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Abstract: - In reservoir engineering, the flow and type of fluids crossing porous media, are associated with pressure 
drops leading to variations on hydrodynamic parameters and the filtration stages which are of interest to be 
assessed as they impact the production efficiency of oil and gas industry. These parameters are the key to the 
practical solutions of numerous subjects faced during oil field exploitation. Dealing with the problem of sound field 
development initiatives requires a rigorous examination of unsteady filtration of slightly compressible fluid in the 
reserves layer. The state of the art of the proposed scientific work is to present an innovative mathematical 
approach that gives unique results, in the mathematical connection and combination of the equations used versus 
existing diffusion equation in the case of the constant terminal rate solution. This model helps the designers in the 
field of oil and gas to better and faster evaluate the diffusivity of the pay zones, the different hydrodynamic 
parameters, and the different variables that take part in the development of fluid filtration processes in the porous 
medium expressed as in the dependence of time, distance, and other variables, all of which together impact the well 
testing and long-term projections. 
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1  Introduction 
In the oil and gas industry, considering the cases 

when the pay zone is still unopened, the pressure at 
any point within the bed can be assumed as constant. 
Analogously can be accepted for density as a state 
parameter. With the opening of the pay zone from a 
well, from the moment of well completion, it will 
begin to drain and, due to the release of some fluid 
from the producing formation, the pressure will begin 
to drop. With the cleavage of the pay zone from a 
well, starting from the well completion, draining 
issues, and, due to fluid discharge from the producing 
formation, the pressure will decrease in time. As 
fluid withdrawal continues, the decrease in pressure 
will propagate further from the well in the direction 
of the reservoir boundary as stated by fluids law. 
These fluid properties will have a direct impact, 
especially in the field of oil and gas, and may 
prohibit the exploitation of wells with high 
efficiency. Practically, the filtration will be unstable 
and the radius of influence of the well will constantly 
increase as stated in the studies, [1], [2]. During this 

time when the pressure changes at a certain rate, i.e. 
it does not remain constant but is constantly 
changing, the flow state is known to be unsteady-
state flow. In conditions where the flow is in an 
unstable state, the flow rate into a representative 
volume of a porous medium is not equal to the flow 
rate leaving from this element of volume of porous 
media. Based on these pressure changes and if the 
probe radius of investigation has not reached the 
boundary of the reservoir, i.e., the reservoir will act 
as if it were of infinite size, it can be said that the 
flow in the unsteady state is defined as the time 
during which the boundary does not affect the 
pressure behavior in the reservoir. The period, during 
which the process of increasing the radius of 
influence, approaching the radius of the contour (or 
of the drainage area), is scientifically known as the 
first stage of filtering for an unsteady-state flow 
layer, [3]. Also, in cases when fluid quantity entering 
from the feeding area to the zone of production is 
less than what is leaving, the pressure of the layer (in 
the contour) will begin to decrease, [4]. 
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Consequently, the filtering process is becoming 
unsteady as theoretically expected. This fraction of 
time is related to the second stage of filtration for an 
unsteady-state flow, [1], [2]. Considering the first 
case, the unsteady filtering stage can be considered as 
a series of settled states and then move on to solving 
the problem as mentioned in the respective studies, 
[3], [4], [5]. On the other hand, when the 
hydrodynamic study of the well refers to the 
unsteady regime for a relatively short time of process 
development; then the implementation of the 
unsteady filtering replacement method with a series 
of steady stages, leads to hefty errors, [3], [4]. In 
such conditions, it is obligatory and indispensable to 
delve into this concern in more detail by employing 
new mathematical approaches with more parameters 
of influence.  

Strongly affected by the above-mentioned issues 
and uncertainties, then the exploitation of a layer 
from a central well with constant flow in the filtration 
conditions for unsteady flow regimes is suggested. 
Afterwards using a new mathematical technique, the 
terminal constant rate solution of the radial diffusion 
equation is established. The solution of the diffusion 
equation with constant terminal rate taking into 
account the entire flowing time was first presented in 
1949 [6] using Laplace transforms for both the 
constant terminal [7] rate and constant terminal 
pressure cases, as well as by [8] for a well situated 
within a no-flow boundary for each flow time value, 
as well as for all the geometrical configurations. In 
the solution presented by them, three conditions are 
considered; the initial state in which the pressure 
anywhere within the drainage volume is equal to the 
initial equilibrium pressure p, as well as two 
boundary conditions which are: 

The first is the pressure at the outer, infinite 
boundary that is not affected by the pressure 
disturbance at the wellbore and vice versa, and the 
second is the line source inner boundary condition. 
They also use the Boltzmann transformation, the 
diffusivity constant and the substitution of the 
parameters taken into consideration by them. 

The approach presented and the conclusions 
obtained from our analysis are based on the initial 
condition given in expression (i), the boundary 
condition given in expression (ii), the piezometric 
conductivity, the parameter x which is expressed as a 
ratio that relates the two variables r and i which is 
given in Eq 5, the parameter y which expresses the 

change in pressure depending on the parameter x, as 
well as the three variables ∂P

∂t
;  𝜕𝑃

𝜕𝑟
; and 𝜕2𝑃

 𝜕𝑟2:  
All these parameters taken into consideration and 
their mathematical relationship expressed based on 
the physical concept of fluid mobility in the porous 
medium make it possible not only to solve the 
diffusion equation in a different and simple 
mathematical method, but also the variables that take 
parts in this equation, which are expressed as a 
function of different variables, help to solve many 
problems encountered in the testing and 
hydrodynamic analysis of wells as given in the 
studies, [9], [10], [11], [12], [13].  

From the literature we know that the diffusivity 
equation is a combination of three physical 
principles; the continuity equation, Darcy’s law and 
the equation of state regarding a slightly 
compressible liquid, [14], [15], [16]. Employing the 
continuity equation, we can express velocities of the 
flowing fluid for the case of three-direction system 
(Eq.2): 

𝛻(𝜌 ∙ 𝑉) = −
𝜕

𝜕𝑡
(𝜌 ∙ ∅);                  (1) 

 
The differential forms of the equation of motion 

for the case of three dimensional can be given from 
mathematical expression in Eq.2: 

𝑣× = −
𝑘

𝜇
∙

∂P

∂×
; 

𝑣𝛾 = −
𝑘

𝜇
∙

∂P

∂γ
; 

 𝑣𝑧 = −
𝑘

𝜇
∙

∂P

∂z
; 

(2) 

 
Likewise, the equation of state for the case of a 

fluid is given and represented by the mathematical 
expression in Eq.3: 

C = −
1

V
∗

∂V

∂P
 (3) 

 
On the other hand, the formulation of the 

equation for the filtration of slightly compressible 
fluids in isotropic porous media is reached and can be 
represented by the mathematical expression in Eq.4 
merging Eq.1, Eq.2 and Eq.3. [2], [4], [17]. 

∇2ρ =
1

ℵ
∙

∂ρ

∂t
 (4) 

 
where: ℵ =

𝒌

∅∙∙𝑪
→ represents piezometric 

conductivity.  
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Based on Eq. 4, performing the transformation of 
coordinates from polar to Cartesian (Laplace and 
Fourier transforms) [18], [19] combining and 
replacing different equations, as well as considering 
two variables given in the following mathematical 
expression below in Eq.5 and Eq.6 (represent my 
assumptions) we can evaluate them for first and 
second derivative as a function of 𝑟:  𝜕𝑃

𝜕𝑟
;   𝜕

2𝑃

𝜕𝑟2   

×=
r2

ℵ ∙ t
 (5) 

and 

γ =
∂P

∂ ×
 (6) 

 
Using the above assumptions we have succeeded 

in solving the diffusion equation for the case of 
constant terminal rate solution, applying a new, 
simple, flexible, and mathematical technique never 
applied in other oil and gas studies. 
 
 
2  Methodology 
Initially, we assume an oil-bearing bed with the same 
thickness ℎ, having an infinite extent and initial 
reservoir pressure Pi. This layer is exploited by a well 
with a constant flow rate “𝑄” with the focus of 
examining the pressure distribution in space and 
time.  

In our approach as an initial condition governed 
by the expression given in (i) is employed:  
𝑃 = 𝑃𝑖  𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑟 > 𝑟𝑤 𝑎𝑛𝑑 𝑡 = 0 (i) 

 
Afterwards the expression given in (ii) serves as a 
boundary condition: 
lim 𝑃 = 𝑃𝑖   
𝑓𝑜𝑟 𝑟 → ∞ 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡 > 0 

 
(ii) 

 
Practically the  radial flow conditions should be 

expressed with cylindrical coordinates correlated to 
cartesian coordinates as given in Figure 1, [2], [3]. 
 

Following the transformation from cylindrical 
coordinates to cartesian the mathematical expressions 
given in (iii) are carried out: 
×

𝑟
= cos 𝜃 →×= 𝑟 ∙ cos 𝜃   

 𝛾
𝑟

= sin 𝜃 →×= 𝑟 ∙ sin 𝜃 

{
×2= r2 ∙ cos2θ
γ2 = r2 ∙ sin2θ

 

×2+ 𝛾2 = 𝑟2 ∙ (𝑐𝑜𝑠2𝜃 + 𝑠𝑖𝑛2𝜃) 

(iii) 

×2+ 𝛾2 = 𝑟2 → 𝑟 = (×2+ 𝛾2)
1

2 
 

 
Fig. 1: Cylindrical Coordinate to Cartesian 
Coordinate. Adapted after [20] 
 

From Eq. 4 and the transformation given in (iii), 
the solution of the problem can be as given in Eq.7: 

∇2ρ =
1

ℵ
∙

∂ρ

∂t
 

𝜕2𝜌

𝜕 ×2
+

𝜕2𝜌

𝜕𝛾2
=

1

ℵ
∙

𝜕𝜌

𝜕𝑡
 

𝜕2𝜌

𝜕 ×2
=

𝜕

𝜕 ×
(

𝜕𝜌

𝜕 ×
) 

𝜕𝜌

𝜕 ×
=

𝜕𝜌

𝜕𝑟
∙

𝜕𝑟

𝜕 ×
 

𝜕𝑟

𝜕 ×
=

𝜕

𝜕 ×
(×2+ 𝛾2)

1

2 
𝜕𝑟

𝜕 ×
=

1

2
(×2+ 𝛾2)

1  

2
−1 ∙ 2 × 

𝜕𝑟

𝜕 ×
=

1

×
(×2+ 𝛾2)−

1  

2  
×

(×2+ 𝛾2)
1

2

=
×

𝑟
 

𝜕𝜌

𝜕 ×
=

𝜕𝜌

𝜕𝑟
∙

𝜕𝑟

𝜕 ×
=

𝜕𝜌

𝜕𝑟
∙

×

𝑟
 

𝜕2𝜌

𝜕 ×2
=

𝜕

𝜕 ×
(

𝜕𝜌

𝜕 ×
) =

𝜕

𝜕 ×
(

𝜕𝜌

𝜕𝑟
∙

×

𝑟
) 

𝜕

𝜕 ×
(

𝜕𝜌

𝜕𝑟
) ∙

×

𝑟
+

𝜕

𝜕 ×
(

×

𝑟
) ∙

𝜕𝜌

𝜕𝑟
 

𝜕2𝜌

𝜕 ×2
=

𝜕

𝜕𝑟
(

𝜕𝜌

𝜕𝑟
) ∙

𝜕𝑟

𝜕 ×
∙

×

𝑟
+ (

𝑟 −
𝜕𝑟

𝜕×
∙×

𝑟2
)

∙
𝜕𝜌

𝜕𝑟
 

(7) 
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𝜕2𝜌

𝜕 ×2
=

𝜕2𝜌

𝜕𝑟2
∙

×

𝑟
∙

×

𝑟
+ (

𝑟 −
×

𝑟
∙×

𝑟2
) ∙

𝜕𝜌

𝜕𝑟
 

𝜕2𝜌

𝜕 ×2
=

𝜕2𝜌

𝜕𝑟2
∙

×2

𝑟2
+ (

𝑟2 −×2

𝑟3 ) ∙
𝜕𝜌

𝜕𝑟
 

=
𝜕2𝜌

𝜕𝑟2
∙

×2

𝑟2
+ (

×2+ 𝛾2 −×2

𝑟3 ) ∙
𝜕𝜌

𝜕𝑟
 

𝜕2𝜌

𝜕 ×2
=

𝜕2𝜌

𝜕𝑟2
∙

×2

𝑟2
+

𝛾2

𝑟3
∙

𝜕𝜌

𝜕𝑟
 

 
Applying more transformation than the following 

mathematical expression in Eq. 8 can be obtained: 
∂2ρ

∂ ×2
=

∂2ρ

∂r2
∙

×2

r2
+

γ2

r3
∙

∂ρ

∂r
 

∂2ρ

∂γ2
=

∂2ρ

∂r2
∙

γ2

r2
+

×2

r3
∙

∂ρ

∂r
 

(8) 

 
Applying and merging the above expression with 

their influencing parameters from (Eq.8) then the 
expression Eq.9 is obtained. 
𝜕2𝜌

𝜕 ×2
+

𝜕2𝜌

𝜕𝛾2
= 

=
𝜕2𝜌

𝜕𝑟2
∙

×2

𝑟2
+

𝛾2

𝑟3
∙

𝜕𝜌

𝜕𝑟
+

𝜕2𝜌

𝜕𝑟2
∙

𝛾2

𝑟2
+

×2

𝑟3
∙

𝜕𝜌

𝜕𝑟
 

= (
×2

𝑟2
+

𝛾2

𝑟2) ∙
𝜕2𝜌

𝜕𝑟2
+ (

×2

𝑟3
+

𝛾2

𝑟3) ∙
𝜕𝜌

𝜕𝑟
 

= (
𝑟2

𝑟2) ∙
𝜕2𝜌

𝜕𝑟2
+ (

𝑟2

𝑟3) ∙
𝜕𝜌

𝜕𝑟
 

∴
𝜕2𝜌

𝜕 ×2
+

𝜕2𝜌

𝜕𝛾2
=

𝜕2𝜌

𝜕𝑟2
+

1

𝑟

𝜕𝜌

∙ 𝜕𝑟
 

(9) 

 
Based on Eq.9 we simply write as following Eq. 

10: 

𝛻2𝜌 =
𝜕2𝜌

𝜕 ×2
+

𝜕2𝜌

𝜕𝛾2
 

=
1

ℵ
∙

𝜕𝜌

𝜕𝑡
↔

∂2ρ

∂r2 +
1

r

∂ρ

∗∂r
=

1

ℵ
∙

∂ρ

∂t
    

(10) 

 
The equation of state for the case of a 

compressible liquid as represented in Eq. 11 is used: 
in respect to initial density values. 
ρ = ρ0 ∙ eC×(P−P0) or  
 ρ = ρ0 ∙ [1 + C ∙ (P0 − P)]    

(11) 

 
Applying the first derivative of the density 

function with respect to r, we get the mathematical 
expression as given in Eq.12: 
𝜕𝜌

𝜕𝑟
=

𝜕

𝜕𝑟
(𝜌0 + 𝜌0 ∙ 𝐶 ∙ (𝑃0 − 𝑃))  (12) 

𝜕𝜌

𝜕𝑟
= 𝜌0 ∙ 𝐶 ∙

𝜕𝑃

𝜕𝑟
 

∇𝜌 = 𝜌0 ∙ 𝐶 ∙ ∇𝑃 

∇𝑃 =
1

𝜌0 ∙ 𝐶
∙ 𝛻𝜌 

 
Applying the second derivative of the above 

function (Eq.12) to the mathematical expression we 
get Eq.13. 
∂2ρ

∂r2 = ρ0 ∙ C ∙
∂2P

∂r2     

  ∂ρ

∂t
= ρ0 ∙ C ∙

∂P

∂t
 

(13) 

 
By substituting the expression in Eq.13 in Eq. 10, 
then the relationship as given in Eq.14 can be 
achieved. 

𝜌0 ∙ 𝐶 ∙
𝜕2𝑃

𝜕𝑟2
+

1

𝑟
∙ 𝜌0 ∙ 𝐶 ∙

𝜕𝑃

𝜕𝑟
= 

=
1

ℵ
∙ 𝜌0 ∙ 𝐶 ∙

𝜕𝑃

𝜕𝑡
 

= 𝜌0 ∙ 𝐶 ∙ (
𝜕2𝑃

𝜕𝑟2
+

1

𝑟
∙

𝜕𝑃

𝜕𝑟
) 

= 𝜌0 ∙ 𝐶 ∙ (
1

ℵ
∙

𝜕𝑃

𝜕𝑡
) 

→
𝜕2𝑃

𝜕𝑟2
+

1

𝑟
∙

𝜕𝑃

𝜕𝑟
=

1

ℵ
∙

𝜕𝑃

𝜕𝑡
 

(14) 

 

 

3  Results and Discussion 
To simplify the analytical solution of the problem 
raised, we have considered, without spoiling the 
solution, that the radius of the well is inefficiently 
small, thus having a suction point. Then we have 
marked with x the ratio that connects the two 
variables s and t and continuing with its substitution 
in equation 14, the result was obtained as following 
for three variables  

∂P

∂t
;  𝜕𝑃

𝜕𝑟
; and 𝜕2𝑃

 𝜕𝑟2: 

×=
r2

ℵ ∙ t
 

∂P

∂t
=

∂P

∂ ×
∙

∂ ×

∂t
 

∂P

∂t
=

∂P

∂ ×
∙

∂

∂t
(

r2

ℵ ∙ t
) 

∂P

∂t
=

∂P

∂ ×
∙ [

r2

ℵ
∙ (−

1

t2
)] 

𝜕𝑃

𝜕𝑡
=

𝜕𝑃

𝜕 ×
∙ (−

𝑟2

ℵ ∙ 𝑡2) 

(15) 
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→
1

ℵ
∙

𝜕𝑃

𝜕𝑡
= −

𝑟2

ℵ ∙ 𝑡2
∙

𝜕𝑃

𝜕 ×
 

 
For  

𝝏𝑷

𝝏𝒓
 the mathematical relationship as 

following in Eq.16 can be found. 
𝜕𝑃

𝜕𝑟
=

𝜕𝑃

𝜕 ×
∙

𝜕 ×

𝜕𝑟
= 

=
𝜕𝑃

𝜕 ×
∙

𝜕

𝜕𝑟
(

𝑟2

ℵ ∙ 𝑡
) 

=
𝜕𝑃

𝜕 ×
∙ (

2𝑟

ℵ ∙ 𝑡
) 

1

r
∙

∂P

∂r
=

1

𝑟
∙

2𝑟

ℵ ∙ 𝑡
∙

𝜕𝑃

𝜕 ×
 

→
1

𝑟
∙

𝜕𝑃

𝜕𝑟
=

2

ℵ ∙ 𝑡
∙

𝜕𝑃

𝜕 ×
 

(16) 

 
For 𝝏𝟐𝑷

𝝏𝒓𝟐 the mathematical relationship as 
following in Eq.17 can be carried out: 
𝜕2𝑃

𝜕𝑟2
=

𝜕

𝜕𝑟
(

𝜕𝑃

𝜕𝑟
) =

𝜕

𝜕𝑟
(

2𝑟

ℵ ∙ 𝑡
∙

𝜕𝑃

𝜕 ×
) 

=
𝜕

𝜕𝑟
(

2𝑟

ℵ ∙ 𝑡
) ∙

𝜕𝑃

𝜕 ×
+

𝜕

𝜕𝑟
(

𝜕𝑃

𝜕 ×
) ∙

2𝑟

ℵ ∙ 𝑡
 

=
2

ℵ ∙ 𝑡
∙

𝜕𝑃

𝜕 ×
+

𝜕

𝜕 ×
∙ (

𝜕𝑃

𝜕 ×
) ∙

𝜕 ×

𝜕𝑟
∙

2𝑟

ℵ ∙ 𝑡
 

=
2

ℵ ∙ 𝑡
∙

𝜕𝑃

𝜕 ×
+

𝜕2𝑃

𝜕 ×2
∙

𝜕

𝜕𝑟
(

𝑟2

ℵ ∙ 𝑡
) ∙

2𝑟

ℵ ∙ 𝑡
 

=
2

ℵ ∙ 𝑡
∙

𝜕𝑃

𝜕 ×
+

𝜕2𝑃

𝜕 ×2
∙

4𝑟2

ℵ2 ∙ 𝑡2
 

(17) 

 
By substituting equations 15, 16 and 17 into equation 
14, we get the result as following in Eq.18: 
∂2ρ

∂r2
+

1

r

∂ρ

∙ ∂r
=

1

ℵ
∙

∂ρ

∂t
 

=
2

ℵ ∙ 𝑡
∙

𝜕𝑃

𝜕 ×
+

𝜕2𝑃

𝜕 ×2
∙

4𝑟2

ℵ2 ∙ 𝑡2
+

2

ℵ ∙ 𝑡
∙

𝜕𝑃

𝜕 ×
 

= −
𝑟2

ℵ2 ∙ 𝑡2
∙

𝜕𝑃

𝜕 ×
 

4𝑟2

ℵ2 ∙ 𝑡2
∙

𝜕2𝑃

𝜕 ×2
+

4

ℵ ∙ 𝑡
∙

𝜕𝑃

𝜕 ×
+

𝑟2

ℵ2 ∙ 𝑡2
∙

𝜕𝑃

𝜕 ×
= 0 

=
4𝑟2

ℵ2 ∙ 𝑡2
∙

𝜕2𝑃

𝜕 ×2
+ (

4

ℵ ∙ 𝑡
+

𝑟2

ℵ2 ∙ 𝑡2) ∙
𝜕𝑃

𝜕 ×
= 0 

(18) 

Then both sides are multiplied of the Eq.18 by ℵ ∙

𝑡 and considering that ×=
𝐫𝟐

ℵ∙𝐭
 than we can simply get 

the result as given in Eq. 19: 
4𝑟2

ℵ ∙ 𝑡
∙

𝜕2𝑃

𝜕 ×2
+ (4 +

𝑟2

ℵ ∗ 𝑡
) ∙

𝜕𝑃

𝜕 ×
= 0 (19) 

4 ×∙
𝜕2𝑃

𝜕 ×2
+ (4 +×) ∙

𝜕𝑃

𝜕 ×
= 0 

→ 4 ×∙
𝜕2𝑃

𝜕 ×2
= −(4 +×) ∙

𝜕𝑃

𝜕 ×
 

→
𝜕2𝑃

𝜕 ×2
= − (

4 +×

4 ×
) 

∴
𝝏𝟐𝑷

𝝏×𝟐 = (−
𝟏

×
−

𝟏

𝟒
) ∙

𝝏𝑷

𝝏×
  

 
Supposing the assumptions that  𝛾 =

𝜕𝑃

𝜕×
 and 

extending our calculation it is possible to get the 
mathematical expression as given in Eq. 20: 
𝜕2𝑃

𝜕 ×2
=

𝜕

𝜕 ×
∙ (

𝜕𝑃

𝜕 ×
) = (−

1

×
−

1

4
) ∙

𝜕𝑃

𝜕 ×
 

𝜕𝛾

𝜕 ×
= (−

1

×
−

1

4
) ∙ 𝛾 

𝜕𝛾

𝜕𝛾
= (−

1

×
−

1

4
) ∙ 𝜕 × 

𝑑𝛾

𝛾
= (−

1

×
−

1

4
) ∙ 𝑑 × 

∫
𝑑𝛾

𝛾
= ∫ (−

1

×
−

1

4
) ∙ 𝑑 × 

𝑙𝑛𝛾 = −𝑙𝑛 × −
1

4
× +𝐶1 

𝑙𝑛𝛾 = −𝑙𝑛 × + ln 𝑒−
×

4 + ln 𝐶1 

𝑙𝑛𝛾 =
𝑙𝑛 𝐶1 ∙ 𝑒−

×

4

×
 

𝛾 = 𝐶1 ∙
𝑒−

×

4

×
 

𝑑𝑝

𝑑 ×
= 𝐶1 ∙

𝑒−
×

4

×
 

(20) 

 
Based on Eq. 20, performing the variable 

separation and integrating, then the following 
expression represented by Eq. 21 is carried out: 

𝑑𝑝 = 𝐶1 ∙
𝑒−

×

4

×
∙ 𝑑 × 

 
 
By integrating both sides of the pressure 
equation, we simply get: 

∫ 𝑑𝑝 = 𝐶1 ∙ ∫
𝑒−

×

4

×
∙ 𝑑 × 

𝑃 = 𝐶1 ∙ ∫
ℵ ∙ 𝑡 ∙ 𝑒−

×

4

×2
∙ 𝑑 × +𝐶2 

(21) 
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For 𝑡 = 0; ×→ ∞ the term within the integral goes to 
zero, so we will have the following expression in 
Eq.22: 

∫
ℵ ∙ 𝑡 ∙ 𝑒−

×

4

×2
∙ 𝑑 ×= 0 

→ 𝑓𝑜𝑟 𝑡 = 0  
→ 𝑃 = 𝑃𝑖  
P = C2 = Pi 

(22) 

 
Starting from continuity Eq. 23 and substitute it 
further we get expression in Eq. 24: 
�̇� = 𝑣 ∙ 𝐹 (23) 

 
Hence, �̇� = 2𝜋 ∙ 𝑟 ∙ ℎ ∙

𝑘

𝜇
∙

𝜕𝑃

𝜕𝑟
 

�̇� = 2𝜋 ∙ 𝑟 ∙ ℎ ∙
𝑘

𝜇
∙

𝜕𝑃

𝜕 ×
∙

𝜕 ×

𝜕𝑟
 

�̇� = 2𝜋 ∙ 𝑟 ∙ ℎ ∙
𝑘

𝜇
∙

𝜕

𝜕𝑟
(

𝑟2

ℵ ∙ 𝑡
) ∙

𝜕𝑃

𝜕 ×
 

�̇� = 2𝜋 ∙ 𝑟 ∙ ℎ ∙
𝑘

𝜇
∙

2𝑟

ℵ ∙ 𝑡
∙

𝑑𝑝

𝑑 ×
 

�̇� =
4𝜋 ∙ 𝑘 ∙ ℎ

𝜇
∙

𝑟2

ℵ ∙ 𝑡
∙

𝑑𝑝

𝑑 ×
 

�̇� =
4𝜋 ∙ 𝑘 ∙ ℎ

𝜇
∙×∙

𝑒−
×

4

×
∙ 𝐶1 

�̇� =
4𝜋 ∙ 𝑘 ∙ ℎ

𝜇
∙ 𝑒−

×

4 ∙ 𝐶1 

(24) 

 
For 𝑡 → ∞ → 𝑒−

×

4 = 1 than we can get the flow rate 
as given in expression in Eq.25. 

�̇� =
4𝜋 ∙ 𝑘 ∙ ℎ

𝜇
∙ 𝐶1 ∙ 𝑒−

𝑟2

4∗ℵ∗𝑡 

→ 𝑒−
𝑟2

4∙ℵ∙𝑡 = 1 → 𝐶1 =
𝑄∙𝜇

4𝜋∙𝑘∙ℎ
     

(25) 

 
As a conclusion the mathematical expression of 

the pressure as a function of two variables as chosen 
in the study, lead to the following expression in 
Eq.26: 

𝑃(𝑟, 𝑡) = 𝑃𝑖 +
�̇�∙𝜇

4𝜋∙𝑘∙ℎ
∙ ∫

𝑒
−

×
4

×
∙ 𝑑 ×     (26) 

Integrating we can get expressions as following 
in Eq.27 

∫
𝑒−

×

4

×
∗ 𝑑 ×= ∫

𝑒−
×

4

×

4

∙ 𝑑 (−
×

4
) 

∫
𝑒−

×

4

×
∙ 𝑑 ×= ∫

𝑒−𝑢

−𝑢
∙ 𝑑𝑢 = 𝐸𝑖(−𝑢) 

𝑃(𝑟, 𝑡) = 𝑃𝑖 −
�̇� ∙ 𝜇

4𝜋 ∙ 𝑘 ∙ ℎ
∙ 𝐸𝑖(−𝑢) 

𝐸𝑖(−𝑢) = ln
1

𝑢
− 𝐶𝑒 

𝐸𝑖(−𝑢) = ln
1
𝑟2

4∙ℵ∙𝑡

− 𝐶𝑒 

(27) 

Substituting 𝐶𝑒 = 0.5772 (Euler constant) 
(𝐸𝑖(−𝑢) = ln

4∙ℵ∙𝑡

𝑟2 − 0.5772, as well as 𝑟 = 𝑟𝑤. 
Assuming that our analysis and pressure values are 
directly measured in the wellbore, and further 
substituting the above values, then the mathematical 
expression given in Eq. 28 regarding diffusivity 
equation is carried out. 
𝑃(𝑟, 𝑡) = 

𝑃𝑖 −
𝑄 ∙ 𝜇

4𝜋 ∙ 𝑘 ∙ ℎ
∙ (ln

4 ∙ ℵ ∙ 𝑡

𝑟𝑤
2

− 0.5772) (28) 

 
On the other hand, substituting ℵ =

𝑘

∅∙𝜇∙𝐶
  in Eq. 

28 then the proposed mathematical model can be 
carried out and represented by the following Eq.29: 
𝑃(𝑟, 𝑡) = 

𝑃𝑖 −
𝑄 ∙ 𝜇

4𝜋 ∙ 𝑘 ∙ ℎ
∙ (ln

4 ∙ 𝑘 ∙ 𝑡

∅ ∙ 𝜇 ∙ 𝐶 ∙ 𝑟𝑤
2

− 0.5772) (29) 

If more transformations are performed, then 
Eq.29 can be easily represented by the mathematical 
expression in Eq.30. 
 
𝑃(𝑟, 𝑡) = 

= 𝑃𝑖 −
𝑄 ∙ 𝜇

4𝜋 ∙ 𝑘 ∙ ℎ
∙ (ln

4 ∙ 𝑘 ∙ 𝑡

𝑒0.5772 ∙ ∅ ∙ 𝜇 ∙ 𝐶 ∙ 𝑟𝑤
2

) (30) 

 
The three forms of equations 28, 29, 30 are 

called the basis of the diffusion equation, since using 
dimensionless variables such as dimensionless 
radius, dimensionless time and dimensionless 
pressure, for a many reasons, as well as using 
conversion to field unit and  mechanical skin factor 
[6], the equation's form will be change, [1], [4]. As 
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can be seen, the transient solution is not true for the 
entire drainage surface, as the reservoir appears to be 
infinite in extent, at the moment we refer  the 
position of the well in relation to the contour, for a 
short time when the equation is applicable, [1], [4]. 
The author in the study [8] suggested a method for 
determination of average pressure in a bounded 
reservoir. resolves the question on issues related to 
drainage volumes with no pressure data. In that case 
a plot of average pressure versus relative drainage 
volume may allow the missing pressures to be 
assessed, [8]. In the research work of [21] the flow of 
a fluid with pressure-dependent viscosity through 
variable permeability porous layer is performed. The 
results showed that values of the permeability 
proportionality constant have negligible or no effects 
on flow characteristics. 

 
 

4  Conclusion 
As conclusion, the diffusivity equation presented 
above, expresses a connection between the principles 
and laws of physics and further structured to 
mathematical analysis employing differential 
equations, coordinate transformations, derivation, 
and integration rules. Diffusion itself represents a 
physical phenomenon of molecular movements, 
usually manifested by the movement of liquids and 
gases depending on the conditions and parameters 
impacting it. For the case study, applicable to oil and 
gas-bearing rocks, the pressure diffusion in the 
reservoir, is mainly affected by the Darcy law 
(filtration velocity of fluids in porous media), the law 
of mass conservation, the equation of state for fluid 
and rock structure as well. The study of the filtration 
process of slightly compressible liquids in porous 
media as well as the determination of its dynamics 
pressure drop, and rates of exploitation time for a 
given oil field, interconnected, and combined in the 
diffusion equation, have a great importance in 
practical applications during well testing. In this 
research paper, the radial flow is treated in a layer to 
an infinite extent exploited with a constant flow rate. 
Further on it is mathematically represented by 
solving the differential equation gathering different 
variables we suggest the new mathematical technique 
useful in both the theoretical and practical aspects 
during well testing. The proposed method is simple 
and applicable in the real conditions of fluid flow in 
porous media and regardless of certain limitations 
that exist during the solution of the diffusion 

equation, all the mathematical relationships of the 
different variables expressed above, which 
are programmed in the corresponding software, not 
only provide a quick and concise solution but help in 
many situations in the calculation of various 
parameters during the hydrodynamic study of wells. 
 
 
5  Future Work 
In the future,  all these parameters taken into 
consideration and their mathematical relationship 
expressed based on the physical concept of fluid 
mobility in the porous medium make it possible not 
only to solve the diffusion equation in a different and 
simple mathematical method but also the variables 
that take parts in this equation, which are expressed 
as a function of different variables, help to solve 
many problems encountered in the testing and 
hydrodynamic analysis of wells, leading to improve 
the fuel extraction economy and fuel quality for a 
better and safer environmental especially from 
transport sector, [22], [23]. 
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