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Abstract: — Speech emotion recognition (SER) is a critical component of human-computer interaction, facilitating seamless 
communication between individuals and machines. In this paper, we propose a hybrid model, integrating Hubert, a cutting-edge speech 
recognition model, with LSTM (Long Short-Term Memory), known for its effectiveness in sequence modeling tasks, to enhance emotion 
recognition accuracy in speech audio files. We explore the Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) 
for our investigation, drawn by its complexity and open accessibility. Our hybrid model combines the semantic features extracted by 
Hubert with LSTM’s ability to capture temporal relationships in audio sequences, thereby improving emotion recognition performance. 
Through rigorous experimentation and evaluation on a subset of actors from the RAVDESS dataset, our model achieved promising results, 
outperforming existing approaches, with a maximum accuracy of 89.1 %. 
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1. Introduction 
Speech emotion recognition (SER) represents a pivotal 

aspect of human-computer interaction, facilitating rapid and 
natural communication between individuals and machines. 
This field holds significant importance in various real-time 
applications, enhancing human-machine interaction. Re-
searchers are actively engaged in the exploration of speech 
signals captured through sensors for SER purposes, 
constituting a dynamic domain within digital signal 
processing. The primary objective is to discern the 
emotional state of speakers by analyzing speech signals, 
which inherently contain rich information beyond mere 
verbal content [7-10]. Speech represents a complex and 
richly nuanced form of communication, capable of 
effectively conveying information [8]. Precise recognition of 
emotions from speech audio files remains a challenging 
issue [6] [11] [14] [16] [18]. This challenge is particularly 
relevant in the context of my paper, where I explore the 
integration of a hybrid model combining Hubert, a state-of-
the-art speech recognition model, with LSTM (Long Short-
Term Memory), a type of recurrent neural network known 
for its effectiveness in sequence modeling tasks. By 
combining the strengths of both models, we aim to enhance 
the accuracy and robustness of emotion recognition in 
speech audio files, addressing the complexities inherent in 
understanding human emotions from speech signals. 

2. Related work 
This section reviews significant works in the field of self-

supervised speech learning, providing a foundation for the 
development of the model presented in this study.  The 
wav2vec model was a crucial starting point in this direction, 
using raw sound to learn useful representations for speech 
recognition without needing the text labels of the sounds [2]. 
Advancing this idea, wav2vec 2.0 added a new component: 
the model learns to differentiate between actual sound and 
other random sounds, which helps the model to better 
distinguish important features of speech [7]. Contrastive 
Predictive Coding (CPC) applied a similar idea across 

various fields, including audio, relying on the idea that 
useful information can be obtained by comparing different 
sections of sound to each other [1]. The HuBERT model 
combines th-ese previous ideas, learning to predict certain 
sound patterns in areas where information is hidden 
(masked), which helps to gain a deeper understanding of the 
structure and content of speech. Other studies have shown 
that using deeper networks can improve the model’s ability 
to understand the long and complex context of spoken 
sounds [3] [20] [21] [24]. Additionally, vq-wav2vec brought 
an improvement by introducing a layer that transforms 
sounds into discrete symbols, making the model more 
efficient and robust [6]. Therefore, these works have 
contributed to the evolution of speech recognition 
technologies, each adding new methods to extract 
information from unlabeled audio data. 

Recent advancements also include the application of 
graph neural networks to speech emotion recognition, which 
uses feature similarity and LSTM aggregators to enhance 
model performance and interpretability [5] [12] [13] [15] 
[17]. This development represents a significant step forward 
in leveraging complex network architectures for speech 
analysis, pointing to a broader trend of integrating diverse 
neural network techniques to improve the depth and 
accuracy of speech processing models [25-27]. 

3. Experiment details 
For my investigation into emotional speech analysis, I 

opted for the Ryerson Audio-Visual Database of Emotional 
Speech and Song (RAVDESS). Two pivotal factors 
influenced this decision.  Firstly, RAVDESS is an open-
source dataset, promoting accessibility and fostering 
collaboration within the scientific community. Its 
availability fosters transparency and reproducibility in 
emotional speech anal-ysis research. Secondly, the dataset’s 
complexity presented an intriguing challenge. Researchers 
have encountered difficulties achieving high performance on 
RAVDESS, piquing my interest. The dataset’s diverse range 
of emotional expressions and nuanced intensity levels offers 
a unique opportunity to contribute to the refinement and 
advancement of emotional analysis methods in speech. 

The RAVDESS database is a validated multimodal 
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repository designed for the analysis of emotional speech and 
song. It features a gender-balanced cohort of 24 professional 
actors delivering lexically-matched statements in a neutral 
North American accent. The speech component covers 
emotions such as calm, happiness, sadness, anger, fear, 
surprise, and disgust. Each emotion is presented at two 
intensity levels, supplemented by a neutral expression. This 
comprehensive dataset serves as a solid foundation for in-
depth emotional analysis. In this research, the focus was 
exclusively on the emotional speech component, aiming for 
classification [4] [19] [20] [23]. 

The dataset comprises 1440 files, each uniquely identified 
by a filename consisting of seven parts. The data loading 
process utilizes the os.listdir() function to iterate through the 
directory specified by the audiodir variable. Files with the 
.wav extension are identified and added to the appropriate 
lists of paths based on the dataset’s distribution. Labels are 
assigned using predefined criteria extracted from the 
filenames, which encode information about modality, vocal 
channel, emotion, intensity, statement, repetition, and actor. 

Exemple of audio file - (02-01-06-01-02-01-12.wav): 
• Modality (01 = full-AV, 02 = video-only, 03 = audio-

only). 
• Vocal channel (01 = speech, 02 = song). 
• Emotion (01 = neutral, 02 = calm, 03 = happy, 04 = sad, 

05 = angry, 06 = fearful, 07 = disgust,  08 = surprised). 
• Emotional intensity (01 = normal, 02 = strong). There is 

no strong intensity for the ’neutral’ emotion. 
• Statement (01 = Kids are talking by the door, 02 = Dogs 

are sitting by the door). 
• Repetition (01 = 1st repetition, 02 = 2nd repetition). 
• Actor (01 to 24. Odd-numbered actors are male, even-

numbered actors are female). 
Torchaudio library is employed to load and convert audio 

files into tensor representations. The audio signals undergo 
transformations, including conversion to mono and 
resampling to ensure a standardized sampling rate of 16000 
Hz. Feature extraction is performed using the Wav2Vec2 
processor, facilitating effective analysis and interpretation 
by the subsequent model. The Wav2Vec2 processor, a 
robust creation by Facebook AI Research, serves as an 
invaluable asset for feature extraction from audio signals 
[2]. With its capabilities, it empowers the extraction of 
crucial features from audio signals, meticulously preparing 
the data for further analysis with machine learning models. 
This processor can be easily imported and used in the 
Python environment using the Hugging Face Transformers 
library. 

 
 

4. Proposed research 

 Speech emotion recognition (SER) is pivotal for voice 
assistance and human-machine interfaces. This study 
explores different approaches for emotion recognition using 
the Hubert model, focusing on the RAVDESS dataset. Three 
scenarios were analyzed, all employing the same pre-trained 
Hubert model, with variations including data augmentation 
and the integration of a hybrid Hubert-LSTM model. 

Google Colab Pro was exclusively utilized for training, 
leveraging its advanced resources, including a TPU 
backend, 35 GB of system RAM, and a 225.8 GB disk 
memory. The integration of a TPU backend from Google 
Compute Engine significantly accelerated Python code 
execution, particularly in machine learning tasks. 

5. Classic Hubert with Wav2Vec2 
processor (no augmentation) 

In the quest to unveil the secrets of emotions expressed 
in human vocal discourse, we embraced an advanced 
approach - fine-tuning the HuBERT model, a cutting-edge 
product developed by researchers in artificial 
intelligence.This intricate process of tailoring the model to 
the specifics of our dataset was meticulously orchestrated to 
reveal the nuances of emotional expression in voice. 

Hidden-Unit BERT (HuBERT) is an approach for self-
supervised speech representation learning, based on 
techniques similar to those used in the BERT (Bidirectional 
Encoder Representations from Transformers) model but 
adapted for processing audio signals. Essentially, HuBERT 
uses an offline clustering step to provide aligned target 
labels for a prediction loss similar to that in BERT. A key 
feature of HuBERT is applying the prediction loss only to 
masked regions in the audio signal, forcing the model to 
learn a combined representation of acoustic and linguistic 
models for continuous speech inputs. This approach relies 
primarily on the consistency of the unsupervised clustering 
step rather than the quality of the cluster labels assigned. 
HuBERT has demonstrated comparable or improved 
performance compared to other models such as wav2vec 2.0 
on various speech datasets, including Librispeech and Libri-
light. Using models with a large number of parameters, 
HuBERT has achieved significant reductions in speech error 
rates on challenging evaluation subsets [3]. The HuBERT 
model was trained on vast unsupervised speech datasets like 
LibriSpeech and Libri-light, which contain 960 and 
approximately 60,000 hours of speech recordings, 
respectively. These datasets offer diverse speech content, 
including various accents and styles, ideal for training self-
supervised learning models. While HuBERT’s concepts can 
be implemented in libraries like PyTorch or TensorFlow, 
specific details about a ,,HuBERT model in Python” depend 
on its implementation and training dataset. 

HuBert with Wav2Vec2 model utilizes the pre-trained 
Hubert architecture, and in the fine-tuning process 
(additional training of the model on specific data), it 
employs frozen weights of the pre-trained Hubert model. 
This means that the layers of the neural network composing 
the pre-trained Hubert model are not updated during 
training on the RAVDESS dataset but are kept constant. 
Instead, an additional classification layer is added, 
initialized randomly, and trained to adapt to recognizing 
emotions from audio speech. This additional classification 
layer consists of a fully connected layer followed by a 
dropout layer for regularization and then an output layer that 
produces emotion predictions. During training, only the 
parameters of this additional classification layer are 
updated, while the parameters of the pre-trained Hubert 
model remain unchanged. This method is efficient for 
leveraging the pre-trained knowledge of the Hubert model 
and adapting it to a specific task, such as recognizing 
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emotions from speech audio, without needing to train the 
entire model from scratch. Thus, we benefit from transfer 
learning, which can lead to better results with less training 
effort (see fig.1 HuBert with Wav2Vec2 processor). 

 
 

 
Figure 1. HuBert model 

 

6. Classic Hubert with Wav2Vec2 
processor (augmentation) 

The second model, data augmentation is applied by 
adding Gaussian white noise to the audio signals. This type 
of augmentation adds a small amount of random noise to the 
original audio signals, thus simulating the natural variability 
of the data. Gaussian white noise is a type of random noise 
with a normal distribution, meaning that the levels of added 
noise are drawn from a normal distribution with a certain 
mean and standard deviation. This augmentation technique 
can be useful in various machine learning tasks for audio 
signal processing. Adding a controlled level of noise can 
help increase the model’s generalization, making it more 
robust to variability in the test data and reducing the risk of 
overfitting on the training data. Additionally, it can help 
enhance the model’s robustness to real-world noise in the 
environment where it will be used. 

7. HuBert-LSTM 
By combining the pre-trained Hubert architecture with 
recurrent neural networks (LSTM), we have created a hybrid 
model that integrates the semantic features extracted by 
Hubert with the LSTM’s ability to capture temporal 
relationships in audio sequences. Within the LSTM model, 
we used a single bidirectional LSTM layer with a hidden 
size of 256 units. This bidirectional LSTM layer allows the 
model to explore temporal information in both directions of 
the audio sequence, thereby enhancing its ability to learn 
complex temporal relationships. By jointly training these 
two components, the model becomes capable of 
understanding the temporal context of emotions and 
extracting relevant semantic features, leading to improved 
performance in the task of emotion recognition from audio 
signals. 

 

 
Figure 2. HuBert-LSTM 

 
In the hybrid model, the Wav2Vec2 processor is utilized 

to process the raw audio signals, extracting high-level 
features. These features, along with the pre-trained weights 
from the Hubert model, are then passed through additional 
LSTM layers. These LSTM layers analyze the temporal 
dynamics of the audio sequences, capturing long-term 
dependencies and temporal patterns. By incorporating both 
the semantic features extracted by Wav2Vec2 and the pre-
trained weights from Hubert into the LSTM layers, the 
model can effectively learn and represent the complex 
relationships between the audio features and the 
corresponding emotion labels. This integration of different 
components allows the hybrid model to leverage the 
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strengths of each architecture, ultimately enhancing its 
performance in emotion recognition tasks. 

8. Results and discussion 
To achieve precise accuracy on the RAVDES audio 

data, we divided the 24 actors as follows: 20 actors for the 
training set, 2 actors for the validation set, and 2 actors for 
testing. Each folder representing an actor and contains a 
total of 60 audio files. There are 8 files for each of the 7 
classes of emotions and 4 audio files for the neutral class. In 
total, there are 24 actors, resulting in a simple calculation of 
1440 audio recordings (60x24).This is crucial because by 
using new actors in the testing set, the model will 
demonstrate how well it classifies new data that has not 
been used in the training and validation processes before. 
Furthermore, we trained the model 12 times, rotating the 
actors each time to ensure that all actors go through the 
training, validation, and testing processes, thus avoiding 
subjectivity in the classification process. In the table 1, we 
exemplify the results on the testing set obtained from 
rotating the actors for each individual model. During the 
evaluation on the test set, the Hubert model achieved a 
maximum score of 0.833, while the Hubert model with data 
augmentation (Hubert-aug) performed the best, with a score 
of 0.841. Similarly, the model combining Hubert with 
LSTM layers (Hubert-LSTM) achieved the highest score of 
0.891. The best results, as mentioned, occurred with the pair 
of actors Actor_07 and Actor_08, and on the opposite, the 
poorest results were generated with the pair Actor_13 and 
Actor14 (see line 6- of table 1). 

TABLE I. RESULTS ON 12 FOLDS 

ID Hubert 
Hub-
aug 

Hub-
LSTM 

Training Data 
Validation 

Data 
Test Data 

1 0.691 0.775 0.792 
Actor 04: Actor 

24 
Actor 01, 
Actor 02 

Actor 03, 
Actor 04 

2 0.771 0.824 0.842 
Actor 02+ Actor 

06: Actor 24 
Actor 03, 
Actor 04 

Actor 05, 
Actor 06 

3 0.833 0.841 0.891 
Actor 04+ Actor 

08: Actor 24 
Actor 05, 
Actor 06 

Actor 07, 
Actor 08 

4 0.574 0.641 0.641 
Actor 06+ Actor 

10: Actor 24 
Actor 07, 
Actor 08 

Actor 09, 
Actor 10 

5 0.775 0.683 0.783 
Actor 08+ Actor 

12: Actor 24 
Actor 09, 
Actor 10 

Actor 11, 
Actor 12 

6 0.566 0.541 0.616 
Actor 10+ Actor 

14: Actor 24 
Actor 11, 
Actor 12 

Actor 13, 
Actor 14 

7 0.591 0.625 0.675 
Actor 12+ Actor 

16: Actor 24 
Actor 13, 
Actor 14 

Actor 15, 
Actor 16 

8 0.750 0.700 0.741 
Actor 14+ Actor 

18: Actor 24 
Actor 15, 
Actor 16 

Actor 17, 
Actor 18 

9 0.708 0.700 0.700 
Actor 16+ Actor 

20: Actor 24 
Actor 17, 
Actor 18 

Actor 19, 
Actor 20 

10 0.666 0.708 0.750 
Actor 18+ Actor 

22: Actor 24 
Actor 19, 
Actor 20 

Actor 21, 
Actor 22 

11 0.708 0.716 0.683 Actor 20 
Actor 21, 
Actor 22 

Actor 23, 
Actor 24 

12 0.714 0.705 0.705 
Actor 02: Actor 

22 
Actor 23, 
Actor 24 

Actor 01, 
Actor 02 

13 0.696 0.705 0.735 
      average 

 

These results suggest that adding LSTM layers significantly 
improves the model’s performance, resulting in more 
accurate predictions on the test dataset.  There is 
variation in the performance of the models across different 
groups of actors, which may indicate the influence of 
individual actor characteristics on model performance. In 
the table 1, on line 13, the average of the results obtained by 
rotating each pair of axes can be observed, ensuring that all 
actors go through the testing, validation, and training 
process. The HuBert model without augmentation achieved 
an average of 0.696, while the augmented model obtained an 
average of 0.705, approximately 1 percent better. The 
Hybrid HuBert with LSTM model stands out significantly, 
achieving a score of 0.735 on the RAVDES dataset, 
approximately 3 percent more than the augmented model 
and 4 percent more than the classic model without 
augmentation. This highlights the importance of the hybrid 
model in emotion classification, making it a powerful 
model. Compared to article [1], which utilized a hybrid 
LSTM-Transformer model on the same RAVDES dataset, 
my hybrid model achieved better performance on the test 
set. In that article, an average performance of 69.61% was 
obtained, which is 4 percentage points lower than my hybrid 
model. Additionally, in article [1], the cross-validation 
method using 10 folds was employed, where 10% of each 
emotion was kept for the test set. I find this approach 
incorrect because new actors should be used for the test set 
to observe how the model performs. Therefore, the 
performance of 69.61%, it is considered less realistic. In the 
figure 3, we depicted a graph highlighting the number of 
correctly interpreted classifications (on the test dataset) 
relative to each emotion class, representing the highest 
accuracy of the Hubert-LSTM system. As observed in the 
figure 3, the model performed best on the emotions angry 
and fearful3, with all 16 correctly predicted recordings out 
of 16. On the other end of the spectrum lies the neutral class, 
where the model predicted 4 out of 8 audio files (50%). In 
Figure 4, three graphs can be observed, highlighting the 
performances of the HuBert-LSTM model on the training 
dataset and validation dataset, wich represents acuracy and 
the loss function. 
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Figure 3.  Predictions on best fold  

Hubert-LSTM 
 
 

 

 
 

 
Figure 4.  Performance on best fold HuBert-LSTM 

 (graphic representation) 
 

On the graph highlighting the performance on the 
validation dataset , it reveals that the highest score is 
achieved at epoch 6, representing an accuracy of 82.45%. In 
table 2, we highlighted the performances on the test, 
validation, and training datasets to illustrate their 
differences across epochs. It is evident that the highest 
accuracy was achieved on the test set, reaching 89.1%. 
Conversely, on the training and validation sets, the best 
performance was encountered at epoch 6, with an accuracy 
of 80.5% on the training set and 82.4% on the validation set. 
These findings suggest that the model demonstrates good 
generalization ability, yielding better results on new, unseen 
data (test set) com-pared to the data used for training and 
validation. As indicated in Table 2, the columns for test 
accuracy and test loss each contain a single value. This 
occurs because the model was tested on data that were not 
utilized during the training or validation phases. 
Consequently, the test dataset was applied only after the 
completion of six epochs. 

The low values of the loss functions (table 2) across all 
sets training, validation, and testing, are significant for 
assessing the model’s performance. On the training set, the 
loss function reached a minimum value of 0.580, indicating 
the model’s ability to adapt well to the training data and 
make precise predictions. Similarly, on the validation set, 
the loss function obtained a value of 0.688, suggesting 
adequate agreement between the model’s predictions and 
the - the testing set, the loss function recorded the lowest 
value of 0.459, indicating excellent generalization capability 
of the model to make accurate predictions on unseen data. 
These results are encouraging, suggesting that the model is 
efficient and generalizable, demonstrating consistent 
performance across various datasets. However, it is essential 
to continue monitoring and evaluating the model’s 
performance to identify and address any potential issues or 
discrepancies. 

 
TABLE II. PERFORMANCE ON BEST FOLD HUBERT-LSTM  

(VALUE REPRESENTATION) 

Epoch Train 
Accuracy 

Validation 
accuracy 

Train 
loss 

VALIDATION 

LOSS 
Test 

accuracy 
Test 
Loss 

1 0.216 0.324 1.975 1.627 

0.891 0.459 
2 0.421 0.508 1.546 1.259 
3 0.553 0.570 1.208 1.038 
4 0.642 0.675 0.970 0.840 
5 0.723 0.763 0.779 0.6881 
6 0.805 0.824 0.580 0.689 

 
 

According to the confusion matrix represented in figure 
5 (best model HuBert-LSTM), to assess the effectiveness of 
the emotion classification model, various standard metrics 
such as precision, recall, and the F1 score were employed. 
Precision, calculated as the ratio of true positives (TP) to the 
sum of true positives and false positives (FP), measures the 
accuracy of the model’s predictions for each emotion. 

Mathematically, precision is represented as:  
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     (1) 
 
Recall, also known as sensitivity, quantifies the model’s 

ability to correctly identify positive instances from the total 
actual positives by dividing TP by the sum of TP and false 
negatives (FN). It is expressed as: 

 
  (2) 

F1 Score = 2(PrecisonXRecall)/(Precison + Recall)         (3) (3) 
 

F1 score, the harmonic mean of precision and recall, offers a 
balanced assessment of the model’s performance.  It is 
computed using the formula F1 overall accuracy of the 
model, reflecting the ratio of total correct predictions to total 
predictions made, provides a comprehensive measure of its 
performance across all emotions. Therefore, the 
combination of these metrics allows for a thorough 
evaluation of both individual emotion classification and the 
model’s overall efficacy. The evaluation metrics provide a 
comprehensive overview of the emotion classification 
model’s performance across various emotions. For the 
,,Neutral” category, the model achieved a precision of 80%, 
indicating that 80% of the predictions made for Neutral were 
correct. However, the recall rate for Neutral was 50%, 
suggesting that only half of the actual Neutral instances 
were captured by the model. Consequently, the F1 Score, 
which considers both precision and recall, settled at 61.54%, 
representing a balanced measure of the model’s 
effectiveness in classifying Neutral emotions. Moving to the 
,,Calm” emotion, the model demonstrated a precision of 
78.95% and a recall of 93.75%, resulting in an F1 Score of 
85.71%, indicative of a strong performance in identifying 
Calm emotions. Similarly, for the ,,Happy” category, the 
model exhibited a precision of 71.43%, a recall of 93.75%, 
and an F1 Score of 81.08%, reflecting satisfactory 
performance in recognizing Happy emotions. The ,,Sad” 
emotion showcased perfect precision at 100%, with a recall 
rate of 75%, leading to an F1 Score of 85.71%, indicating a 
robust overall performance for Sad emotions. In the case of 
,,Angry” emotions, the model demonstrated high precision 
(94.12%) and perfect recall (100%), resulting in an 
outstanding F1 Score of 96.97%. Furthermore, for ,,Fearful” 
and ,,Disgust” emotions, the model achieved perfect 
precision, recall, and F1 Score, indicating exceptional 
performance in identifying these emotions. Lastly, for 
,,Surprised” emotions, the model exhibited a precision of 
93.33%, a recall of 87.5%, and an F1 Score of 90.32%, 
highlighting a strong capability in recognizing Surprised 
emotions. The overall model performance, measured by 
accuracy, was found to be 89.17%, underscoring the 
model’s effectiveness in classifying emotions across the 
dataset. 

These metrics collectively provide valuable insights into 
the model’s strengths and areas for potential refinement. In 
addition to the evaluation of individual emotion categories, 
it’s worth highlighting the robustness of the model’s 
performance across various scenarios. The utilization of a 
diverse dataset encompassing a wide range of emotions and 
expressions ensures that the model is trained to generalize 
well to real world scenarios. Moreover, the incorporation of 
advanced architectures such as HuBert-LSTM contributes to 
the model’s adaptability and ability to capture nuanced 

patterns within the data. This adaptability is particularly 
crucial in emotion recognition tasks where subtle variations 
in facial expressions, tone of voice, and contextual cues play 
a significant role. Furthermore, the high accuracy and 
precision achieved across most emotion categories 
underscore the model’s potential for practical applications 
in fields such as affective computing, human-computer 
interaction, and sentiment analysis. Overall, the 
comprehensive evaluation metrics coupled with the model’s 
adaptability and performance across diverse emotional 
contexts demonstrate its efficacy and potential for real-
world deployment. Continued research and refinement in 
this domain hold promise for further enhancing the model’s 
capabilities and advancing the field of emotion recognition. 

 
                    Figure.5. Confusion Matrix HuBert-LSTM on best fold 

 

The graphical depiction in Figure 6, showcasing the 
performance of the best model, Hubert-augmentation, 
delineates the accuracy of predictions across different 
emotion categories. Notably, in the ,,Neutral” category, the 
model achieves a moderate performance, correctly 
predicting 4 out of 8 examples, while misclassifying the 
remaining 4. Conversely, the ,,Calm” emotion exhibits 
outstanding performance, with 15 out of 16 examples 
accurately predicted, showcasing the model’s robust 
capability in this category. Similarly, the ,,Fearful” and 
,,Disgust” emotions demonstrate high precision, with 15 out 
of 16 examples correctly classified. On the other hand, the 
,,Surprised” category presents a notable challenge for the 
model, with only 11 out of 16 examples predicted correctly. 
Overall, the graph suggests that the model excels 
particularly well in classes such as ,,Calm,” ,,Fearful” and 
,,Disgust” while facing difficulties in accurately classifying 
instances of ,,Neutral” and ,,Surprised” emotions. 

According to the graphs depicted in Figures 3 and 6, it 
can be observed that the HuBert-LSTM model performed 
significantly better on the ,,angry” emotion, correctly 
classifying all 16 examples, compared to the HuBert-
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augmentation model, which classified 13 out of 16 
examples correctly. Additionally, the HuBert-LSTM model 
demonstrated superior performance on the happy” emotion 
(15 out of 16 compared to 13 out of 16), ,,fearful” emotion 
(16 out of 16 compared to 15 out of 16), and ”surprised” 
emotion (14 out of 16 compared to 11 out of 16). The 
HuBert-augmentation model generalized better only on the 
,,sad” emotion (15 out of 16 compared to 12 out of 16). 
 

 
Figure 6. Predictions on best fold Hubert-augmentation 

In the analysis of the performance of the HuBert-
augmentation and HuBert-LSTM models, significant 
differences in their graphical behavior are noticeable, 
reflecting variations in accuracy and stability. Figure 7 
illustrates a graphical representation of the performance of 
the HuBert-augmentation model, while figure 4 depicts the 
performance of the HuBert-LSTM model. A notable 
observation is the more linear character of the graph 
associated with the HuBert-LSTM model, as opposed to the 
evident fluctuations in the case of the HuBert-augmentation 
model, as analyzed in the table 3. 

 
TABLE III. PERFORMANCE ON BEST FOLD HUBERT-AUGMENTATION (VALUE 

REPRESENTATION) 

Epoch Train 
Accuracy 

Validation 
accuracy 

Train 
loss 

Validation 
Loss 

Test 
accuracy 

Test 
Loss 

1 0.274 0.385 1.843 1.378 

0.841 0.625 
2 0.502 0.622 1.291 1.150 
3 0.621 0.719 1.010 0.687 
4 0.777 0.763 0.678 0.619 
5 0.793 0.859 0.578 0.499 

Throughout the evaluation of the models, relevant 
performance metrics were identified. Thus, the HuBert-
augmentation model achieved an accuracy of 79.3% on the 
training set, 85.9% on the validation set, and 84.1% on the 
test set. In contrast, the HuBert-LSTM model demonstrated 
superior performance on the test set, recording an accuracy 
of 89.1%. This indicates better adaptability of the HuBert-
LSTM model to the test data compared to the augmented 
model. Additionally, a significant improvement in the loss  

function on the test set of the HuBert-LSTM model is 
noteworthy, which registered a value of 0.45 compared to 
0.62 for the hybrid model. These differences underscore the 
superior efficiency and robustness of the HuBert-LSTM 
model compared to the augmented variant, suggesting better 
adaptation to test data and enhanced generalization 
capabilities.  
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Figure 7. Performance on best fold HuBert-augmentation (graphic 

representation) 
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Figure 8. Confusion Matrix HuBert-augmentation on best fold 

 
Upon analyzing the confusion matrix depicted in the 

Figure 8, we derived the subsequent performance metrics: 
In the ,,Neutral” category, precision reached 66.67% with a 
sensitivity of 50.00%, resulting in an F1 score of 57.14%. 
Conversely, for expressions denoting ,,Calm” and 
,,Sadness,” results improved significantly, achieving 
precisions of 57.69% and 93.75%, respectively. Sensitivities 
for ,,Calm” and ,,Sadness” were also notable at 93.75%, 
yielding F1 scores of 71.43% and 93.75%, respectively. 

Noteworthy is the robust performance observed in 
emotions such as ”Happy,” ”Fearful,” ”Dis-gust,” and 
”Surprised,” with precisions ranging from 86.67% to 
93.75%, sensitivities between 68.75% and 93.75%, and F1 
scores between 78.57% and 93.75%. 

A detailed analysis of the performance of the emotion 
classification models, HuBert-LSTM and HuBert-
augmentation, reveals significant differences in their 
effectiveness.  Regarding the HuBert-LSTM model, it 
demonstrates higher precision compared to HuBert-
augmentation for most emotions, such as Neutral (80% vs. 
66.67%), Calm (78.95% vs. 57.69%), and Happy (71.43% 
vs. 86.67%). The F1 scores of the HuBert-LSTM model are 
also generally higher for these emotions compared to those 
of the HuBert-augmentation model. However, the HuBert-
augmentation model achieves higher recall rates 
(sensitivity) for certain emotions, such as Sad (93.75% vs. 
75%), Fearful (93.75% vs. 100%), e and Disgust (93.75% 
vs. 100%), compared to HuBert-LSTM. This suggests that 
HuBert-augmentation may excel in capturing specific 
emotions but at the cost of lower precision. Overall, despite 
the higher performances of HuBert-augmentation in some 
cases, HuBert-LSTM appears to provide a more precise and 
balanced classification of emotions, thus highlighting the 
advantages and limitations of each model in tackling this 

complex task. Additionally, when considering emotions 
such as Angry, Fearful, Disgust, and Surprised, both models 
exhibit strong performances, with precision ranging from 
86.67% to 93.75% and sensitivities between 68.75% and 
100%. However, while HuBert-LSTM maintains perfect 
precision for Sad emotions, achieving 100%, HuBert-
augmentation surpasses it in terms of sensitivity, with a 
notable 93.75%. This discrepancy underscores the nuanced 
differences in how each model handles specific emotional 
nuances within the dataset. Moreover, the overall accuracy 
of the models, a critical measure of their effectiveness in 
classifying emotions across the entire dataset, reinforces 
HuBert-LSTM’s superiority, standing at an impressive 
89.17% compared to HuBert-augmentation. Despite these 
differences, both models provide valuable insights into the 
landscape of emotion classification, illuminating areas for 
further refinement and optimization in future iterations. 
Furthermore, delving deeper into the intricacies of model 
performance reveals intriguing patterns. For instance, while 
HuBert-LSTM showcases remarkable precision across a 
spectrum of emotions, HuBert-augmentation excels in 
capturing subtle variations in emotional expressions, 
particularly evident in its higher sensitivity rates for certain 
categories. This nuanced interplay between precision and 
recall highlights the complex trade-offs inherent in emotion 
classification tasks. Additionally, the disparity in 
performance metrics underscores the need for a 
comprehensive evaluation framework that considers not 
only overall accuracy but also the model’s ability to discern 
between nuanced emotional states. As advancements in 
natural language processing continue to evolve, leveraging 
these insights will be crucial in refining emotion 
classification models to better serve diverse applications, 
from sentiment analysis to affective computing. In the table 
4, the performance of the HuBert-noaugmentation model on 
the training, validation, and test sets is presented. During 
training, there is a progressive improvement in accuracy, 
with a significant increase from 27.25% in the first epoch to 
84.5% in the fifth epoch. On the validation set, the model 
continues to show improvements, reaching an accuracy of 
85.96% in the same epoch. On the test set, the model also 
achieves solid results, with an accuracy of 83.3%. 
Regarding loss, there is a notable decrease, reaching a value 
of 0.41 on the test set, indicating the model’s ability to adapt 
well and make accurate predictions.  

 
TABLE IV. PERFORMANCE ON BEST FOLD HUBERT-NOAUGMENTATION 

(VALUE REPRESENTATION) 

Epoch Train 
Accuracy 

Validation 
accuracy 

Train 
loss 

Validation 
Loss 

Test 
accuracy 

Test 
Loss 

1 0.272 0.5 1.8426 1.317 

0.833 0.411 
2 0.545 0.578 1.249 1.182 
3 0.675 0.728 0.888 0.825 
4 0.768 0.763 0.643 0.694 
5 0.845 0.859 0.466 0.504 
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These results underscore the reliability and 
effectiveness of the HuBert-noaugmentation model in audio 
data classification tasks. 

In the figure 9, we graphically highlighted the 
performances achieved on the training and validation sets 
by the HuBert-noaugmentation model for each epoch. It is 
worth mentioning that the model was trained up to the fifth 
epoch, as beyond this point we encountered overfitting 
issues. 

 
 
 
 
 
 
 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 

 
 
 
 
 

 
Figure 9. Performance on best fold classic HuBert-noaugmentation  

(graphic representation) 

 

Analyzing the figure 10, it is noted that the graph 
highlights a perfect performance of the prediction model for 
the ,,happy” and ,,angry” categories, with all 16 predictions 
being correct, without any errors in identifying these two 
emotions. 

This precision suggests that the model is excellently 
calibrated to detect and differentiate be-tween facial 
expressions or other features associated with these 
emotional states. This indicates a profound understanding of 
the distinctive characteristics of ,,happiness” and ”anger” 
from the dataset used for training. Comparing fig. 3 with 
fig. 10, it is evident that Hubert LSTM achieved a perfect 
classification rate of 16 out of 16 instances for the ”fearful” 
and ,,angry” classes, whereas the Hubert-noaugmentation 
model achieved a similar flawless performance of 16 out of 
16 instances for the ,,happy” and ,,angry” classes. This 
demonstrates the robustness and efficacy of both models in 
accurately categorizing emotional states, highlighting their 
proficiency in handling diverse emotional expressions. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.10. Predictions on best fold Hubert-noaugumentation 

 
The detailed analysis of the confusion matrix results, as 

depicted in the figure 11, highlights a diverse range of 
performances in identifying different emotions. These data 
were obtained from the confusion matrix of the classical 
Hubert model without augmentation. Positive emotions such 
as calmness and happiness exhibited precision and recall 
values above 0.75, suggesting the model’s effectiveness in 
detecting these positive states. 

Particularly, happiness achieved the highest scores, with 
precision, recall, and F1 score all at 0.941, indicating 
excellent performance in identifying this emotion. On the 
other hand, negative emotions like sadness, anger, and fear 
generally achieved good scores but with some variations. 

For instance, while sadness showed a precision of 0.65 
and recall of 0.867, anger attained a precision of 0.889 and a 
recall of 0.842. Conversely, fear attained a precision of 
0.789, a recall of 0.938, and an F1 score of 0.857, 
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suggesting the model’s high efficiency in identifying this 
negative emotion. More complex or less frequent emotions 
such as disgust and surprise demonstrated varied 
performances. 

For example, disgust achieved a perfect precision of 1.0 
but a lower recall of 0.647, indicating high precision but 
potential misses in some cases. Conversely, surprise 
achieved a precision of 1.0, a recall of 0.917, and an F1 
score of 0.957, highlighting the model’s efficiency in 
identifying this emotion despite slightly lower recall. In 
conclusion, the model exhibits overall good performance in 
emotion recognition, with an emphasis on positive results 
and variations in identifying negative or less frequent 
emotions, suggesting the need for further adjustments to 
improve performance. 

 
 
 
 
 
 
 

 
 
 
 
 

 
 

 
 +

 

Fig.11. Confusion Matrix HuBert-noaugmentation on best fold 

 
A comprehensive comparison of HuBert-LSTM, 

HuBert-augmentation, and HuBert-noaugmentation models 
reveals distinct differences in their performance across 
various metrics. HuBert-LSTM demonstrates superior 
precision compared to both HuBert-augmentation and 
HuBert-noaugmentation models across several emotions, 
such as Neutral, Calm, and Happy. The precision rates for 
HuBert-LSTM are consistently higher, suggesting its 
effectiveness in accurately classifying these emotions. 
 How-ever, when it comes to recall rates, HuBert-
augmentation and HuBert-noaugmentation models exhibit 
strengths in capturing specific emotions like Sad, Fearful, 
and Disgust, achieving higher recall rates compared to 
HuBert-LSTM in these cases. In terms of overall 
performance, HuBert-LSTM appears to strike a balance 
between precision and recall, providing a more robust 
classification of emotions. On the other hand, while HuBert-

augmentation and HuBert-noaugmentation models may 
excel in capturing certain emotions with higher recall rates, 
they may sacrifice precision in the process. Ad-ditionally, 
when evaluating emotions such as Angry, Fearful, Disgust, 
and Surprised, all three models demonstrate strong 
performances, with precision ranging from moderate to 
high. However, there are nuanced differences in their 
capabilities, with each model showing strengths and 
weaknesses across different emotions. 

While HuBert-LSTM, HuBert-augmentation, and 
HuBert-noaugmentation models each offer unique 
advantages, HuBert-LSTM stands out as providing a 
balanced approach to emotion classification, with strong 
precision across various emotions. Nonetheless, the choice 
of model ultimately depends on specific requirements and 
trade-offs between precision and recall in different emotion 
recognition tasks. 

9. Conclusion 
The integration of HuBERT with LSTM into a hybrid 
model for speech emotion recognition (SER) represents a 
significant advancement in the field of human-computer 
interaction. This hybrid model capitalizes on the strengths of 
both architectures, combining HuBERT’s proficiency in 
extracting se-mantic features from speech with LSTM’s 
capability to understand and model the temporal dynamics 
inherent in audio sequences. The utilization of the 
RAVDESS dataset has underscored the model’s robustness 
and versatility, enabling it to perform well across a wide 
spectrum of emotional expressions and intensity levels. The 
reported results indicate that the HuBert-LSTM model not 
only surpasses the performance of traditional models but 
also demonstrates considerable improvements over models 
using either HuBERT or LSTM in isolation. With a 
maximum accuracy of 89.1%, the hybrid model shows a 
promising direction towards enhancing the accuracy and 
efficiency of emotion recognition systems. This level of 
performance is particularly noteworthy given the complexity 
and variability of human emotional expression in speech, 
highlighting the model’s ability to generalize across differ-
ent speakers and emotional states. Moreover, the hybrid 
model’s superior performance in handling a diverse range of 
emotions, including those that are typically challenging for 
SER systems, such as neutrality and surprise, points to its 
advanced capability in capturing the nuances of emotional 
expression. The detailed analysis of precision, recall, and F1 
scores across different emotions further confirms the 
model’s efficacy, showcasing its balanced approach to 
emotion classification. The success testing sets is a 
testament to its generalization ability and robustness. These 
qualities make it a highly effective tool for various real-
world applications, from enhancing user experience in 
voice-assisted technologies to supporting mental health 
assessments through emotional analysis. 

In conclusion, the HuBert-LSTM hybrid model 
represents a significant leap forward in the domain of speech 
emotion recognition, offering a powerful, efficient, and 
versatile tool for enhancing human-machine interactions. Its 
successful application to the RAVDESS dataset highlights 
its potential for broader implementation, promising to 
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contribute significantly to advancements in affective 
computing and beyond. Continued research and refinement 
of this model could further unlock its capabilities, paving 
the way for more intuitive and empathetic computer 
systems. For those interested in my research, I have added a 
footnote containing a link2 to the code for all three models, 
as well as a code testing the Hubert-LSTM model on 
unlabeled data. 
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