomata which are abstractions of electronic de-
vices that are deterministic finite-state machines hav-
ing inputs but no outputs [7, 9]. Generalized semi-
automata are obtained from stochastic semiautomata
by dropping the restrictions imposed by probabil-

ity [5, 16]. It is well-known that each stochastic au-
tomaton can be decomposed into a sequential product
of a dependent source and deterministic semiautoma-
ton [2]. This result makes use in part of the celebrated
theorem of Birkhoff-von Neumann that each doubly
stochastic matrix can be represented as a convex com-
bination of permutation matrices. In this paper, it will
be shown that each generalized semiautomaton can be
partitioned into a sequential product of a generalized
dependent source and a deterministic semiautomaton.

Notation. Let X be a set. The set of all mappings
on X , T (X) = {f | f : X → X}, forms a monoid
under function composition (fg)(x) = g(f(x)), x ∈
X , and the identity function idX : X → X : x 7→ x
is the identity element. The monoid T (X) is called
the full transformation monoid of X .

2 Semiautomata
Semiautomata are abstractions of electronic devices
which are deterministic finite-state machines having
input but no output [7, 9].

A (deterministic) semiautomaton (SA) is a triple

A = (S,Σ, {δx | x ∈ Σ})

where

• S is the non-empty finite set of states,

• Σ is the set of input symbols,

• δx : S → S is a (partial) mapping for eachx ∈ Σ.

LetΣ∗ denote the freemonoid over the alphabetΣ.
By the universal property of free monoids [4, 9], the
mapping δ : Σ → T (S) : x 7→ δx extends uniquely to
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a monoid homomorphism δ : Σ∗ → T (S) : u 7→ δu
such that for each word u = x1 . . . xk ∈ Σ∗,

δu = δx1
· · · δxk

(1)

and particularly δϵ = idS . The mapping δ is called
the transition function of A. Its image T (A) = {δu |
u ∈ Σ∗} is a submonoid of the full transformation
monoid T (S) generated by {δx | x ∈ Σ}. The semi-
automaton A is also denoted by A = (S,M, δ) or
A = (SA,MA, δA).

A semiautomaton A = (S,Σ, δ) serves as a skele-
ton of a deterministic finite-state machine that is ex-
actly in one state at a time. If the semiautomaton A is
in state s and reads the word u ∈ Σ∗, it transits into
the state s′ = δu(s).

Example 1. Consider the semiautomaton A =
(S,Σ, δ) with state set S = {1, 2, 3}, input alpha-
betΣ = {x, y}, and transition function δ given by the
automaton graph in Fig. 1. The associated transfor-
mation monoid is generated by the transformations

δx =

(
1 2 3
1 1 1

)
and δy =

(
1 2 3
2 2 3

)
.

We have

δxx =

(
1 2 3
1 1 1

)
, δxy =

(
1 2 3
2 2 2

)
,

δyx =

(
1 2 3
1 1 1

)
, δyy =

(
1 2 3
2 2 3

)
.

Hence, the transformation monoid T (A) is given by
{idS , δx, δy, δxy}. ♢
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Figure 1: Semiautomaton.

3 Generalized Semiautomata
Stochastic automata are a generalization of non-
deterministic finite state automata [5]. Generalized
automata can be obtained from stochastic automata
by dropping the restrictions imposed by probabil-
ity [5, 16, 17].

A generalized semiautomaton (GSA) is a triple

A = (S,Σ, {Qx | x ∈ Σ}),

where

• S is the non-empty finite set of states,

• Σ is the input alphabet, and

• Q is a collection of n × n nonnegative matrices
Qx, x ∈ Σ, where n is the number of states.
In view of the universal property of free

monoids [4, 9], the mapping Q : Σ → Rn×n :
x 7→ Qx extends uniquely to a monoid homomor-
phism Q : Σ∗ → Rn×n such that for each word
u = x1 . . . xk ∈ Σ∗,

Qu = Qx1
· · ·Qxk

(2)

and particularly Qϵ = In is the n × n identity ma-
trix. The mapping Q is called the transition func-
tion of A. Its image T (A) = {Qu | u ∈ Σ∗} is
a submonoid of the full transformation monoid T (S)
generated by {Qx | x ∈ Σ}. The generalized semi-
automaton A is also denoted by A = (S,Σ, Q) or
A = (SA,ΣA, QA).

The state set S = {s1, . . . , sn} can be viewed as
the standard basis for the Euclidean vector space Rn,
where si is the basis vector whose ith coordinate is 1
and all others are 0. In this way, the (i, j)the entry of
the matrix Qu = (s

(u)
ij ) is given by s(u)ij = sTi Qusj .

Proposition 1. Each deterministic semiautomaton is
a generalized automaton.
Proof. Let A = (S,Σ, δ) be a deterministic semiau-
tomaton and let S = {s1, . . . , sn}. Define the gener-
alized semiautomatonB = (S,Σ, Q), where for each
x ∈ Σ, the (i, j)th entry of Qx is 1 if δx(si) = sj
and otherwise 0. Then the mapping T (A) → T (B) :
δu 7→ Qu is a monoid isomorphism.

A generalized semiautomaton A = (S,Σ, P ) is
called stochastic if the matrices Px, x ∈ Σ, are
stochastic, i.e., Px is a matrix of nonnegative real
numbers such that each row sum is equal to 1. The
product of stochastic matrices is again a stochastic
matrix and so the transition monoid T (A) consists of
the stochastic matrices Pu, u ∈ Σ∗. In particular, the
(i, j)th element p(sj | u, si) of the matrix Pu is the
transition probability that the automaton enters state
sj when started in state si and reading the word u.
Example 2. Let m ≥ 2 be an integer. Put Σ =
{0, . . . ,m − 1}. The stochastic semiautomaton A =
({s1, s2},Σ, P ) given by

Px =
1

m

(
m− x x

m− x− 1 x+ 1

)
, x ∈ Σ,

is called m-adic semiautomaton. For each word u =
x1 . . . xk ∈ Σ∗,

Pu =
1

mk

(
mk − wk wk

mk − wk − 1 wk + 1

)
,
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where wk = xkm
k−1 + . . . + x2m + x1 and the en-

try 1
mkwk corresponds in the m-adic representation

to 0.xk . . . x1. ♢
A generalized semiautomaton A = (S,Σ, D) is

called doubly stochastic if the matrices Dx, x ∈ Σ,
are doubly stochastic, i.e.,Dx is a matrix of nonnega-
tive real numbers such that each row and column sum
is equal to 1. The product of doubly stochastic matri-
ces is again a doubly stochastic matrix and so the tran-
sition monoid T (A) consists of the doubly stochastic
matrices Du, u ∈ Σ∗.

4 Decomposition of Generalized
Semiautomata

The objective is to decompose each generalized semi-
automata into a sequential product of a generalized
dependent source and a deterministic semiautomaton.
The corresponding result for stochastic semiautomata
has been proved by Bukharaev [2].

A generalized dependent source is a triple

Γ = (Σ,Ξ, {γ(z | x) | x ∈ Σ, z ∈ Ξ}),

where Σ and Ξ are alphabets and γ : Σ×Ξ → R≥0 :
(x, z) → γ(z | x) is a mapping which is extended
recursively to Σ∗ × Ξ∗ as follows:
• γ(ϵ | ϵ) = 1,

• γ(v | u) = 0 for all u ∈ Σ∗ and v ∈ Ξ∗ with
|u| ̸= |v|, and

• γ(zv | xu) = γ(x | z)γ(u | v) for all x ∈ Σ,
u ∈ Σ∗, z ∈ Ξ and v ∈ Ξ∗.

A generalized dependent source Γ is also denoted by
Γ = (Σ,Ξ, γ).

In particular, a dependent source is a generalized
dependent source Γ = (Σ,Ξ, γ), where Σ and Ξ are
alphabets and for each x ∈ Σ, γ(· | x) defines a (con-
ditional) probability measure on Ξ. This measure can
be extended for each u ∈ Σ∗ to a (conditional) prob-
ability measure γ(· | u) on Ξ∗ along the same lines as
above. Note that a dependent source can be viewed
as a stochastic input-output automaton with a single
state [2, 5].

The sequential product of generalized dependent
source Γ = (Σ,Ξ, γ) and generalized semiautomaton
B = (S,Ξ, QB) defines a generalized semiautoma-
ton A = (S,Σ, QA) such that for all x ∈ Σ,

QA
x =

∑
z∈Ξ

γ(z | x) ·QB
z . (3)

By induction, for all u ∈ Σ∗,

QA
u =

∑
v∈Ξ∗

γ(v | u) ·QB
v . (4)

A permutation matrix P is a square binary matrix
which has exactly one entry of 1 in each row and each
column and 0’s elsewhere. By the Birkhoff-von Neu-
mann theorem [6], for each n × n doubly stochas-
tic matrix P there exist real numbers α1, . . . , αN ≥
0 with

∑N
i=1 αi = 1 and permutation matrices

P1, . . . , PN such that

P = α1P1 + . . .+ αNPN . (5)

This representation is also known as Birkhoff-von
Neumann decomposition. Such a representation of
a doubly stochastic matrix as a convex combination
of permutation matrices may not be unique. By the
Marcus-Ree Theorem [1],N ≤ n2−2n+2 for dense
matrices.

A square matrix P is called deterministic if it has
exactly one entry of 1 in each row and 0’s elsewhere.
In particular, each permutation matrix is determinis-
tic. For each n × n stochastic matrix P there exist
real numbers α1, . . . , αN ≥ 0 with

∑N
i=1 αi = 1 and

deterministic matrices P1, . . . , PN such that

P = α1P1 + . . .+ αNPN . (6)

Such a representation of a stochastic matrix as a con-
vex combination of deterministic matrices may not be
unique.

A square matrix P is called semideterministic if in
each nonzero row there is exactly one entry of 1 and
0’s elsewhere. In particular, each deterministic matrix
is semideterministic.

Proposition 2. For each nonnegative square matrix
A, there exist real numbers α1, . . . , αN ≥ 0 and
semideterministic matrices P1, . . . , PN such that

A = α1P1 + . . .+ αNPN . (7)

Proof. For each nonnegative squarematrixP = (pij)
let pi,π(i) be a minimal nonzero entry in row i. Con-
sider the semideterministic matrix D = (dij) with
di,π(i) = 1 for each i and dij = 0 otherwise. More-
over, put m(P ) = min{pij | pij ̸= 0}. Then
P − m(P )D is a nonnegative matrix with at least
one more zero entry than P . Iterating this step a fi-
nite numberN of times gives a sequence (Pk)1≤k≤N

of nonnegative matrices and a sequence (Dk)1≤k≤N

of semideterministic matrices such that P1 = A,
Pk+1 = Pk − m(Pk)Dk for 1 ≤ k ≤ N , and
PN+1 = 0. This yields the decomposition of A as
a linear combination of semideterministic matrices
A =

∑N
k=1m(Pk)Dk.

For doubly stochastic and stochastic matrices, the
proof is similar.
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Example 3. Consider the nonnegative matrix

A =

(
2 4 6
2 2 8
3 3 6

)
.

A sequence of reductions showing the selected entries
at each step is(

2 4 6
2 2 8
3 3 6

)
,

(
0 4 6
0 2 8
1 3 6

)
,

(
0 3 6
0 1 8
0 3 6

)
,

(
0 2 6
0 0 8
0 2 6

)
,

(
0 0 6
0 0 6
0 0 6

)
,

yields the decomposition

A = 2

(
1 0 0
1 0 0
1 0 0

)
+ 1

(
0 1 0
0 1 0
1 0 0

)

+1

(
0 1 0
0 1 0
0 1 0

)
+ 2

(
0 1 0
0 0 1
0 1 0

)

+6

(
0 0 1
0 0 1
0 0 1

)
.

♢
Theorem 3. Each generalized semiautomaton A =
(S,Σ, Q) can be represented as a sequential product
of a generalized dependent source Γ = (Σ,Ξ, γ) and
a semideterministic semiautomaton B = (S,Ξ, δ).

In particular, each stochastic (or strongly stochas-
tic) semiautomaton A = (S,Σ, P ) can be repre-
sented as a sequential product of a dependent source
Γ = (Σ,Ξ, γ) and a deterministic (or permutation)
semiautomaton B = (S,Ξ, δ).
Proof. Let {D1, . . . , DN} denote the collection of
n × n semideterministic matrices. Put Ξ =
{1, . . . , N} and for each x ∈ Σ, writeQx as a conical
combination of semideterministic matrices

Qx =
∑
z∈Ξ

α(z, x)Dz.

This defines the generalized dependent source Γ =
(Σ,Ξ, γ), where for each x ∈ Σ and z ∈ Ξ,

γ(z | x) = α(z, x),

and the deterministic automatonB = (S,Ξ, δ), where
for each z ∈ Ξ, the transition δz : S → S is given by
the matrix Dz as in the proof of Prop. 1. Then we
obtain for each x ∈ Σ,

QA
x =

∑
z∈Ξ

γ(z | x)QB
z .

The second part is clear from the above remarks.

Example 4. Consider the generalized semiautoma-
ton

A = ({s1, s2}, {x1, x2}, {Qx1
, Qx2

}),

where

Qx1
=

(
2 3
1 0

)
and Qx2

=

(
1 2
0 3

)
.

Then

Qx1
=

(
1 0
1 0

)
+

(
1 0
0 0

)
+ 3

(
0 1
0 0

)
and

Qx2
=

(
1 0
0 1

)
+ 2

(
0 1
0 1

)
.

Put Ξ = {z1, . . . , z5} and

Dz1 =

(
1 0
1 0

)
, Dz2 =

(
1 0
0 0

)
,

Dz3 =

(
0 1
0 0

)
, Dz4 =

(
1 0
0 1

)
,

Dz5 =

(
0 1
0 1

)
.

Then

Qx1
= Dz1+Dz2+3Dz3 and Qx2

= Dz4+2Dz5 .

This gives the state transition table of the determinis-
tic semiautomaton B = (S,Ξ, δ), where

δB z1 z2 z3 z4 z5
s1 s1 s1 s2 s1 s2
s2 s1 − − s2 s2

and the transitions of the generalized dependent
source Γ = (Σ,Ξ, γ), where

γ z1 z2 z3 z4 z5
x1 1 1 3 0 0
x1 0 0 0 1 2

♢
Example 5. Reconsider the m-adic semiautomaton
A = ({s1, s2},Σ, P ). For each x ∈ Σ,

Px =
m− x− 1

m

(
1 0
1 0

)
+

1

m

(
1 0
0 1

)
+

x

m

(
0 1
0 1

)
.

Put Ξ = {z1, z2, z3} and

Dz1 =

(
1 0
1 0

)
, Dz2 =

(
1 0
0 1

)
,

Dz3 =

(
0 1
0 1

)
.
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Then for each x ∈ Σ,

Px =
m− x− 1

m
Dz1 +

1

m
Dz2 +

x

m
Dz3 .

This provides the state transition table of the deter-
ministic semiautomaton B = (S,Ξ, δ), where

δB z1 z2 z3
s1 s1 s1 s2
s2 s1 s2 s2

and the transitions of the dependent source Γ =
(Σ,Ξ, γ), where for each x ∈ Σ,

γ z1 z2 z3
x m−x−1

m
1
m

x
m

♢
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