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Abstract—In this paper, we investigate the linear complexity
and the minimal polynomial of cyclotomic binary sequences of
order four over a finite field of odd characteristic. The sequences
considered are determined on the basis of two cyclotomic classes
of the fourth order. We show that they have a high linear
complexity.

Index Terms—binary sequences, linear complexity, cyclotomy

I. INTRODUCTION

Binary sequences are widely used in various fields, in
particular, in cryptography [2]. The linear complexity is
an important characteristic of pseudo-random sequence for
cryptographic applications. Let s be a sequence with period
n over a finite field GF (q), where q is a prime number.
The linear complexity of s over GF (q) is defined to be
the smallest positive integer L such that there are constants
c0 6= 0, c1, . . . , cL ∈ GF (q) satisfying

−c0si = c1si−1 + c2si−2 + . . .+ cLsi−L for all i ≥ L.

Polynomial m(x) = c0 + c1x + . . . + cL−1x
L−1 + cLx

L is
called the minimal polynomial of s [2].

From the engineering point of view, L is the length of the
shortest linear feedback shift register generating the sequence.
As the Berlekamp - Massey algorithm is capable of deducing
the whole sequence from a knowledge of just 2L consecutive
digits, a high linear complexity L should be no less than one
half of the length (or minimum period) of the sequence.

Using classical cyclotomic and generalized cyclotomic
classes to construct binary and other sequences, which are
called cyclotomic and generalized sequences, is an important
method for sequence design [2]. There are many works
devoted to the study of the linear complexity of above-
mentioned binary sequences over the finite field of order two.
In particular, the sequences determined by two cyclotomic
classes of the fourth order in [3], [6]. Recently, a number
of papers have been published on the analysis of the linear
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complexity of cyclotomic sequences over an arbitrary finite
field. So the characteristic sequences of quadratic, cubic and
biquadratic residue classes that belong to cyclotomic classes
were investigated in [4], [7], [11]–[13], two classes of bi-
quadratic residues in [5], but with constraints on the period
of the sequence and the characteristic of the finite field. As
noted in [5], further investigation of this topic is also of interest
(Problem 7.1).

In this paper, the linear complexity and minimal poly-
nomials of the characteristic sequence of two fourth-order
cyclotomic classes are investigated over an arbitrary finite field
without restrictions on the period and the characteristic of the
field.

II. PRELIMINARIES

First, we briefly repeat the basic definitions from [5].
Let n be a prime such that n ≡ 1(mod 4), and g be a

primitive root modulo n [9]. Define C(4,n)
i = gi〈g4〉 for i =

0, 1, 2, 3, where 〈g4〉 is the subgroup of GF ∗(n) generated
by g4. The cosets C(4,n)

i are called the cyclotomic classes of
order 4 in GF (n) [2].

Consider the binary sequence s of a period n defined as
follows:

si =

{
1, if i (mod n) ∈ C(4,n)

0 ∪ C(4,n)
1 ,

0, otherwise.
(1)

The linear complexity and the minimal polynomial of this
sequence were studied in [3], [6] for q = 2, [1] for q = n
and [5] for finite fields of other orders. In the last work,
the sequence study was performed under the condition that
(n− 1)/4 ≡ 0 (mod q), where q is a characteristic of a finite
field. So, in this paper we will investigate the linear complexity
and the minimal polynomial of the sequence s over the finite
field GF (q) for q > 2 and (n−1)/4 6≡ 0 (mod q). For q > 2
the congruence means that n 6≡ 1 (mod q).
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It is well known that the linear complexity L of a sequence
s and its minimal polynomial m (x) can be calculated by the
following formulas [2]:

L = n− deg [ (xn − 1, S(x))] ,

m(x) = (xn − 1)/ (xn − 1, S (x)) , (2)

where S (x) = s0 + s1x+ . . .+ sn−1x
n−1.

Denote by ordn(q) the multiplicative order q modulo n, and
by η a primitive root of the nth degree of unity in the field
GF (qordn(q)) [10]. Then, according to (2), we obtain that

L = n−
∣∣{j | S (ηj) = 0, j = 0, 1, . . . , n− 1

}∣∣ . (3)

Let ηi =
∑

j∈C(4,n)
i

ηj , i = 0, 1, 2, 3 and θi = ηi + ηi+2, i =

0, 1, i.e., θi =
∑
j∈C(2,n)

i
ηj . The values ηi depend on choice

g, η. Here and hereafter the subscript of η is performed modulo
4. Notice that

η0 + η1 + η2 + η3 = −1. (4)

Further, by definition of the sequence we have S (ηv) =∑
j∈C(4,n)

0 ∪ C
(4,n)
1

ηvj . Using the properties of S(x) and the

definition of ηi from [5], we obtain that S(ηj) = S(ηg
i

) for
j ∈ C(4,n)

i and
S
(
ηj
)

= ηi + ηi+1 (5)

Thus, by the formula (3) we have that

L = n− |{i | ηi + ηi+1 = 0, i = 0, 1, 2, 3}|(n− 1)/4−∆,
(6)

where

∆ =

{
1, if S(1) = 0,
0, if S(1) 6= 0.

We introduce auxiliary polynomials Ω
(4,n)
i (x) =∏

j∈C(4,n)
i

(
x− ηj

)
for i : 0 ≤ i ≤ 3. By definition of

cyclotomic classes and the choice of η we have the
decomposition:

xn − 1 = (x− 1)
3∏
i=0

Ω
(4,n)
i (x).

Then by (2) the minimal polynomial of the sequence s is

m(x) = (x− 1)1−∆
∏

i : ηi+ηi+1 6=0

Ω
(4,n)
i (x). (7)

It is easy to check that Ω
(4,n)
i (x) ∈ GF (q)[x], if ηi ∈

GF (q) for i = 0, 1, 2, 3.
Thus, according to formulas (6) and (7), to calculate the

linear complexity and the minimal polynomial of the sequence,
it is sufficient to determine when S

(
ηg

i
)

= ηi + ηi+1 = 0

for i : 0 ≤ i ≤ 3.

III. AUXILIARY LEMMAS.

In this section we prove several auxiliary statements neces-
sary for what follows.

Since n ≡ 1(mod 4), n can be expressed as n = u2 +
4v2; u ≡ 1(mod 4), here v is two-valued, depending on the
choice of the primitive root.

The following statements follow from [5], [12] (the formu-
lae (6.14), (6.19), etc.).

Lemma 1:
Let n = u2 + 4v2. Then:
(i) θ0 and θ1 are the roots of the polynomial

x2 + x− (n− 1)/4.

(ii) When n ≡ 5 (mod 8) we have ηi and ηi+2 are the roots
of the polynomial

x2 − θix+ θi(u− 1)/4 + (3n− 1 + 2u)/16.

(iii) When n ≡ 1 (mod 8) we have ηi and ηi+2 are the
roots of the polynomial

x2 − θix+ θi(u− 1)/4− (n+ 1− 2u)/16.

The following lemma defines the necessary and sufficient
conditions for the existence of the root of S(x) in the set
{ηj , j = 1, 2, . . . , n− 1}.

Lemma 2: Let n = u2 + 4v2. Then there exists j 6= 0 such
that S(ηj) = 0 if and only if

u2n+ 2n+ 1 ≡

{
0, if n ≡ 5 (mod 8),

4n, if n ≡ 1 (mod 8).
(mod q).

Proof: Let n ≡ 5 (mod 8) and S(ηj) = 0, 0 < j < n.
Without loss of generality, we can assume that S(η) = 0. Then
by (5) we see η0 = −η1 and by Lemma 1 we get{

η2
0 − θ0η0 + θ0(u− 1)/4 + (3n− 1 + 2u)/16 = 0,

η2
0 + θ1η0 + θ1(u− 1)/4 + (3n− 1 + 2u)/16 = 0.

Hence η0 = −(u− 1)/4− θ0(u− 1)/2. Denote (u− 1)/4 by
t. Then η0 = −t− 2θ0t and

(4t2 + 2t)θ2
0 + (4t2 + 2t)θ0 + (3n+ u2)/16 = 0.

By Lemma 1 we see that

(4t2 + 2t)θ2
0 + (4t2 + 2t)θ0 − (4t2 + 2t)(n− 1)/4 = 0.

Therefore,

(3n+u2)/4 = −(4t2+2t)(n−1) or 3n+u2 = −(u2−1)(n−1),

i.e., u2n+ 2n+ 1 ≡ 0 (mod q).
Let u2n + 2n + 1 ≡ 0 (mod q) and y = −t − 2θ0t. It is

straightforward to verify that y is a root of x2− θ0x+ θ0(u−
1)/4+(3n−1+2u)/16 and −y is a root of x2−θ1x+θ1(u−
1)/4 + (3n− 1 + 2u)/16. The conclusion of this lemma then
follows from Lemma 1 and (5).

The second statement of this lemma may be proved simi-
larly as the first.
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Corollary 3: Let n ≡ 5 (mod 8) and u2n + 2n + 1 ≡ 0
(mod q) or n ≡ 1 (mod 8) and u2n− 2n+ 1 ≡ 0 (mod q).

Then

η0, η2 ∈ {−
u− 1

4
− u− 1

2
θ0,

u− 1

4
+
u+ 1

2
θ0},

and

η1, η3 ∈ {
u− 1

4
+
u− 1

2
θ0,−

u+ 3

4
− u+ 1

2
θ0}.

We note that in the proof of the Lemma 2 the condition n 6≡ 1
(mod q) for q > 2 was not used, that is, the statement of
Lemma 2 is fair for n ≡ 1 (mod q). In this case we get that
u2 ≡ −3 (mod q) for n ≡ 5 (mod 8) and u2 ≡ 1 (mod q)
for n ≡ 1 (mod q), that agrees with the Theorem 7.1 from
[5].

IV. THE LINEAR COMPLEXITY OF SEQUENCE

Let us prove the main result of the article.
Theorem 4: Let s be defined by (V) and (n − 1)/4 6≡ 0

(mod q), q > 2, and let n = u2 + 4v2 with u ≡ 1 (mod 4).
Then the linear complexity and the minimal polynomial of s
are defined by the following relations:

(a) The case that n ≡ 5 (mod 8):
1) When u2n+ 2n+ 1 6≡ 0 (mod q), we have L = n and

m(x) = xn − 1.
2) When u2n+2n+1 ≡ 0 (mod q) and n 6≡ −1 (mod q),

we have L = (3n+ 1)/4 and

m(x) =


(xn − 1)/Ω

(4,n)
0 (x), if η0 = −η1,

(xn − 1)/Ω
(4,n)
1 (x), if η1 = −η2,

(xn − 1)/Ω
(4,n)
2 (x), if η2 = −η3,

(xn − 1)/Ω
(4,n)
3 (x), if η0 = −η3.

3) When n ≡ −1 (mod q) and u2 ≡ −1 (mod q) , we
have L = (n+ 1)/2 and

m(x) =



(x− 1)Ω
(4,n)
0 (x)Ω

(4,n)
1 (x),

if η0 = η2 = −η3,

(x− 1)Ω
(4,n)
2 (x)Ω

(4,n)
3 (x),

if η0 = −η1 = η2,

(x− 1)Ω
(4,n)
0 (x)Ω

(4,n)
3 (x),

if η1 = −η2 = η3,

(x− 1)Ω
(4,n)
1 (x)Ω

(4,n)
2 (x),

if − η0 = η1 = η3.

(b) The case that n ≡ 1 (mod 8):
1) When u2n− 2n+ 1 6≡ 0 (mod q), we have L = n and

m(x) = xn − 1.
2) When u2n− 2n+ 1 ≡ 0 (mod q), we have L = (3n+

1)/4 and

g(x) =


(xn − 1)/Ω

(4,n)
0 (x), if η0 = −η1,

(xn − 1)/Ω
(4,n)
1 (x), if η1 = −η2,

(xn − 1)/Ω
(4,n)
2 (x), if η2 = −η3,

(xn − 1)/Ω
(4,n)
3 (x), if η0 = −η3.

Proof: First, we consider the case when n ≡ 5 (mod q).
Let u2n+2n+1 6≡ 0 (mod q). Since by definition S(1) =

(n− 1)/2, from the conditions of this theorem, Lemma 2 and
(5) it follows that L = n and m(x) = xn − 1.

Let u2n + 2n + 1 ≡ 0 (mod q) and n 6≡ −1 (mod q).
Then by Lemma 2 there exists i : S(ηg

i

) = 0, 0 ≤ i ≤ 3.
Suppose that there also exists k : 0 ≤ k ≤ 3, k 6= i such
that S(ηg

k

) = 0. Then by (5) we have ηk = −ηk+1 and
ηi = −ηi+1. Hence, η0 = η2 or η1 = η3. Without loss of
generality, we can assume that we have the first option. Then
by Lemma 1 we obtain that

θ2
0 − (u− 1)θ0 − (3n− 1 + 2u)/4 = 0.

Since θ0 is a root of x2+x−(n−1)/4, it follows that uθ0+(n+
u)/2 = 0 and (n+u)2/4−u(n+u)/2−u2(n−1)/4 = 0. So,
n ≡ u2 (mod q). Therefore, since u2n+2n+1 ≡ 0 (mod q)
and n 6≡ 1 (mod q) we obtain that n ≡ −1 (mod q). We
have a contradiction. The conclusion of this theorem in this
case follows from Lemma 2 and (6)-(7) .

Let n ≡ −1 (mod q) and u2 ≡ −1 (mod q). Then by
Lemma 1 θ0 and θ1 are roots of the polynomial x2 +x+ 1/2.
Since n ≡ u2 (mod q), it follows that θ0 = (−1− u)/2 and
θ1 = (−1 + u)/2 or vice versa. In this case by Lemma 1 we
obtain that η0 and η2 are roots of

x2 + (u+ 1)x/2 + (u+ 1)(u− 1)/8 + (3u2 − 1 + 2u)/16

or
x2 + (u+ 1)x/2 + (u2 + 2u+ 1)/16.

Hence η0 = η2 = −(u+ 1)/4.
Similarly, we have that η1 and η3 are roots of x2 − (u −

1)x/2− (u+ 2)/8. Thus, η1, η3 ∈ {−(u+ 1)/4, (3u− 1)/4}.
Since u 6≡ 0 (mod q), it follows by (4) that

|{i : ηi + ηi+1 = 0, i = 0, 1, 2, 3}| = 2.

To conclude the proof for n ≡ 5 (mod 8), it remains to use
(6) and (7).

Let n ≡ 1 (mod 8). If there exist k, i : 0 ≤ k < i ≤
3, k 6= i such that S(ηg

k

) = S(ηg
i

) = 0 then as earlier
we can obtain that n ≡ u2 (mod q). Since u2n− 2n+ 1 ≡ 0
(mod q), it follows that u2 ≡ 1( mod p) and n ≡ 1 (mod q).
This contradicts the conditions of Theorem 4. So, with similar
arguments as above we obtain the statement of Theorem 4 for
n 6≡ 1 (mod q).

Corollary 5: Let n ≡ 5 (mod 8), n ≡ −1 (mod q), and
u2 ≡ −1 (mod q). Then

{η0, η1, η2, η3} =

{−(u+ 1)/4,−(u+ 1)/4,−(u+ 1)/4, (3u− 1)/4}.

According to Theorem 4, the sequence s has a high linear
complexity over the field GF (q)

(
L > n

2

)
.

Let’s consider some examples.
1) Let q = 3. Then u2 ≡ 1 (mod 3) and congruence

u2n ± 2n + 1 ≡ 0 (mod 3) has no solution when
n 6≡ 1 (mod 3). Consequently, by Theorem 4, the
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linear complexity of the sequence for n 6≡ 1 (mod 3)
(n = 17, 29) is equal to the period of the sequence (cases
a.1, b.1 in the theorem).

2) Let q = 5, u2n ± 2n + 1 ≡ 0 (mod 5) and n 6≡ 1
(mod 5). Then n ≡ 5 (mod 8), n ≡ −1 (mod 5) and
u2 ≡ −1 (mod 5). Consequently, in this case, only one
option with L = (n + 1)/2 is possible. Here v ≡ 0

(mod 5). It is a familiar fact that in this case 5 ∈ C(4,n)
0

[9]. For n = 109 we have L = 55 ( a.3).
3) Let q = 7, n = 193. Then u ≡ −7 (mod 7), n ≡ 4

(mod 7) and L = 145 (b.2). Let q = 7, n = 37. Here
u2 ≡ 1 (mod 7) and n ≡ 2 (mod 7), so L = 28 (a.2).

Thus, all cases of Theorem 4 are possible. Other results of
calculations of the linear complexity of the sequence according
to the Berlekamp-Massey algorithm are also consistent with
the statements of Theorem 4.

Remark 6: The set C(4,n)
0 ∪C(4,n)

1 will be an almost differ-
ence set with parameters (n, (n− 1)/2, (n− 5)/4, (n− 1)/2)
in (GF (n),+) when v = ±1 and n = u2 + 4 [3]. Then
congruence u2n + 2n + 1 ≡ 0 (mod q) holds if and only
if u2 ≡ −3 (mod q) and n ≡ 1 (mod q). Hence, under
the conditions of Theorem 4, the linear complexity of the
characteristic sequence of this almost difference set is equal
to the period of the sequence.
It is worth pointing out that ηi, i = 0, 1, 2, 3 are also called the
Gauss periods over GF (q) [5]. Thus, we find a series of the
Gauss periods and generalize the results from [11]. Besides, if
Ak =

∑p−1
j=0 hjα

kj , k = 0, 1, . . . , p− 1 is a (discrete) Fourier
transform of a sequence {hj} with the support C(4,n)

0 then
Ak = ηj if k ∈ C(4,n)

j [8]. So, Corollaries 3 and 5 define the
discrete Fourier transform in the considering case.

It is a familiar fact that (S (η))
q

= S (ηq) in GF (q). From
this we can establish by (3) and (4) that if there exists j : j 6= 0

and S(ηj) = 0 then q ∈ C(4,n)
0 . So, from Lemma 2 we obtain

an interesting corollary. If u2n + 2n + 1 ≡ 0 (mod q) for
n ≡ 5 (mod q) or u2n − 2n + 1 ≡ 0 (mod q) for n ≡ 1

(mod 8) then q ∈ C(4,n)
0 (here, q > 2).

V. NOTES ON CYCLIC CODES

Cyclic codes are used in many areas [10]. It is a well-
known fact that for any cyclic code C of length n over GF (q)
there exists a unique unitary polynomial g (x) ∈ GF (q) [x] of
smallest degree such that C = 〈g (x)〉, where 〈g (x)〉 is the
principal ideal of the ring GF (q) [x] /(xn−1). A polynomial
g (x) divides xn − 1 and is called a generating polynomial of
cyclic code C [5].

Let D is a nonempty subset Zn and D (x) =
∑
i∈D

xi.

Cyclic code in GF (q) with generating polynomial g (x) =
gcd (xn − 1, D (x)) is called the cyclic code of the set D
[5]. In [5] C. Ding investigated the parameters of the cyclic
code over GF (q), when D is a difference set or an almost
difference set. In particular, when D is a union of two
cyclotomic classes of the fourth order modulo n. In the latter
case, under the restriction that the characteristic of the field
GF (q) divides (n− 1)/4.

Let s(D) be the characteristic sequence of a set D, i.e. s(D)
is the binary sequence with period n, defined as

s(D)i =

{
1, if i (mod n) ∈ D,
0, otherwise.

Then ms(D) (x) = (xn − 1)/g (x) and Ls(D) = rankqD,
where rankqD is the code dimension CGF (q) (D) over
GF (q) .

Consequently, Theorem 4 also determines the dimension
and the generating polynomial of the above cyclic codes, when
D = C

(4,n)
0 ∪ C(4,n)

1 . Thus, a partial solution of Problem 7.1
from [5] is proposed in this paper. The question of estimating
the Hamming distance for these codes remains open. When
rankqD = L = (n+ 1)/2 one can apply an estimate for dual
codes.

Example 7: Let (q, n) = (7, 37). Then n = u2 + 4v2 =
1+4·32. Hence, u2n+2n+1 ≡ 0( mod 7). Then CGF (7)(D)
is a [37, 28] cyclic code with generating polynomial x9+3x6+
4x5 + 4x4 + 2x3 + 2x2 + 5x+ 6.

VI. CONCLUSION

We investigated the linear complexity of the class of pe-
riodic binary cyclotomic sequences and found their minimal
polynomial. The sequences are formed on the basis of two
cyclotomic classes of the fourth order. We have shown that
these sequences have high linear complexity over the finite
field of an odd characteristic different from the sequence
period.
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