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Abstract: This work deals with a novel three-dimensional finite-volume non-hydrostatic shock-capturing model 
for the simulation of wave transformation processes and wave-structure interaction. The model is based on an 
integral formulation of the Navier-Stokes equations solved on a coordinate system in which the vertical 
coordinate is varying in time. A finite-volume shock-capturing numerical technique based on high order WENO 
reconstructions is adopted in order to discretize the fluid motion equations.  
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1 Introduction 
The modelling of surface wave transformation 
processes is crucial when dealing with the 
simulation of the hydrodynamic phenomena in 
coastal regions. Three-dimensional equations of 
motion can be used in order to represent most of 
these processes. In the most recent 3D models [15], 
the dynamic pressure is taken into account (free 
surface fully non-hydrostatic models). In such 
models, the total pressure is decomposed in its 
dynamic and hydrostatic parts. The solution of the 
fluid motion governing equations can be obtained as 
a succession of two different steps: in the first one, 
the convective terms are discretised together with 
those related to the hydrostatic pressure, the bottom 
slope and the stress term; in the second one, the 
so-called Poisson equation is solved in order to 
compute the dynamic pressure. In the firsts free 
surface fully non-hydrostatic models, Cartesian 
coordinates were used with proper free tracking 
technique [4]. By this way, the calculation cells are 
arbitrarily crossed by the vertical fluxes making it 
difficult to correctly assign the pressure kinematic 
condition for the free surface elevation. As a 
consequence, spurious oscillations are present in the 
numerical solution which requires a huge number of 
layers in the vertical direction [11]. 

An alternative form of the three-dimensional 
equations of motion can be obtained by 
transforming the complex computational domain, 
which represents the complex physical geometry, in 
a regular domain. Such transformation can involve 
curvilinear coordinate systems which are 
time-dependent and moves with the free surface: the 
free surface and the bottom turn out always to be 
located respectively at the upper and the lower 

boundary of the computational domain. Moreover, 
the fluid pressure at the free surface is precisely set 
to zero, so that no approximation is involved in the 
assignation of the pressure condition at the upper 
boundary. In the work of Thomas and Lombard [18], 
the flow variables are represented by the Cartesian 
based velocity components multiplied by the 
Jacobian of the transformation. 

The main difficulty in the simulation of the wave 
propagation from deep to shallow water (including 
the surf zone) is related to the approach adopted in 
order to reproduce the wave breaking. In this regard, 
an approach can be used based on the consideration 
that the wave breaking can be represented by the 
discontinuity of the weak solution of the integral 
form of the motion equations. Weak solution with 
discontinuity can be obtained by using the integral 
form of the fluid motion equations expressed in 
terms of conserved variable (𝐻𝐻 and 𝐻𝐻𝑣𝑣, where 𝐻𝐻 
is the local depth and 𝑣𝑣  is the depth-averaged 
horizontal velocity), whereas it can’t be obtained by 
using the differential form expressed in function of 
the primitive variable (𝐻𝐻 and 𝑣𝑣). Furthermore, if 
shocks are present in the solution, shock waves with 
erroneous propagation celerity arise in the solution 
of the differential form of the motion equations 
expressed in terms of primitive variables. This also 
happens in the case in which primitive variables are 
used in a conservative finite-volume scheme that is 
applied to differential equations in which the 
convective terms are expressed in divergence form. 
The integral form of the motion equations, 
expressed in terms of conserved variables, allow 
high order shock-capturing numerical schemes to 
converge to correct weak solutions and, 
consequently, permit to directly simulate the 
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breaking of the wave and the energy dissipation 
associated with it. In literature ([1], [2], [3], [9], 
[17]), the motion equations are expressed in integral 
or differential conservative forms and in terms of 
conserved variables. 

In the context defined by the simulation of free 
surface flows performed by using the motion 
equations in three-dimensional form integrated by 
methods of shock-capturing type, Weighted 
Essentially Non-Oscillatory (WENO) ([5], [12], [14], 
[7]) are often used, in which the numerical flux is 
approximated by using a convex combination of all 
candidate stencils. Reference [14] proposed the 
cell-averaged version of the WENO scheme where a 
procedure by which the point values are 
reconstructed from the cell-averaged values is 
introduced. The WENO technique uses a 
combination of low-order reconstructions in order to 
obtain a higher order approximation. The 
coefficients which appear in this combination are 
called linear weights and depends on the local 
geometry of the meshes. When meshes are uniform 
or smoothly-varying the linear weights sign is 
positive, otherwise weights with a negative sign can 
arise as a consequence of a high degree of mesh 
irregularity. A monotone scheme cannot be 
performed by using weights with a negative sign in 
WENO reconstructions. In order to overcome the 
limitations of the WENO scheme related to negative 
linear weight on unstructured grids, remove the 
dependence of the linear weights on the mesh 
variability and obtain symmetry conditions, the 
motion equation numerical solutions can be 
performed on a time-dependent generalized 
curvilinear boundary-conforming grid. By following 
this approach, the domain is turned into a 
rectangular region which is fixed in time and the 
fluid variables are directly reconstructed within a 
modified space in which the grid spacing is constant, 
so that the regularity of the domain is greatly 
improved: as a consequence, the linear weights are 
positive and symmetrical and the monotonicity of 
the scheme is guaranteed. 

In this work, wave transformation is simulated by 
numerically solving the fluid motion equations 
written in a new integral form on a coordinate 
system in which the vertical coordinate is varying in 
time. The boundary conditions for pressure are 
placed on the upper face of each computational cell. 
The solution is advanced in time by using a 
three-stage Strong Stability Preserving Runge-Kutta 
(SSPRK) fractional step numerical method which is 
accurate to the third order, and at each stage a 
pressure correction formulation is applied in order to 
get a fluid velocity field which is divergence-free. A 
shock-capturing technique based on high-order 
WENO reconstructions is employed in order to 
discretize the fluid motion equations. At every cell 

interface, the numerical flux is computed by solving 
an approximate HLL Riemann problem. 
 
 
2 The Motion Equations In Time- 
Dependent Curvilinear Coordinate 
Systems 
In integral form, the continuity and the momentum 
equations over a control volume ∆𝑉𝑉(𝑡𝑡) which varies 
in time read 
 
𝑑𝑑
𝑑𝑑𝑑𝑑 ∫ 𝜌𝜌𝜌𝜌𝜌𝜌∆𝑉𝑉(𝑡𝑡) + ∫ 𝜌𝜌(𝑢𝑢𝑚𝑚 − 𝑣𝑣𝑚𝑚 )𝑛𝑛𝑚𝑚𝑑𝑑𝑑𝑑∆𝐴𝐴(𝑡𝑡) = 0 (1) 
 
𝑑𝑑
𝑑𝑑𝑑𝑑 ∫ 𝜌𝜌𝑢𝑢𝑙𝑙𝑑𝑑𝑑𝑑∆𝑉𝑉(𝑡𝑡) + ∫ 𝜌𝜌𝑢𝑢𝑙𝑙(𝑢𝑢𝑚𝑚 − 𝑣𝑣𝑚𝑚 )𝑛𝑛𝑚𝑚𝑑𝑑𝑑𝑑∆𝐴𝐴(𝑡𝑡) =  
 

∫ 𝜌𝜌𝑓𝑓𝑙𝑙𝑑𝑑𝑑𝑑∆𝑉𝑉(𝑡𝑡) + ∫ 𝑇𝑇𝑙𝑙𝑙𝑙𝑛𝑛𝑚𝑚𝑑𝑑𝑑𝑑∆𝐴𝐴(𝑡𝑡)   
          (2) 
 
in which ∆𝐴𝐴(𝑡𝑡) is the control volume surface, 𝑢𝑢𝑙𝑙  
(𝑙𝑙=1,3) and 𝑣𝑣𝑚𝑚  (𝑚𝑚=1,3) are respectively the velocity 
of the fluid and the velocity of the control volume 
surface, both defined in the Cartesian reference 
coordinate system 𝑥𝑥𝑙𝑙  (𝑙𝑙=1,3) (in the present notation 
it is intended that the superscripts designate 
components instead of powers), 𝑛𝑛𝑚𝑚  (𝑚𝑚=1,3) is the 
outward unit vector normal to the surface ∆𝐴𝐴(𝑡𝑡), 𝜌𝜌 
is the fluid density, 𝑇𝑇𝑙𝑙𝑙𝑙  is the stress tensor and 𝑓𝑓𝑙𝑙  
(𝑙𝑙=1,3) is the vector representing the unit mass body 
forces 
 
𝑓𝑓𝑙𝑙 = − 1

𝜌𝜌
𝑝𝑝,𝑙𝑙 − 𝐺𝐺𝛿𝛿13      (3) 

 
where 𝛿𝛿13 is the Kronecker delta and 𝑝𝑝 is the total 
pressure (here the comma with an index in subscript 
denotes the derivative as [ ],𝑙𝑙 = 𝜕𝜕[ ] 𝜕𝜕𝑥𝑥𝑙𝑙⁄ ). The 
total pressure is defined as the sum of its hydrostatic 
and dynamic components 
 
𝑝𝑝 = 𝜌𝜌𝜌𝜌(𝜂𝜂 − 𝑥𝑥3) + 𝑞𝑞      (4) 
 
in which 𝐺𝐺 is the gravity constant, 𝜂𝜂 is the elevation 
of the free surface and 𝑞𝑞 is the dynamic pressure. 

It is possible to rewrite the first integral on the 
right-hand side of (2) in the following way 
 

∫ 𝜌𝜌𝑓𝑓𝑙𝑙𝑑𝑑𝑑𝑑∆𝑉𝑉(𝑡𝑡) = −∫ �(𝜌𝜌𝜌𝜌𝜌𝜌 + 𝑞𝑞),𝑙𝑙 �𝑑𝑑𝑑𝑑∆𝑉𝑉(𝑡𝑡)   (5) 
 

The application of the Green's theorem makes it 
possible to rewrite the integral on the right-hand side 
of (5) as follows 
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−∫ �(𝜌𝜌𝜌𝜌𝜌𝜌 + 𝑞𝑞),𝑙𝑙�𝑑𝑑𝑑𝑑∆𝑉𝑉(𝑡𝑡) =  
 

−∫ 𝜌𝜌𝜌𝜌𝜌𝜌𝑛𝑛𝑙𝑙𝑑𝑑𝑑𝑑∆𝐴𝐴(𝑡𝑡) − ∫ �𝑞𝑞,𝑙𝑙�𝑑𝑑𝑑𝑑∆𝑉𝑉(𝑡𝑡)   
          (6) 

 
The introduction of (6) into (2) allows us to obtain 

 
𝑑𝑑
𝑑𝑑𝑑𝑑 ∫ 𝜌𝜌𝑢𝑢𝑙𝑙𝑑𝑑𝑑𝑑∆𝑉𝑉(𝑡𝑡) =  
 
−∫ [𝜌𝜌𝑢𝑢𝑙𝑙(𝑢𝑢𝑚𝑚 − 𝑣𝑣𝑚𝑚 )𝑛𝑛𝑚𝑚 + 𝜌𝜌𝜌𝜌𝜌𝜌𝑛𝑛𝑙𝑙]𝑑𝑑𝑑𝑑∆𝐴𝐴(𝑡𝑡)   
 
−∫ �𝑞𝑞,𝑙𝑙 �𝑑𝑑𝑑𝑑∆𝑉𝑉(𝑡𝑡) + ∫ 𝑇𝑇𝑙𝑙𝑙𝑙𝑛𝑛𝑚𝑚𝑑𝑑𝑑𝑑∆𝐴𝐴(𝑡𝑡)    (7) 
 

Equation (7), in which the only external body 
force is given by the gravitational force, becomes in 
the case of an incompressible fluid 
 
𝑑𝑑
𝑑𝑑𝑑𝑑 ∫ 𝜌𝜌𝑢𝑢𝑙𝑙𝑑𝑑𝑑𝑑∆𝑉𝑉(𝑡𝑡) =  
 
−∫ [𝑢𝑢𝑙𝑙(𝑢𝑢𝑚𝑚 − 𝑣𝑣𝑚𝑚 )𝑛𝑛𝑚𝑚 + 𝐺𝐺𝐺𝐺𝑛𝑛𝑙𝑙]𝑑𝑑𝑑𝑑∆𝐴𝐴(𝑡𝑡)   
 
− 1

𝜌𝜌 ∫ �𝑞𝑞,𝑙𝑙�𝑑𝑑𝑑𝑑∆𝑉𝑉(𝑡𝑡) + 1
𝜌𝜌 ∫ 𝑇𝑇𝑙𝑙𝑙𝑙𝑛𝑛𝑚𝑚𝑑𝑑𝑑𝑑∆𝐴𝐴(𝑡𝑡)    (8) 

 
The first, the second and the third integral on the 

right-hand side of (8) are respectively related to the 
convective term and the gradient of the hydrostatic 
pressure, the gradient of the dynamic pressure and the 
stress tensor. 

For the purpose of simulating the fully dispersive 
wave phenomena, (8) can be transformed as follows. 
Let 𝐻𝐻(𝑥𝑥1, 𝑥𝑥2, 𝑡𝑡) = ℎ(𝑥𝑥1, 𝑥𝑥2, 𝑡𝑡) + 𝜂𝜂(𝑥𝑥1, 𝑥𝑥2, 𝑡𝑡)  being 
ℎ  the still water depth. We aim to represent the 
geometry of the free surface and the bottom in an 
accurate way and to correctly assign on them the 
pressure and the kinematic conditions. Let 
(𝜉𝜉1, 𝜉𝜉2, 𝜉𝜉3, 𝜏𝜏)  be a curvilinear coordinate system 
which varies in time so as to follow the time variation 
of the free surface elevation; the following relations 
define the transformation from the Cartesian 
coordinates (𝑥𝑥1, 𝑥𝑥2,𝑥𝑥3, 𝑡𝑡)  to the curvilinear 
coordinates (𝜉𝜉1, 𝜉𝜉2, 𝜉𝜉3, 𝜏𝜏) 
 
𝜉𝜉1 = 𝑥𝑥1 𝜉𝜉2 = 𝑥𝑥2 𝜉𝜉3 = 𝑥𝑥3+ℎ

𝐻𝐻
  𝜏𝜏 = 𝑡𝑡 (9) 

 
The following relation is also valid 

 

𝑣𝑣3 = 𝜕𝜕𝑥𝑥3

𝜕𝜕𝜕𝜕
           (10) 

 
Basically, the coordinate transformation 

described by (9) is such that the time-dependent 
coordinates of the physical domain are mapped to a 
uniform transformed space where 𝜉𝜉3 spans from 0 to 
1. 

Let 𝑔⃗𝑔(𝑙𝑙) = 𝜕𝜕𝑥⃗𝑥 𝜕𝜕𝜉𝜉𝑙𝑙⁄  and 𝑔⃗𝑔(𝑙𝑙) = 𝜕𝜕𝜉𝜉𝑙𝑙 𝜕𝜕𝑥⃗𝑥⁄  be 
respectively the covariant and the contravariant base 
vectors. The metric tensor is defined by 𝑔𝑔(𝑙𝑙𝑙𝑙 ) =
𝑔⃗𝑔(𝑙𝑙) ∙ 𝑔⃗𝑔(𝑚𝑚)  and its inverse by 𝑔𝑔(𝑙𝑙𝑙𝑙 ) = 𝑔⃗𝑔(𝑙𝑙) ∙ 𝑔⃗𝑔(𝑚𝑚) 
(𝑙𝑙,𝑚𝑚 =1,3) [19]. The Jacobian of the transformation 

is given by �𝑔𝑔 = �𝑑𝑑𝑒𝑒𝑒𝑒�𝑔𝑔(𝑙𝑙𝑙𝑙 )�. The transformation 

relations between vector 𝑛𝑛�⃗  expressed in the 
Cartesian coordinate system and its contravariant and 
covariant components, 𝑟𝑟(𝑙𝑙)  and 𝑟𝑟(𝑙𝑙) , expressed in 
the curvilinear coordinate system are 
 
𝑟𝑟(𝑙𝑙) = 𝑔⃗𝑔(𝑙𝑙) ∙ 𝑛𝑛�⃗  , 𝑛𝑛�⃗ = 𝑟𝑟(𝑙𝑙)𝑔⃗𝑔(𝑙𝑙) 
 
𝑟𝑟(𝑙𝑙) = 𝑔⃗𝑔(𝑙𝑙) ∙ 𝑛𝑛�⃗  , 𝑛𝑛�⃗ = 𝑟𝑟(𝑙𝑙)𝑔⃗𝑔(𝑙𝑙)      (11) 
 

These relations also apply to other vectors. It is 
not difficult to verify that, in the particular case of the 
above-mentioned transformation, �𝑔𝑔 = 𝐻𝐻. 

We now introduce a restrictive condition on the 
control volume ∆𝑉𝑉(𝑡𝑡): in the following ∆𝑉𝑉(𝑡𝑡) must 
be considered as a volume element defined by 
surface elements bounded by curves lying on the 
coordinate lines. Let 𝑑𝑑𝐴𝐴𝛼𝛼  be the coordinate surface 
element on which the coordinate line 𝜉𝜉𝛼𝛼  is constant, 
and 𝑛𝑛�⃗  the unit vector defined in the Cartesian system 
of reference normal to the above surface element. Let 
us indicate with 𝑛𝑛𝑚𝑚  and 𝑔𝑔𝑚𝑚

(𝛼𝛼) respectively the 𝑚𝑚-th 
component (in the Cartesian reference system) of the 
unit vector 𝑛𝑛�⃗  and the covariant base vector 𝑔⃗𝑔(𝛼𝛼). We 
have 
 
𝑛𝑛𝑚𝑚𝑑𝑑𝐴𝐴𝛼𝛼 = 𝑔𝑔𝑚𝑚

(𝛼𝛼)𝐻𝐻𝐻𝐻𝜉𝜉𝛽𝛽𝑑𝑑𝜉𝜉𝛾𝛾         (12) 
 

Let us define the volume element in the physical 
space as ∆𝑉𝑉(𝑡𝑡) = ∆𝑥𝑥1∆𝑥𝑥2∆𝑥𝑥3 = �𝑔𝑔∆𝜉𝜉1∆𝜉𝜉2∆𝜉𝜉3 , 
and the volume element in the transformed space as 
∆𝑉𝑉∗ = ∆𝜉𝜉1∆𝜉𝜉2∆𝜉𝜉3. It is not difficult to verify that 
the first one varies in time, whilst the second one is 
fixed in time. Similarly to what just made, it is 
possible to define the surface element in the physical 
and the transformed space respectively as ∆𝐴𝐴(𝑡𝑡) =
∆𝑥𝑥𝛼𝛼∆𝑥𝑥𝛽𝛽 = �𝑔𝑔∆𝜉𝜉𝛼𝛼∆𝜉𝜉𝛽𝛽  and ∆𝐴𝐴∗ = ∆𝜉𝜉𝛼𝛼∆𝜉𝜉𝛽𝛽  (where 
𝛼𝛼,𝛽𝛽 =1, 2, 3 are cyclic). 

Let us also define the cell-averaged value of the 
primitive variables in the transformed space as 
 
𝐻𝐻 = 1

∆𝑉𝑉∗ ∫ 𝐻𝐻𝐻𝐻𝜉𝜉1𝑑𝑑𝜉𝜉2𝑑𝑑𝜉𝜉3
∆𝑉𝑉∗   
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𝑢𝑢𝑙𝑙 = 1

∆𝑉𝑉∗ ∫ 𝑢𝑢𝑙𝑙𝑑𝑑𝜉𝜉1𝑑𝑑𝜉𝜉2𝑑𝑑𝜉𝜉3
∆𝑉𝑉∗        (13) 

 
and the cell-averaged value of the conserved variable 
as 
 
𝐻𝐻𝐻𝐻𝑙𝑙 = 1

∆𝑉𝑉∗ ∫ 𝐻𝐻𝑢𝑢𝑙𝑙𝑑𝑑𝜉𝜉1𝑑𝑑𝜉𝜉2𝑑𝑑𝜉𝜉3
∆𝑉𝑉∗        (14) 

 
By using (9), (12), (13) and (14), (8) becomes 

 
𝜕𝜕𝐻𝐻𝐻𝐻𝑙𝑙
𝜕𝜕𝜕𝜕

=
1
∆𝑉𝑉∗

�−� �� �𝐻𝐻𝑢𝑢𝑙𝑙(𝑢𝑢𝑚𝑚 − 𝑣𝑣𝑚𝑚 )𝑔𝑔𝑚𝑚
(𝛼𝛼)

∆𝐴𝐴∗𝛼𝛼+

3

𝛼𝛼=1

+ 𝐺𝐺𝐻𝐻2𝑔𝑔𝑙𝑙
(𝛼𝛼)� 𝑑𝑑𝜉𝜉𝛽𝛽𝑑𝑑𝜉𝜉𝛾𝛾 �� �−� �𝐻𝐻𝑢𝑢𝑙𝑙(𝑢𝑢𝑚𝑚

∆𝐴𝐴∗𝛼𝛼−

− 𝑣𝑣𝑚𝑚 )𝑔𝑔𝑚𝑚
(𝛼𝛼) + 𝐺𝐺𝐻𝐻2𝑔𝑔𝑙𝑙

(𝛼𝛼)� 𝑑𝑑𝜉𝜉𝛽𝛽𝑑𝑑𝜉𝜉𝛾𝛾�

+ � �� 𝐺𝐺ℎ𝐻𝐻𝑔𝑔𝑙𝑙
(𝛼𝛼)𝑑𝑑𝜉𝜉𝛽𝛽𝑑𝑑𝜉𝜉𝛾𝛾

∆𝐴𝐴∗𝛼𝛼+

�
3

𝛼𝛼=1

− �� 𝐺𝐺ℎ𝐻𝐻𝑔𝑔𝑙𝑙
(𝛼𝛼)𝑑𝑑𝜉𝜉𝛽𝛽𝑑𝑑

∆𝐴𝐴∗𝛼𝛼−
�

−
1
𝜌𝜌
�

𝜕𝜕𝜕𝜕
𝜕𝜕𝜉𝜉𝑘𝑘

𝑔𝑔𝑙𝑙
(𝑘𝑘)𝐻𝐻𝐻𝐻𝜉𝜉1𝑑𝑑𝜉𝜉2𝑑𝑑𝜉𝜉3

∆𝑉𝑉∗

+ �
1
𝜌𝜌
� �𝑇𝑇𝑙𝑙𝑙𝑙𝑔𝑔𝑚𝑚

(𝛼𝛼)𝐻𝐻𝐻𝐻𝜉𝜉𝛽𝛽𝑑𝑑𝜉𝜉𝛾𝛾 �
∆𝐴𝐴∗𝛼𝛼+

3

𝛼𝛼=1
 

�−� 𝑇𝑇𝑙𝑙𝑙𝑙𝑔𝑔𝑚𝑚
(𝛼𝛼)𝐻𝐻𝐻𝐻𝜉𝜉𝛽𝛽𝑑𝑑𝜉𝜉𝛾𝛾

∆𝐴𝐴∗𝛼𝛼−
� 

            (15) 
 
where ∆𝐴𝐴∗𝛼𝛼+  and ∆𝐴𝐴∗𝛼𝛼−  indicate the contour 
surfaces of the volume element on which 𝜉𝜉𝛼𝛼  is 
constant and which are respectively located at the 
larger and the smaller value of 𝜉𝜉𝛼𝛼  (here the indexes 
𝛼𝛼, 𝛽𝛽 and 𝛾𝛾 are cyclic). Equation (15) represents the 
integral form of the momentum equation, expressed 
in the time-dependent coordinate system 
(𝜉𝜉1, 𝜉𝜉2, 𝜉𝜉3, 𝜏𝜏) , with the velocities 𝑢𝑢𝑙𝑙  and 𝑣𝑣𝑚𝑚  
defined in the Cartesian reference system. Since the 
integral on the left-hand side of (8) depends on 
(𝜉𝜉1, 𝜉𝜉2, 𝜉𝜉3, 𝜏𝜏), the related total time derivative has 
become a local time derivative in (15). It can be 
noticed that the conserved variables are advanced in 
time within a transformed space which is not 
time-varying. The time variation of the geometric 
components is expressed by the time variation of the 
metric terms. 

If the density 𝜌𝜌  is uniform and constant, (1) 
changes into 
 
𝑑𝑑
𝑑𝑑𝑑𝑑 ∫ 𝐻𝐻𝐻𝐻𝜉𝜉1𝑑𝑑𝜉𝜉2𝑑𝑑𝜉𝜉3

∆𝑉𝑉∗ +  
 
∑ �∫ 𝐻𝐻(𝑢𝑢𝑚𝑚 − 𝑣𝑣𝑚𝑚)𝑔𝑔𝑚𝑚

(𝛼𝛼)𝑑𝑑𝜉𝜉𝛽𝛽𝑑𝑑𝜉𝜉𝛾𝛾∆𝐴𝐴∗𝛼𝛼+
�3

𝛼𝛼=1   
 

�− ∫ 𝐻𝐻(𝑢𝑢𝑚𝑚 − 𝑣𝑣𝑚𝑚)𝑔𝑔𝑚𝑚
(𝛼𝛼)𝑑𝑑𝜉𝜉𝛽𝛽𝑑𝑑𝜉𝜉𝛾𝛾∆𝐴𝐴∗𝛼𝛼− � = 0     (16) 

 
which, by making explicit the summation over the 
index 𝛼𝛼, reads 
 
𝑑𝑑
𝑑𝑑𝑑𝑑 ∫ 𝐻𝐻𝐻𝐻𝜉𝜉1𝑑𝑑𝜉𝜉2𝑑𝑑𝜉𝜉3

∆𝑉𝑉∗ +  
 
�∫ �∫ 𝐻𝐻𝑢𝑢1𝑑𝑑𝜉𝜉2

𝜉𝜉1+ � 𝑑𝑑𝜉𝜉31
0 − ∫ �∫ 𝐻𝐻𝑢𝑢1𝑑𝑑𝜉𝜉2

𝜉𝜉1− � 𝑑𝑑𝜉𝜉31
0 �  

 
+ �∫ �∫ 𝐻𝐻𝑢𝑢2𝑑𝑑𝜉𝜉1

𝜉𝜉2+ � 𝑑𝑑𝜉𝜉31
0 − ∫ �∫ 𝐻𝐻𝑢𝑢2𝑑𝑑𝜉𝜉1

𝜉𝜉2− �𝑑𝑑𝜉𝜉31
0 �  

 
+ �∬ (𝑢𝑢𝑚𝑚 − 𝑣𝑣𝑚𝑚 )𝑔𝑔𝑚𝑚

(3)𝐻𝐻𝐻𝐻𝜉𝜉1𝑑𝑑𝜉𝜉2
∆𝐴𝐴𝑥𝑥𝑥𝑥∗ (𝜉𝜉3=1)

�  

 
�−∬ (𝑢𝑢𝑚𝑚 − 𝑣𝑣𝑚𝑚)𝑔𝑔𝑚𝑚

(3)𝐻𝐻𝐻𝐻𝜉𝜉1𝑑𝑑𝜉𝜉2
∆𝐴𝐴𝑥𝑥𝑥𝑥∗ (𝜉𝜉3=0) � = 0   (17) 

 
where ∆𝐴𝐴𝑥𝑥𝑥𝑥∗ = ∆𝜉𝜉1∆𝜉𝜉2  is the horizontal surface 
element in the transformed space. If the surface and 
bottom kinematics boundary conditions are taken 
into account, the last bracket of (17) vanishes. 
Furthermore, since ∆𝑉𝑉∗ is not time-varying and 𝐻𝐻 
does not depend on 𝜉𝜉3 and bearing in mind that 𝜉𝜉3 
spans from 0 to 1, the following relation is valid 
 
𝑑𝑑
𝑑𝑑𝑑𝑑 ∫ 𝐻𝐻𝐻𝐻𝜉𝜉1𝑑𝑑𝜉𝜉2𝑑𝑑𝜉𝜉3

∆𝑉𝑉∗ = ∫ �∫ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑑𝑑𝜉𝜉1𝑑𝑑𝜉𝜉2

∆𝐴𝐴𝑥𝑥𝑥𝑥∗
� 𝑑𝑑𝜉𝜉31

0   

 
= ∫ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑑𝑑𝜉𝜉1𝑑𝑑𝜉𝜉2

∆𝐴𝐴𝑥𝑥𝑥𝑥∗
         (18) 

 
It is also possible to write 

 
𝜕𝜕𝐻𝐻
𝜕𝜕𝜕𝜕

= 1
∆𝐴𝐴𝑥𝑥𝑥𝑥∗

∫ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑑𝑑𝜉𝜉1𝑑𝑑𝜉𝜉2

∆𝐴𝐴𝑥𝑥𝑥𝑥∗
        (19) 

 
By applying the bottom and surface kinematic 

boundary conditions, by using (13), (18) and (19) and 
by dividing (17) by ∆𝐴𝐴𝑥𝑥𝑥𝑥∗ , the following relation is 
obtained 

 
𝜕𝜕𝐻𝐻
𝜕𝜕𝜕𝜕

+
1

∆𝐴𝐴𝑥𝑥𝑥𝑥∗
� � �� 𝐻𝐻𝑢𝑢𝛼𝛼𝑑𝑑𝜉𝜉𝛽𝛽

𝜉𝜉𝛼𝛼+

2

𝛼𝛼=1

1

0

−� 𝐻𝐻𝑢𝑢𝛼𝛼𝑑𝑑𝜉𝜉𝛽𝛽
𝜉𝜉𝛼𝛼−

� 𝑑𝑑𝜉𝜉3 = 0 

             (20) 
 
in which 𝜉𝜉𝛼𝛼+ and 𝜉𝜉𝛼𝛼− indicate the contour lines 
of the surface element ∆𝐴𝐴∗  on which 𝜉𝜉𝛼𝛼  is 
constant and which are located at the larger and at 
the smaller value of 𝜉𝜉𝛼𝛼  respectively. Equation (20) 
represents the equation which governs the motion of 
the free surface. Equations (15) and (20) represent 
the expressions of the three-dimensional equations 
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of motion as a function of the 𝐻𝐻𝐻𝐻𝑙𝑙  and 𝐻𝐻 
variables in the time-dependent coordinate system 
(𝜉𝜉1, 𝜉𝜉2, 𝜉𝜉3, 𝜏𝜏). The simulation of the fully dispersive 
wave phenomena can be performed by numerically 
solving (15) and (20). The Smagorinsky sub grid 
model is used in order to estimate the eddy viscosity 
in the stress tensor. 
 
 
3 Numerical Scheme 
Equations (15) and (20) are discretized by means of a 
combined finite-volume and finite-difference scheme 
with a Godunov-type method. A grid staggering is 
used where the fluid velocities are located at the 
centers of the computational cells and the fluid 
pressure is defined in correspondence of the 
horizontal faces of the cells. The discretization of the 
computational domain is based on a grid defined by 
the coordinate lines 𝜉𝜉1, 𝜉𝜉2 and 𝜉𝜉3 and by the points 
of coordinates 𝜉𝜉1 = 𝑗𝑗∆𝜉𝜉1 , 𝜉𝜉2 = 𝑗𝑗∆𝜉𝜉2  and 𝜉𝜉3 =
𝑗𝑗∆𝜉𝜉3, which represent the centers of the calculation 
cells 𝐼𝐼𝑖𝑖,𝑗𝑗 ,𝑘𝑘 = �𝜉𝜉𝑖𝑖−1/2

1 , 𝜉𝜉𝑖𝑖−1/2
1 � × �𝜉𝜉𝑗𝑗−1/2

2 , 𝜉𝜉𝑗𝑗−1/2
2 �×

�𝜉𝜉𝑘𝑘−1/2
3 , 𝜉𝜉𝑘𝑘−1/2

3 �. The state of the system is known at 
the computational cells center and is identified by the 
cell-averaged values 𝐻𝐻𝐻𝐻𝑙𝑙  and 𝐻𝐻. The time level at 
which the variables are known is 𝜏𝜏(𝑛𝑛) , whilst the 
time level at which the variables are unknown is 
𝜏𝜏(𝑛𝑛+1). 

A three-stage Strong Stability Preserving 
Runge-Kutta (SSPRK) scheme is used in order to 
solve (15) and (20). With the purpose of getting a 
fluid velocity field which is divergence-free, a 
pressure correction formulation is adopted. Once 
𝐻𝐻𝐻𝐻𝑙𝑙

(𝑛𝑛)
 is known, the following three-stage iteration 

procedure is implemented in order to compute 
𝐻𝐻𝐻𝐻𝑙𝑙

(𝑛𝑛+1)
. Let 

 
𝐻𝐻𝐻𝐻𝑙𝑙

(0)
= 𝐻𝐻𝐻𝐻𝑙𝑙

(𝑛𝑛)
         (21) 

 
At every stage 𝑝𝑝 (where 𝑝𝑝 =1,2,3), an auxiliary 

field 𝐻𝐻𝐻𝐻𝑙𝑙∗
(𝑝𝑝)

 is directly computed from (15) by 
using the values obtained at the previous stage 

 

𝐻𝐻𝐻𝐻𝑙𝑙∗
(𝑝𝑝)

=  
 
∑ �Ω𝑝𝑝𝑝𝑝𝐻𝐻𝐻𝐻𝑙𝑙

(𝑞𝑞)
+ ∆𝜏𝜏𝜑𝜑𝑝𝑝𝑝𝑝𝐷𝐷 �𝐻𝐻𝑢𝑢𝑙𝑙

(𝑞𝑞), 𝜏𝜏(𝑛𝑛) + 𝑑𝑑𝑞𝑞∆𝜏𝜏��
𝑝𝑝−1
𝑞𝑞=0   

             (22) 
 

having indicated by 𝐷𝐷(𝐻𝐻,𝑢𝑢𝑙𝑙 , 𝜏𝜏) the right-hand side 
of (15) devoid of the dynamic pressure gradient term. 
Further details on the calculation of coefficients Ω𝑝𝑝𝑝𝑝 , 
𝜑𝜑𝑝𝑝𝑝𝑝  and 𝑑𝑑𝑞𝑞  can be found in [10]. The continuity 
equation is not satisfied by the auxiliary fluid 

velocity field 𝑢𝑢𝑙𝑙∗
(𝑝𝑝) (which is related to the auxiliary 

variable 𝐻𝐻𝐻𝐻𝑙𝑙∗
(𝑝𝑝)

 computed by (22) starting from the 
value 𝐻𝐻∗

(𝑝𝑝−1)
). For this reason, at every intermediate 

stage 𝑝𝑝 the fluid velocity field and the fluid pressure 
field are corrected by means of a scalar potential 𝜓𝜓 
which is computed by solving the well-known 
Poisson pressure equation. The latter equation reads 
as follows 

 
∇2𝜓𝜓(𝑝𝑝) = − 𝜌𝜌

∆𝑡𝑡
∇ �𝑢𝑢𝑙𝑙∗

(𝑝𝑝)�        (23) 
 
The irrotational corrector fluid velocity field is 

calculated by 
 

𝑢𝑢1𝑐𝑐
(𝑝𝑝) = ∆𝑡𝑡

𝜌𝜌
�𝜕𝜕𝜓𝜓

(𝑝𝑝 )

𝜕𝜕𝜕𝜕 1 + 𝜕𝜕𝜓𝜓 (𝑝𝑝 )

𝜕𝜕𝜕𝜕 3
𝜕𝜕𝜕𝜕 3

𝜕𝜕𝜕𝜕
�  

 

𝑢𝑢2𝑐𝑐
(𝑝𝑝) = ∆𝑡𝑡

𝜌𝜌
�𝜕𝜕𝜓𝜓

(𝑝𝑝 )

𝜕𝜕𝜕𝜕 2 + 𝜕𝜕𝜓𝜓 (𝑝𝑝 )

𝜕𝜕𝜕𝜕 3
𝜕𝜕𝜕𝜕 3

𝜕𝜕𝜕𝜕
�  

 
𝑢𝑢3𝑐𝑐

(𝑝𝑝) = ∆𝑡𝑡
𝜌𝜌
�𝜕𝜕𝜓𝜓

(𝑝𝑝 )

𝜕𝜕𝜕𝜕 3
𝜕𝜕𝜕𝜕 3

𝜕𝜕𝜕𝜕
�          (24) 

 
With the purpose of obtaining a non-hydrostatic, 

divergence-free fluid velocity field at every stage, the 
fluid velocity field itself has to be corrected in the 
following way 

 
𝑢𝑢𝑙𝑙

(𝑝𝑝) = 𝑢𝑢𝑙𝑙∗
(𝑝𝑝) + 𝑢𝑢𝑙𝑙𝑙𝑙

(𝑝𝑝)        (25) 
 
Let us indicate with 𝐿𝐿(𝐻𝐻,𝑢𝑢𝑙𝑙 , 𝜏𝜏)  the right-hand 

side of (20). The depth 𝐻𝐻
(𝑝𝑝)

 is advanced at the stage 
𝑝𝑝 as follows 

 
𝐻𝐻

(𝑝𝑝)
= 𝐻𝐻

(𝑝𝑝−1)
+ 𝐿𝐿 �𝐻𝐻

(𝑝𝑝−1)
,𝑢𝑢𝑙𝑙

(𝑝𝑝−1), 𝜏𝜏𝑛𝑛 + ∆𝜏𝜏�  (26) 
 
The value of 𝐻𝐻𝐻𝐻𝑙𝑙

(𝑛𝑛+1)
 is given by 

 
𝐻𝐻𝐻𝐻𝑙𝑙

(𝑛𝑛+1)
= 𝐻𝐻𝐻𝐻𝑙𝑙

(3)
         (27) 

 
In order to calculate the terms 𝐷𝐷(𝐻𝐻,𝑢𝑢𝑙𝑙 , 𝜏𝜏) and 

𝐿𝐿(𝐻𝐻,𝑢𝑢𝑙𝑙 , 𝜏𝜏), the integrals on the right-hand side of 
(15) and (20) are numerically approximated. The 
following sequence is implemented in order to 
perform the above calculation. 

 
1) At the center of the contour face which is common 

to two adjacent cells, two point values of the 
unknown variables are reconstructed by means of 
two WENO reconstruction defined on the two 
adjacent cells [6], starting from the cell averaged 
values. 
 

2) The unknown variables at the contour faces center 
are advanced in time by means of the solution of 
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the HLL Riemann problem, in which the initial 
data are given by the above-mentioned two 
reconstructed values. 
 

3) The spatial integrals involved in 𝐷𝐷(𝐻𝐻,𝑢𝑢𝑙𝑙 , 𝜏𝜏) and 
𝐿𝐿(𝐻𝐻,𝑢𝑢𝑙𝑙 , 𝜏𝜏)  are calculated by a high-order 
quadrature rule. 
 

4) The Poisson pressure equation is solved by means 
of a four-color Zebra line Gauss-Seidel alternate 
method in conjunction with a multigrid V-cycle 
technique. 
 

5) The auxiliary velocity fields 𝑢𝑢𝑙𝑙∗ is corrected by 
means of the scalar potential 𝜓𝜓. 
 

6) The local total depth is advanced in time by (20) 
by means of the corrected divergence-free 
non-hydrostatic velocity field. 

 
 
3.1 WENO reconstructions 
With the purpose of explaining the WENO 
reconstruction technique implemented in this work, 
let us indicate by (𝑢𝑢𝑙𝑙)𝑖𝑖,𝑗𝑗 ,𝑘𝑘  the cell averaged values of 
the Cartesian velocity component 𝑢𝑢𝑙𝑙  over the cell 
𝐼𝐼𝑖𝑖,𝑗𝑗 ,𝑘𝑘 . We also indicate by (𝑢𝑢)𝑖𝑖+1/2,𝑗𝑗 ,𝑘𝑘  and 
(𝑢𝑢)𝑖𝑖−1/2,𝑗𝑗 ,𝑘𝑘 , respectively, the two point values of 𝑢𝑢𝑙𝑙  
at the center of the faces over which the coordinate 
𝜉𝜉1  is constant and that are placed on the side of 
increasing and decreasing 𝜉𝜉1 (an analogous notation 
is used the other cell faces). For the sake of brevity, 
we will only present the reconstruction technique of 
these point values. Three different steps are involved 
in this reconstruction: 

 
- Step 1: Starting from the cell averages (𝑢𝑢𝑙𝑙)𝑖𝑖,𝑗𝑗 ,𝑘𝑘 , 

reconstruction, along the coordinate 𝜉𝜉3 , of the 
surface averages (𝑢𝑢�𝑙𝑙)𝑖𝑖,𝑗𝑗 ,𝑘𝑘 , that is defined by 

 

(𝑢𝑢�𝑙𝑙)𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘 =
1
∆𝜉𝜉2 � �

1
∆𝜉𝜉1 � 𝑢𝑢𝑙𝑙(𝜉𝜉1, 𝜉𝜉2, 𝜉𝜉3)𝑑𝑑𝜉𝜉1

𝜉𝜉𝑖𝑖−1/2
1

𝜉𝜉𝑖𝑖−1/2
1

� 𝑑𝑑𝜉𝜉2

𝜉𝜉𝑖𝑖−1/2
2

𝜉𝜉𝑖𝑖−1/2
2

 

             (28) 
 
- Step 2: Starting from the surface averages 

(𝑢𝑢�𝑙𝑙)𝑖𝑖,𝑗𝑗 ,𝑘𝑘 , reconstruction, along the coordinate 𝜉𝜉2, 
of the line averages, defined by 

 

(𝑢𝑢�𝑙𝑙)𝑖𝑖,𝑗𝑗 ,𝑘𝑘 = 1
∆𝜉𝜉1 ∫ 𝑢𝑢𝑙𝑙(𝜉𝜉1, 𝜉𝜉2, 𝜉𝜉3)𝑑𝑑𝜉𝜉1𝜉𝜉𝑖𝑖−1/2

1

𝜉𝜉𝑖𝑖−1/2
1       (29) 

 
- Step 3: Starting from the line average (𝑢𝑢�𝑙𝑙)𝑖𝑖,𝑗𝑗 ,𝑘𝑘 , 

reconstruction, along the coordinate 𝜉𝜉2 , of the 
point values (𝑢𝑢)𝑖𝑖+1/2,𝑗𝑗 ,𝑘𝑘  and (𝑢𝑢)𝑖𝑖−1/2,𝑗𝑗 ,𝑘𝑘 . 

 

1) Step 1 
The value of (𝑢𝑢�𝑙𝑙)𝑖𝑖,𝑗𝑗 ,𝑘𝑘  is reconstructed by using an 
interpolant polynomial 𝑅𝑅𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘(𝜉𝜉3) which is defined 
in the cell 𝐼𝐼𝑖𝑖,𝑗𝑗 ,𝑘𝑘  (the subscript 𝑖𝑖, 𝑗𝑗,𝑘𝑘  indicates the 
cell in which the polynomial is defined) and by using 
the relation (𝑢𝑢�𝑙𝑙)𝑖𝑖,𝑗𝑗 ,𝑘𝑘 = 𝑅𝑅𝑖𝑖,𝑗𝑗 ,𝑘𝑘�𝜉𝜉𝑘𝑘3�. According to the 
formulation of the WENO schemes in the work of 
[14], the polynomial 𝑅𝑅𝑖𝑖,𝑗𝑗 ,𝑘𝑘(𝜉𝜉3) is given by a convex 
combination of three different 2nd order 
polynomials, 𝑃𝑃𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘+𝑝𝑝(𝜉𝜉3) = 𝑎𝑎𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘+𝑝𝑝(𝜉𝜉3)2 +
𝑏𝑏𝑖𝑖,𝑗𝑗 ,𝑘𝑘+𝑝𝑝(𝜉𝜉3) + 𝑐𝑐𝑖𝑖,𝑗𝑗 ,𝑘𝑘+𝑝𝑝  (𝑝𝑝 = −1,0,1). The weights of 
this convex combination are a function of the linear 
weights and the indexes of smoothness [12]. As 
suggested in [12], the norm 𝐿𝐿2 of the derivatives of 
the polynomials 𝑃𝑃𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘+𝑝𝑝(𝜉𝜉3) on cell 𝐼𝐼𝑖𝑖,𝑗𝑗 ,𝑘𝑘  is used in 
order to compute the indexes of smoothness. The 
linear weights are chosen in such a way that the 
required accuracy is satisfied. The Jacobian terms 
may affect the weights evaluated in the WENO 
reconstruction procedure, even when imposing the 
free stream value. As suggested in [16], the Jacobian 
terms are not included in the reconstruction 
procedures and, therefore, the cell averaged value is 
approximated by 

 

(𝑢𝑢𝑙𝑙)𝑖𝑖,𝑗𝑗 ,𝑘𝑘+𝑝𝑝+𝑞𝑞 = 1
∆𝜉𝜉3 ∫ � 1

∆𝜉𝜉2
�𝜉𝜉𝑘𝑘+𝑝𝑝+𝑞𝑞+1/2

3

𝜉𝜉𝑘𝑘+𝑝𝑝+𝑞𝑞−1/2
3   

 
�∫ � 1

∆𝜉𝜉1 ∫ 𝑢𝑢𝑙𝑙(𝜉𝜉1, 𝜉𝜉2, 𝜉𝜉3)𝑑𝑑𝜉𝜉1𝜉𝜉𝑖𝑖+1/2
1

𝜉𝜉𝑖𝑖−1/2
1 � 𝑑𝑑𝑑𝑑2𝜉𝜉𝑗𝑗+1/2

2

𝜉𝜉𝑗𝑗−1/2
2 � 𝑑𝑑𝑑𝑑3   

             (30) 
 
By imposing 

 
𝑃𝑃𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘+𝑝𝑝(𝜉𝜉3) =  
 

1
∆𝜉𝜉2 ∫ � 1

∆𝜉𝜉1 ∫ 𝑢𝑢𝑙𝑙(𝜉𝜉1, 𝜉𝜉2, 𝜉𝜉3)𝑑𝑑𝜉𝜉1𝜉𝜉𝑖𝑖+1/2
1

𝜉𝜉𝑖𝑖−1/2
1 � 𝑑𝑑𝑑𝑑2𝜉𝜉𝑗𝑗+1/2

2

𝜉𝜉𝑗𝑗−1/2
2   

             (31) 
 

and by introducing (31) into (30), the above condition 
becomes  

 

(𝑢𝑢𝑙𝑙)𝑖𝑖,𝑗𝑗 ,𝑘𝑘+𝑝𝑝+𝑞𝑞 = 1
∆𝜉𝜉3 ∫ 𝑃𝑃𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘+𝑝𝑝(𝜉𝜉3)𝑑𝑑𝑑𝑑3𝜉𝜉𝑘𝑘+𝑝𝑝+𝑞𝑞+1/2

3

𝜉𝜉𝑘𝑘+𝑝𝑝+𝑞𝑞−1/2
3   

             (32) 
 
By introducing the analytical solution of the 

integral in (32), three independent systems are 
obtained (𝑝𝑝 = −1,0,1), each of them is formed by 
three linear equations (𝑞𝑞 = −1,0,1), which permit 
the computation of the values of the polynomial 
coefficients 𝑎𝑎𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘+𝑝𝑝 , 𝑏𝑏𝑖𝑖,𝑗𝑗 ,𝑘𝑘+𝑝𝑝 , 𝑐𝑐𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘+𝑝𝑝 . Starting from 
these values and the values of the smoothness 
indexes, it is possible to calculate 𝑅𝑅𝑖𝑖,𝑗𝑗 ,𝑘𝑘(𝜉𝜉3)  and, 
consequently, to evaluate (𝑢𝑢�𝑙𝑙)𝑖𝑖,𝑗𝑗 ,𝑘𝑘 . 
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2) Step 2 

The procedure on which the second step is based is 
similar to the one illustrated in the previous step. 
The line averages are reconstructed starting from 
(𝑢𝑢�𝑙𝑙)𝑖𝑖,𝑗𝑗 ,𝑘𝑘 : this reconstruction is performed along the 
coordinate 𝜉𝜉2 and the lines averages are computed 
by means of the relation 
 
(𝑢𝑢�𝑙𝑙)𝑖𝑖,𝑗𝑗 ,𝑘𝑘 = 𝑅𝑅𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘�𝜉𝜉𝑗𝑗2�         (33) 
 

3) Step 3 
In the third step, the passages shown in the first step 
are carried out along the coordinate 𝜉𝜉1 . Starting 
from the line averages (𝑢𝑢�𝑙𝑙)𝑖𝑖,𝑗𝑗 ,𝑘𝑘 , the two point values 
of the velocity components at the centre of the faces 
over which the coordinate 𝜉𝜉1 is constant and that 
are placed on the side of increasing and decreasing 
𝜉𝜉1 are computed by 
 
(𝑢𝑢𝑙𝑙)𝑖𝑖+1/2,𝑗𝑗 ,𝑘𝑘 = 𝑅𝑅𝑖𝑖,𝑗𝑗 ,𝑘𝑘�𝜉𝜉𝑖𝑖+1/2

1 �  
 
(𝑢𝑢𝑙𝑙)𝑖𝑖−1/2,𝑗𝑗 ,𝑘𝑘 = 𝑅𝑅𝑖𝑖,𝑗𝑗 ,𝑘𝑘�𝜉𝜉𝑖𝑖−1/2

1 �       (34) 
 
 
3.2 Numerical approximations of the spatial 
integrals 
The numerical approximations of the double and 
triple integrals on the right-hand side of (15) are 
obtained by adopting the procedure suggested in [8]. 
 
 
4 Results 
In this section, the ability of the proposed model to 
simulate the vortices formation due to wave-structure 
interaction is demonstrated by reproducing the 
experiment carried out by [20] where the passage of a 
solitary wave over a rigid rectangular submerged 
obstacle is simulated. 

The geometry of the test case consists of a 5m 
long rectangular channel in which the depth of the 
still water is ℎ =0.228m and a rectangular obstacle 
of ℎ/2 =0.114m high and 𝐿𝐿 =0.38m long is located 
at the bottom (Fig. 1). A grid spacing of 0.0025m, a 
time step of 0.001s and 100 vertical layers are 
adopted. The numerical treatment of the obstacle 
problem is carried out by adopting the strategy 
proposed by [13]. Since the submerged obstacle 
brings to a sudden change of the water depth, the 
elevation of the grid points between the bed and the 
obstacle top is fixed in time, while between the 
obstacle top and the free-surface is time-varying in 
order to follow the water depth modifications. 
Consequently, the coordinate transformation law 
expressed by (9) is modified in order to obtain a 
2-layer coordinate system. 

On the left boundary of the computational 
domain, the following equations are used in order to 
generate the solitary wave 
 
𝜂𝜂(𝑡𝑡) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ2 � 3𝐴𝐴

4ℎ3 𝐶𝐶(𝑡𝑡 − 𝑇𝑇)�       (35) 
 
𝑢𝑢(𝑡𝑡) = 𝐶𝐶𝜂𝜂(𝑡𝑡)

ℎ+𝜂𝜂(𝑡𝑡)         (36) 
 
where 𝐴𝐴 =0.05m is the incident wave amplitude, 
𝐶𝐶 = �𝑔𝑔(ℎ + 𝐴𝐴)  is the celerity of the wave and 
𝑇𝑇 =1.0s is the time when the crest of the wave enters 
the domain. 

Two points located behind the rectangular 
obstacle are considered in order to compare the 
horizontal and vertical velocities time history 
between the model results and the experimental data 
from [20]. The first measurement point (P1) is 
located 0.034m downstream the rectangular obstacle 
and 0.040m above the bottom. The second 
measurement point (P2) is located 0.034m 
downstream the rectangular obstacle and 0.057m 
(P2) above the bottom (Fig. 1). 
 

 
Fig. 1 Dynamics of the vortices generated by the 

wave-structure interaction. Simulation sketch. 
 
Figures 2 to 6 show the fluid velocity field and the 

elevation of the free surface due to the 
wave-submerged obstacle interaction at different 
instants. As expected, vortical structures are 
generated both at the left and the right arris of the 
obstacle, coherently with [13] and [20]. Figure 2 
shows that, when the solitary wave approaches the 
rectangular obstacle, a small vortex is generated on 
the left corner of the obstacle. In the second of the 
considered instants (Fig. 3), the passage of the 
solitary wave produces an increase of the fluid 
velocity over the whole obstacle. When the peak of 
the solitary wave has reached the right arris of the 
rectangular obstacle, a second vortical formation 
begins to form downstream the obstacle (Fig. 4). As 
shown in Figures 5 and 6, as the solitary wave 
propagates over the rectangular obstacle, the vortex 
formed at the left corner is stretched and the one 
formed at the right side (downstream the obstacle) 
grows in strength and size, in accordance with that 
observed by [13] and [20]. 

In order to seize the formation and development 
of the vortex that appears downstream the rectangular 
obstacle, the time history of the horizontal and 
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vertical velocity components have been registered in 
the measurement points P1 and P2. 
 

 
Fig. 2 Dynamics of the vortices generated by the 

wave-structure interaction. Fluid velocity field and 
elevation of the free surface at the instant t=2.42s 

 

 
Fig. 3 Dynamics of the vortices generated by the 

wave-structure interaction. Fluid velocity field and 
elevation of the free surface at the instant t=2.62s 

 

 
Fig. 4 Dynamics of the vortices generated by the 

wave-structure interaction. Fluid velocity field and 
elevation of the free surface at the instant t=2.80s 

 

 
Fig. 5 Dynamics of the vortices generated by the 

wave-structure interaction. Fluid velocity field and 
elevation of the free surface at the instant t=2.98s 

 
Fig. 6 Dynamics of the vortices generated by the 

wave-structure interaction. Fluid velocity field and 
elevation of the free surface at the instant t=3.12s 

 
Figure 7 shows the comparison between the 

numerical results and the available experimental data 
from [20] of the dimensionless horizontal velocity 
( 𝑢𝑢1/�𝑔𝑔ℎ ) and dimensionless vertical velocity 
(𝑢𝑢3/�𝑔𝑔ℎ) with respect to the real time normalized as 
𝑡𝑡�𝑔𝑔/ℎ  at the measurement point P1. From this 
figure, the generation and development of the 
downstream obstacle vortical motion during the 
wave-structure interaction can be seen: the horizontal 
velocity component changes its sign from positive to 
negative and the vertical velocity component changes 
its sign from negative to positive. 

 

 

 
Fig. 7 Dynamics of the vortices generated by the 

wave-structure interaction. Comparison between the 
numerical results (solid line) and the experimental 

data [20] (symbols) of the time history of the 
dimensionless horizontal (𝑢𝑢1/�𝑔𝑔ℎ) and vertical 

(𝑢𝑢3/�𝑔𝑔ℎ) velocity components at the measurement 
point P1 

 
Figure 8 shows the comparison between the 

numerical results and the available experimental data 
from [20] of the dimensionless horizontal velocity 
( 𝑢𝑢1/�𝑔𝑔ℎ ) and dimensionless vertical velocity 
(𝑢𝑢3/�𝑔𝑔ℎ) with respect to the real time normalized as 
𝑡𝑡�𝑔𝑔/ℎ at the measurement point P2. Analogously 
with Figure 7, from Figure 8 it is possible to 

WSEAS TRANSACTIONS on FLUID MECHANICS
Giovanni Cannata, Chiara Petrelli, Luca Barsi, 

Flaminia Camilli, Francesco Gallerano

E-ISSN: 2224-347X 173 Volume 12, 2017



recognize the generation and development of the 
downstream obstacle vortical motion during the 
wave-structure interaction when the horizontal and 
vertical velocity components change their signs. 

From the differences of the time history of the 
horizontal and vertical velocity components between 
the measurement point P1 and P2 (where P2 is placed 
0.017m above the measurement point P1) it can be 
deduced that the vortex formation and its 
development is a rapidly changing phenomenon. 

 

 

 
Fig. 8 Dynamics of the vortices generated by the 

wave-structure interaction. Comparison between the 
numerical results (solid line) and the experimental 

data [20] (symbols) of the time history of the 
dimensionless horizontal (𝑢𝑢1/�𝑔𝑔ℎ) and vertical 

(𝑢𝑢3/�𝑔𝑔ℎ) velocity components at the measurement 
point P2 

 
From Figures 7 and 8 it can be seen that, at the two 
measurement points P1 and P2, the time history of 
both the dimensionless horizontal (𝑢𝑢1/�𝑔𝑔ℎ) and 
vertical (𝑢𝑢3/�𝑔𝑔ℎ) velocity components are in good 
agreement with the experimental data from [20]. 
 
 
5 Conclusions 
A new hydrodynamic model has been proposed 
which is based on an original integral formulation of 
the Navier-Stokes equations in a coordinate system 
in which the vertical coordinate is varying in time. 
The discretization of the fluid motion equations is 
performed through a numerical technique which is 
based on high order WENO reconstructions. The 
time advancing of the solution is carried out by 
using a three-stage Strong Stability Preserving 
Runge-Kutta (SSPRK) fractional step numerical 
method which is accurate to the third order, and at 
each stage a pressure correction formulation is 
applied in order to get a fluid velocity field which is 
divergence-free. A shock-capturing technique based 
on high-order WENO reconstructions is employed 

in order to discretize the fluid motion equations. At 
every cell interface, the numerical flux is computed 
by solving an approximate HLL Riemann problem. 
As previously demonstrated the new finite-volume 
non-hydrostatic and shock-capturing three- 
dimensional model is able to simulate the vortices 
formation due to wave-structure interaction. 
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