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Abstract: This paper is concerned with the problem of robust finite-time boundedness for the discrete-time 
neural networks with time-varying delays. By constructing an appropriate Lyapunov-Krasovskii functional, we 
proposed the sufficient conditions which ensure the robust finite-time boundedness of the discrete-time neural 
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1 Introduction 

  In recent years, neural networks have been widely 
used in associative memory, pattern recognition, 
model identification, signal processing, static image 
processing, optimization control problems and other 
aspects [1-4]. Many applications of neural networks 
rely on dynamic behavior. Therefore the stability of 
neural networks has incurred extensive attention 
from scholars. In [5], the stability criteria for neural 
networks were given. Assimakis et al. [6] 
investigated the robust exponential stability for 
uncertain recurrent neural networks. 
  With the rapid development of technology, 
computer technology is introduced into the field of 
engineering research. In fact, when the computer 
processes the input and output control signals, the 
resulting signals are discrete-time. Therefore, 
discrete-time systems have attracted extensive 
attention of researchers [7-10]. On the other hand, in 
the field of practical application, the time-delay 
phenomenon commonly exists in the neural network 
system, which will not only reduce the transmission 
speed of the network but also lead to the instability 
or vibration of the network. Therefore, it is of great 
theoretical and practical significance to study the 
stability and control performance of neural network 
systems with delay [9-12]. In [9], Yu et al. studied 
the exponential stability for discrete-time recurrent 
neural networks with time-varying delay. In [11], 
Liu et al. considered the mean square exponential 
stability for discrete-time stochastic fuzzy neural 
network.  
  In many real systems, we are sometimes interested 

in the performance of the system over a finite time 
interval. For automobile suspension control system, 
the performance of short time interval is more 
popular. Compared with the Lyapunov asymptotic 
stability, the research of finite-time stability 
considers the behavior of the dynamic system within 
a finite time interval. The finite time stability theory 
can be applied to the design of wheeled robots and 
the attitude tracking and attitude cooperative control 
technology of spacecraft. In [13], Dorato proposed 
the definition of short-time stability. In recent years, 
finite time stability and stabilization have attracted 
much attention [14-19]. In [14], the finite-time 
stability analysis of neutral-type neural networks 
with random time varying delays was given. In [16], 
via a new argument Lyapunov-Krasovskii functional, 
the finite-time stability of neural networks with 
time-varying delays was studied. In [19], Ren et al. 
considered the finite-time stabilization for uncertain 
positive Markovian jumping neural networks. In [20], 
Amato et al. extended the concept of finite time 
stability introducing the definition of finite-time 
boundedness for the state of a system. In [21], by 
using reciprocally convex approach, Tuan 
investigated the finite-time boundedness for 
discrete-time delay neural networks. In [22], the 
criterion of finite-time boundedness for the nonlinear 
switched neutral system was presented. 
  To the best of our knowledge, the problem of finite 
time boundedness of discrete time neural networks is 
seldom studied. In this paper, we consider the robust 
finite-time boundedness problem for a class of 
uncertain discrete-time neural networks. We 
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construct an appropriate Lyapunov-Krasovskii 
functional. According to the linear matrix inequality 
technique, the criteria of robust finite-time 
boundedness for discrete-time neural networks with 
time-varying delay are proposed. In addition, the 
sufficient condition for robust finite-time 
boundedness of the discrete-time neural networks 
with constant delay is given. Finally, a numerical 
example is provided to verify the validity of the 
stability criterion. 

Notations: Throughout this note, nR  denotes the 
n -dimensional Euclidean space. 0( 0)P    
denotes that P  is a symmetric positive-definite 
(semi-positive-definite) matrix. The symmetric term 
in a symmetric matrix is denoted by  . We use 

min ( )   and max ( )   to denote the minimum and 
maximum eigenvalue of the real symmetric matrix. 

 

2. Problem Formulation 

Consider the following discrete-time neural 
networks with time-varying delay 

 2 2

( 1) ( ( )) ( ) ( ( )) ( )
( ( )) ( ( ))
( ( )) ( ( ))
( ( )) ( ( ( )))
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d d
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，

 (1) 

where  1 2( ) ( ), ( ), , ( ) T n

nx k x k x k x k R  is the 
neural state vector； the diagonal matrix 

1 2{ , , } nA diag     has positive entries 0i  . 
, , ,dA G H C  are real and known constant 

matrices. The ( )   denotes a vector-valued initial 
function, ( ) qk R  is disturbance satisfying the 
following condition  

             
0

( ) ( ) .
N

T

k

k k  


                  (2) 

The delay ( )d k  is a positive integer which is 
time-varying and satisfies  
         1 21 ( ) ,d d k d                (3) 

where 1d  and 2d  are the known positive integers. 
The parametric uncertainties ( ), ( ), ( ),dA k A k G k    

( ), ( ) H k C k  are assumed to be norm-bounded of 
the form: 

      
1 2 3 4 5

[ ( ) ( ) ( ) ( ) ( )]
( )[ ],

dA k A k G k H k C k

DF k N N N N N

    


      (4) 

where 1 2 3 4 5, , , , ,D N N N N N  are real known constant 

matrices of appropriate dimensions, and ( )F k  is an 
unknown time-varying matrix satisfying  
                ( ) ( ) .TF k F k I               (5) 

The functions  
1 1( ( )) [ ( ( )), , ( ( ))] ,T

n ng x k g x k g x k    

1 1 2 2( ( ( ))) [ ( ( ( ))), ( ( ( ))),h x k d k h x k d k h x k d k   

, ( ( ( )))]T

nh x k d k  
denote the neuron activation functions. 
Assumption 1. For {1,2, , }j n , the neuron 
activation functions ( ( )), ( ( ( )))j j j jg x k h x k d k  in 
(1) are continuous and bounded with 

(0) (0) 0 j jg h , and satisfy 
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R
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(6) 

where , , ,j j j j        are constants. 

Remark 1. The constants , , ,j j j j        can be 
positive, negative, or zero. Hence, the activation 
functions are more general than the commonly used 
Lipschitz conditions. 
Definition 1. [23] Given four positive constants 

1 2, , ,c c N  with 1 2c c  and N Z , a 
symmetric positive-definite matrix R , system (1) 
is said to be finite-time bounded with respect to 

1 2( , , , , )c c R N , if 

1 2sup{ ( ) ( )} ( ) ( ) ,

{1,2, , }.

T Tx Rx c x k Rx k c

k N



 


  

 
  (7) 

Remark 2. When ( ) 0k  , the definition of 
finite-time boundedness can become finite-time 
stability with respect to 1 2( , , , )c c R N . 
Lemma 1. [9] Given constant matrices , ,X Y Z  
with appropriate dimensions satisfying , TX X  

0, TY Y  then  

     1 0 0 .
T

T X Z
X Z Y Z

Y


 

    
  

         (8) 

Lemma 2. [24] Let ,A D  and E  be real matrices  
of appropriate dimensions, matrix ( )F t  satisfies 

( ) ( )TF t F t I . Then for any matrix 0P  and scalar  
0   such that 0,TI EPE    we have 

1

( ( ) ) ( ( ) )

( ) .

 

   
T

T

T T T T

A DF t E P A DF t E

APA APE I EPE EPA DD 
  (9) 
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3. Main Results 
  This section provides some criteria for the 
finite-time boundedness of system (1). 
Theorem 1. Suppose that Assumption 1 holds.  

Given positive constants 1 2, , , 1,N c c    a 
symmetric positive-definite matrix ,R  system (1) 
is robustly finite-time bounded with respect to 

1 2( , , , , ),c c R N if there exist symmetric 
positive-definite matrices 1 2, , , ,P Q T T  diagonal 
matrices 1 20, 0,U U   and positive scalars 

1 2, , i   ( 1,2, ,5),i   such that the following 
LMIs hold: 
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(12) 
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Proof. Choose the following Lyapunov-Krasovskii 
functional candidate    

1 2 3 4 5( ) ( ) ( ) ( ) ( ) ( ),    V k V k V k V k V k V k   (13) 
where 
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Let us define the forward difference of ( )V k  as  
( ) ( 1) ( ).V k V k V k     

We have  
1 1 1
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(14) 

where  
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By Lemma 2, we have 
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  From Assumption 1, for any 1,2, ,i n , we have 
 ( ( ( )) ( ))( ( ( )) ( )) 0,i i i i i i i ig x k x k g x k x k      (21) 
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(22) 
where 

ie  denotes the units column vector having 
element 1 on its i  th row and zeros elsewhere. Let 

1 20, 0,U U  be any n n  diagonal matrices. Then 
we have 
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From Lemma 1, we deduce that the inequality 
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According to (13), we get 
1( ) ( ) ( ) ( ) ( ).T TV k x k Px k x k Rx k       (31) 

Note that (12) is equivalent to 
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Consequently, it can be obtained from (30) - (32)  
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which indicates that system (1) is robustly 
finite-time bounded with respect to 1 2( , , , , )c c R N . 
This completes the proof.   

  Consider the following discrete-time neural 
networks  

 

( 1) ( ( )) ( ) ( ( )) ( )
( ( )) ( )
( ( )) ( ( ))
( ( )) ( ( )),

( ) ( ),   , 1, ,0 ,

       

   

  

   

     

d d

x k A A k x k C C k k

A A k x k d

G G k g x k

H H k h x k d

x d d



   

(34) 

where d  is a positive integer. 
  The following corollary can be obtained. 
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where  

11 2 1

1 2 2 2
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1

2
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0

,
0

d

U

Q U U

U

U



  
 
     

   
 
     

 

1 1 1
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1 2
12
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1 4

,

0
0

,
0
0

T T T
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d d

T T T

T T T

P Q U

A P A PD N

A P A PD N

G P G PD N

H P H PD N











    

   
 
  
 
 
  

 

2 1 5

22
1

1

0 0
.

0

T T T

T

I C P C PD N

P

D PD I

I

 





 
 

   
   
 

     

 

Proof. Choose the following Lyapunov-Krasovskii 
functional candidate    

1
1( ) ( ) ( ) ( ) ( ).

k
T k i T

i k d

V k x k Px k x i Qx i


 

 

    

We have 

1 1

1 1
1

1 1 1

1 2 2

( ) ( 1) ( ) ( 1) ( )

( 1) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( 1) ( ) ( )[

( )

] ( ) ( ) ( )

( ) ( ) ( ) ( ),



     

    

   



    

   

   

 

T T

T d T

T

T T

T T T

T T

d T T

V k V k V k V k

V k k k P k k

x k Qx k x k d Qx k d

x k Px k

V k k P

PD I D PD D P

k x k Qx k

x k Qx k x k Px k

 

  





 



 

 

 (38) 

where  
 1

2 1 2 3 4 5

,

[ ],

( ) ( ) ( ) ( ( )) ( ( ( )))

( ) .

  

  

  



T

d

T

T T T T

T
T

A A G H C

N N N N N

k x k x k d g x k h x k d k

k





 

Combine (38), (23) and (24), we get 
1 1
1

1 1 1

1 2 2

1 1 2 1

1 1

2 2 2

( ) ( 1) ( ) ( )[

( )

] ( ) ( ) ( )
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( ( )) ( ( )) ( ( ))

( ( )) 2 ( ( ))
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1 1 1
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1 1 1 2 2
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(39) 
where  
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1 2 2 2
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From Lemma 1, we get that 
1

1 1 1 1 1 1 2 2( )
0

          



T T T T TP PD I D PD D P 

is satisfied if (35) is feasible. 
Hence, we get  

2( ) ( 1) ( ) ( ) ( ).    TV k V k k k            (40) 
According to the proof of the Theorem 1, we have  

1
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2
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1
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2
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Using condition (36), we can get 
1

1
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1

1
max

1
2 2 1
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T
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  So we have  
1 1

2 1 2( ) ( ) .   N d NV k d c          (43) 
From (35). it follows that 

1( ) ( ) ( ) ( ) ( ). T TV k x k Px k x k Rx k      (44) 
From (37), we have  

1 1
2 1 2 3 2 1( ) .   N N dc d c             (45) 

It can be obtained from (43) - (45)  

1 2 2
1 1

1 1( ) ( ) ( ) ,  Tx k Rx k V k c c
 

    (46) 

which implies that the system (34) is robustly 
finite-time bounded with respect to 1 2( , , , , )c c R N . 
This completes the proof.   

When ( ) 0, A k ( ) 0, ( ) 0,   dA k G k  

( ) 0, ( ) 0,   H k C k  the system (1) reduced to 
the following neural networks 

 2 2

( 1) ( ) ( ( )) ( )
( ( )) ( ( ( )))

( ) ( ),   , 1, ,0 .

     

  

     

,

dx k Ax k A x k d k C k

Gg x k Hh x k d k

x d d



   

  (47) 

  According to the similar ideas in the proof of 
Theorem 1, we can obtain the following corollary. 
Corollary 2. Suppose that Assumption 1 holds. 
Given positive constants 1 2, , 1,N c c  ,  a 
symmetric positive-definite matrix ,R  system (47) 
is finite-time bounded with respect to 

1 2( , , , , )c c R N , if there exist symmetric positive 
definite matrices 1 2, , , ,P Q T T  diagonal matrices 

1 20, 0,U U   positive scalars , i  ( 1,2, ,5),i    
such that the following LMIs hold: 
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  When ( ) 0k  , the system (1) reduced to the 
following discrete-time neural networks 

 2 2

( 1) ( ) ( ) ( ( )) ( ( ))
( ( )) ( ( ))
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（

，
  

(51) 
  From Remark 2, we know that when ( ) 0k  , 
the definition of finite-time boundedness can 
become finite-time stability. According to the 
similar ideas in the proof of Theorem 1, we can get 
the following corollary. 
Corollary 3. Suppose that Assumption 1 holds. 
Given positive constants 1 2, 1, ,N c c    a 
symmetric positive-definite matrix ,R  system (51) 
is finite-time stable with respect to 1 2( , , , )c c R N  , if 
there exist symmetric positive-definite matrices 

1 2, , , ,P Q T T  diagonal matrices 1 20, 0,U U   
positive scalars , i  ( 1,2, ,5),i   such that the 
following LMIs hold: 
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4. Numerical example 
  In this section, we present one example to 
demonstrate the effectiveness of our results. 
Example 1. Consider the system (1) with the 
following parameters 

1 2

0.4 0 0.12 0.1
, ,

0 0.5 0.15 0.1

0.2 0.1 0.01 0.01
, ,

0.2 0.25 0.01 0.01

0.01 0.01 1 0
, ,

0.01 0.01 0 1

1 0 0.01 0
( ) , ,

0 1 0 0.01

0.1 0 0.1 0.4
,

0 0.3 0.2 0.1

   
    
   

   
    
   

   
    
   

   
    
   

   
   
   

dA A

C G

H R

F k D

N N ,

3 4

0.1

5 0.1

1

2

1

2

0.1 0.3 0.2 0.3
, ,

0.3 0.2 0.2 0.3

0.1 0.1 sin( )
, ( ) ,

0.1 0.1 cos( )

tanh(0.08 ( ))
( ( )) ,

tanh(0.06 ( ))

tanh(0.08 ( ( )))
( ( ( )))

tanh(0.08 ( ( )))





   
    
   

  
    
   

 
  
 


 



k

k

N N

e k
N k

e k

x k
g x k

x k

x k d k
h x k d k

x k d k



1 2

,

( ) 2 sin( ) 1,
2

1.001, 1, 7, 10 .

 
 
 

  

   

,
k

d k

c c N






 

By using Matlab LMI control Toolbox to solve 
LMIs (10)-(12), we have 

1 1

0.0884 0.0013 0.0098 0.0004
, ,

0.0013 0.0703 0.0004 0.0066

0.0027 0.0008 6.2862 0
, ,

0.0008 0.0008 0 6.2862

   
    
   

   
    

   

P Q

T U
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2 2

1 2 3 4
5

5 1 2

0.0031 0.0009 0.1043 0
, ,

0.0009 0.0009 0 0.1043
0.0687, 0.1039, 0.0114, 0.0086,

0.0159, =2.5568 10 , =0.1936.

   
    

   

   

 

T U

   

  

  

According to Theorem 1, the system (1) is robustly 
finite-time bounded with respect to (1,7,1, ,10)I . The 
state trajectory of system (1) is shown in Fig.1 

 
Fig 1. The state trajectory of system (1) 

 

5 Conclusion 
The paper has investigated the robust finite-time 

boundedness for discrete-time neural networks with 
time-varying delays. Through constructing a 
Lyapunov-Krasovskii functional, based on the linear 
matrix inequality technique, robust finite-time 
boundedness criteria for the discrete-time neural 
networks with time-varying delays have been 
established. Furthermore, robust finite-time stability 
criterion for the discrete-time neural networks with 
time-varying delays has been given. At the end of the 
article, an example has been given to verify the 
validity of the stability criterion. The finite time H  
control for the discrete-time stochastic neural 
networks with mixed time delays is a very 
meaningful topic that deserves further exploration. 
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