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Abstract - In this special note, certain perspectives on various undeniable roles of certain special functions are 
considered. First, the selection of the relevant special function is discussed with a focus on the well-known 
gamma function. Then, essential information about this special function is provided, and important 
relationships between the selected function and the Caputo derivative(s) of fractional order are established. 
Finally, the possible effects of the relevant fractional derivative on certain types of special functions are 
revolved as computational and theoretical researches. 
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1  Introduction and preliminary 

information  
The (classical) gamma function has always 
captured the attention of some of the most 
prominent mathematicians in history. Its history, 
as documented  by  Philip J. Davis in  an article 
that won the 1963 Chauvenet Prize,  reflects  
many major developments  in  mathematics since 
the 18th century. For further details, one may refer 
to [1]. Since then, the gamma function has 
continued to interest mathematicians in various 
ways. This special function, defined by an 
improper integral, is just one of many special 
functions in mathematical literature and has a 
wide range of applications in various branches of 
mathematics, including probability and statistics.  

 As is well known, this special function with 
the parameter 𝑟, which can be consisted of any 
real (or complex) numbers, is generally denoted 
by the notation Γ(𝑟) and is also defined as  
 

                 Γ(𝑟) = ∫ 𝑄𝑟−1𝑒−𝑄𝑑𝑄
∞

0
,                    (1) 

 

which, of course,  must be convergent. According 
to classical analysis, the existence of the improper 
integral given by (1) is guaranteed only if the 
parameter 𝑟 satisfies the following conditions:  
 

             𝑟 ∈ 𝐑 ≔ ℝ − {0, −1, −2, ⋯ },  
 

where ℝ denotes the set of real numbers.  
In particular, for different selections of the 

relevant parameter (or variable) 𝑟 (𝑟 ∈ 𝐑), the 
following graph of the function Γ(𝑟), as defined 
by (1), can easily be generated using various 
computer mathematical programs, as shown in 
Graph 1. Naturally, this graph also provides us 
with diverse and valuable information.  

 
 

 
  The graph 1: The gamma function with real parameter r 

 

In particular, when the parameter 𝑟 is chosen 
as a natural number, which belongs to the familiar 
set 

 

ℕ ≔ {1, 2, 3, ⋯ }, 
 

 

and the method of integration by parts is applied, 
an essential relationship between the improper 
integral given by (1) and the factorial can be 
easily observed, as follows: 
 

      Γ(𝑟 + 1) = ∫ 𝑄𝑟𝑒−𝑄 𝑑𝑄
∞

0
  

 

                      =  −𝑄𝑟−1𝑒−𝑄|0
∞   

 

                                       + 𝑟 ∫ 𝑄𝑟−1𝑒−𝑄𝑑𝑄
∞

0
  

 

      Γ(𝑟 + 1) = 𝑟Γ(𝑟)                                              (2) 
 

                      = ⋯ 
 

                      = 𝑟!                                                   (3) 
 

for all 𝑟 ∈ 𝐍 ≔ ℕ ∪ {0}. 
In light of both our knowledge of classical 

analysis and the data shown in the Graph 1, since 
zero and negative integers are undefined points 
for the gamma function with a real parameter, the 
convergence of the improper integral in (1) is, of 
course, out of the question.  

On the other hand, although the gamma 
function is defined for every number in the set 𝐑 
and the related integral is naturally convergent, 
calculating the values of  Γ(𝑟)  using elementary 
methods is not always straightforward. 
Nonetheless, we would like to highlight some of 
the various special properties:  

 

 Using the fundamental assertion given 
in (3), it is easy to see that 
 

  Γ(1) = 0!, Γ(2) = 1! and Γ(3) = 2!, 
 

which are also required to the 
following improper integrals:  
 

              ∫ 𝑄1−1𝑒−𝑄𝑑𝑄 = 1
∞

0
,  

     

               ∫ 𝑄2−1𝑒−𝑄𝑑𝑄
∞

0
= 1  

 

      and 
              ∫ 𝑄3−1𝑒−𝑄𝑑𝑄

∞

0
= 2 , 

 

      respectively.   
 

 The recursive  relationship given by 
(2) holds for all positive  real  numbers 
𝑟 (𝑟 > 0), not just integers. For 
example, it is well known that   

                    Γ (
1

2
) = √𝜋 

 
and 

                                 Γ (
3

2
) =

1

2
Γ (

1

2
) =

√𝜋

2
 ,  
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which are also essential results for the 
following improper integrals:   

                   ∫ 𝑄−1/2𝑒−𝑄𝑑𝑄 = √𝜋
∞

0
 

 

       and    

                                ∫ 𝑄1/2𝑒−𝑄𝑑𝑄
∞

0
=

√𝜋

2
 , 

 

      respectively.  
 
 

 At the same time, the relationship 
takes the form given by 
 

                  Γ(𝑟) =
Γ(𝑟+1)

𝑟
                  (4) 

 

gives us a suitable way to extend the 
gamma function to the negative real 
numbers. For example, the value of  
 
 

                         Γ (−
1

2
)   

 

could also be evaluated by the help of 
the relation in (4), which immediatley 
yields that  
 

              Γ (−
1

2
) =

 Γ(− 
1

 2 
+1) 

− 
1

 2 

  
 

                           = −2Γ (
1

2
) 

 

                           = −2 √𝜋 . 
 

In light of the special examples above and 
using the relationships between (2) and (4), it is 
also possible to determine the values for each 
suitable rational-type real number in intervals 
such as 

 

(2, 3),  (3, 4),  (5, 6), ⋯ 
and 
 

(−2, −1),  (−3, −2),  (−4, −3), ⋯ , 
 

 

it is also possible to determine their values. For 
example,  
 
 

Γ (
3

2
) =? ,  Γ (

5

2
) =? ,  Γ (

7

2
) =? , … 

and 
 

 

Γ (−
3

2
) =? ,  Γ (−

5

2
) =? ,  Γ (−

7

2
) =? , …  

 
In particular, within the scope of the Gamma 

function defined by (1), we leave the comparison 
of the results we have previously calculated with 
the data presented in the Graph 1 and the use of 
this graph to determine the locations 
corresponding to the additional results (values) 
mentioned above to the special interest of 
researchers. 

For more detailed information about the 
special function, including its extensive properties 
and related implications (or possible applications), 
one can refer to the essential research found in the 
references [2], [3], [4], [5], [6], [7], [8], and [9].  

 
2 The  Gamma  Function,  Special   

Definitions, Various Implications 

and Examples, and Conclusions 
 

In particular, focusing on the main topic of this 
scientific note, we aim to explore the concept of 
'the function defined by (1)' as one of the relevant 
expressions of 'some well-defined functions' in 
our study. To this end, we will first provide the 
necessary information and then delve into some 
specific investigations and expressions.  
   When the r-th order (ordinary) derivative is 
considered for any continuous (or piecewise 
continuous) function such as 
 

                          𝑦 = 𝑓(𝑡) = 𝑡𝑠, 
 

the existence of the result (or expression) of the 
familiar form: 
 

  ( 𝑑

𝑑𝑡
)

𝑟 
(𝑡𝑠) ≡

𝑑𝑟

𝑑𝑡𝑟
(𝑡𝑠) 

 

                    ≡ (𝑡𝑠)(𝑟) 
 

                    = 𝑠 (𝑠 − 1) (𝑠 − 2)    
 

                                       ⋅ ⋯ ⋅ (𝑠 − (𝑟 + 1)) 𝑡𝑠−𝑟 
 

                    =  
𝑠!

 (𝑠−𝑟)! 
𝑡𝑠−𝑟   (𝑟 < 𝑠)                    (5)  

 

is obvious to all of us, where  
 

            𝑠 ∈ ℕ   and    𝑟 ∈ ℕ0 ≔ ℕ ∪ { 0}. 
 

    Furthermore, when the special definition of the 
function given in (1) is applied to the result (or 
expression) in (5), for a function 𝑦 = 𝑓(𝑡), the 
expression in (5) can naturally be restated in the 
following form: 
 

         ( 𝑑

𝑑𝑡
)

 𝜌 
[𝑓(𝑡)]  ≡  

𝑑𝜌 

𝑑𝑡𝜌 
[𝑓(𝑡)] 

 

                                =  (
𝑑

𝑑𝑡
)

𝜌
(𝑡𝑠)  

 

                                =  
Γ(𝑠+1)

 Γ(𝑠−𝜌+1) 
𝑡𝑠−𝜌                 (6)   

 

as the expectable form relating to the fractional 
type derivative(s), where 
 

                    𝑠 − 1 ≤ 𝜌 < 𝑠  and  𝑠 ∈ ℕ.             (7)  
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As some simple examples, under the conditions 
specified in (7), and considering this new 
formulation along with the special information 
provided in (2) and (4) and focusing on the 
extensive assertion in (6), the special results are 
given by 
 

         𝑠 = 1 ⇒   (
𝑑

𝑑𝑡
)

 1/2
(𝑡) =

Γ(2)

 Γ(3/2) 
𝑡1/2 

 

                                              = 2

√𝜋  
√𝑡                 (8)  

and 
 

       𝑠 = 1 ⇒  (
𝑑

𝑑𝑡
)

1/2
(𝑡2) =

Γ(3)

 Γ(5/2) 
𝑡3/2  

 

                                             = 2!

 Γ(5/2) 
𝑡√𝑡  

 

                                             = 2

 3/2 Γ(3/2) 
𝑡√𝑡 

 

                                             = 8

3√𝜋  
𝑡√𝑡  

 

can easily be calculated as two more especial 
examples. In the same time, this expresses that the 
relevant-type derivatives of order 1/2 of the 
functions being of   
 

𝑓(𝑡) = 𝑡   and   𝑓(𝑡) = 𝑡2 
 

at the point 𝑡0 = 1 also are equal to more special 
results given by 
 

                       ( 𝑑

𝑑𝑡
)

1/2
(𝑡)|

𝑡≔1
=  

2

√𝜋 
   

 

and  
 

                      ( 𝑑

𝑑𝑡
)

1/2
(𝑡)|

𝑡≔1
=  

8

3√𝜋 
 , 

 

respectively.    
 

   We  specifically  draw  your attention to the 
fact that, although  the  ordinary  derivatives of 
the elementary  functions  mentioned  above  at  
the point 𝑡0 = 1 are 1/2 = 0.5 and 2, their 
fractional derivatives of order 1/2 at that point are 
2/√𝜋 ≈ 0.636953 and 8/(3√𝜋) ≈ 0.849257, 
respectively.  
 

   Although the definition established by (6) is a 
relatively simple approach, the extensive impact 
of the Gamma function, as defined in (1), has 
made significant contributions to both various 
applications and theoretical frameworks in the 

literature. It remains an active area of research. In 
such cases, the following chronological flow will 
provide specific information about diverse 
calculations (or operators).  
   The special result in (8) was first considered by 
Sylvestre F. Lacroix in 1819. Subsequently, in 
1823, Niels Abel developed his theory of 
fractional order derivatives and integrals, and 
applied it practically to the Tautochron problem. 
This problem involves finding the equation of a 
curve along which a point mass rolls to the lowest 
point in the same amount of time under the 
influence of constant gravity, regardless of the 
starting point on the curve. Joseph Liouville [10] 
made a significant attempt to present a formal 
definition of a fractional derivative. In 1847, B. 
Riemann published a private paper posthumously, 
in which he provided a definition of the fractional 
order differential operator, likely influenced by 
Liouville's results [11].    
   Specifically, those fractional-order derivatives 
are named in honor of Riemann and Liouville as 
the Riemann-Liouville fractional derivative and 
the Grünwald-Letnikov derivative. Formal 
definitions of these derivatives can be found in 
sources such as [12], [13], [14], and [15]. In 1967, 
M. Caputo, while solving certain boundary value 
problems in the theory of viscoelasticity, 
formulated a new definition of the fractional-order 
derivative [16]. The main advantage of the Caputo 
approach is that the initial and boundary 
conditions for differential equations involving the 
Caputo fractional derivative are analogous to 
those for integer-order differential equations, 
allowing for similar interpretations. Consequently, 
it is frequently used in various practical 
applications. In 2000, R. Hilfer proposed a new 
definition of the fractional-order derivative. The 
two-parameter family of Hilfer fractional 
derivatives generalizes both the Caputo derivative 
and the Riemann-Liouville derivative, allowing 
interpolation between these two types of fractional 
derivatives. For further details, see [17] and [18]. 
Additionally, earlier papers on related topics can 
be found in [19], [20], and [21].  
   In short, under the conditions in (7), by 
considering the expressions given by (1) and (6) 
together, the fractional-order-type computations, 
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namely the relevant operators emphasized (just) 
above can also focused on. We will present the 
details of related studies for the attention of 
interested researchers and focus specifically on 
the Caputo fractional-order derivative. Its familiar 
definition is provided below. 
 
   As an especial definition, for a given function 
such as 
 

                  𝑓 ≔ 𝑓(𝑡) ∶ (0, ∞) → ℝ ,  
 

the Caputo derivative of fractional-order 𝜌 (or  the 
Caputo derivative of order 𝜌)  is denoted by   
 

                 𝔇𝜌[𝑓(𝑡)]𝐶  ≡ 𝔇𝜌[𝑓]𝐶   
 

and defined by  
 

       𝔇𝜌[𝑓(𝑡)]𝐶 =
1

Γ(𝑠−𝜌)
∫

𝑓(𝑠)(𝑤)

(𝑣−𝑤)𝜌−𝑠+1 𝑑𝑤,       (9)
𝑣

0
  

 

where 𝑠 − 1 ≤ 𝜌 < 𝑠  (𝑠 ∈ ℕ)  and, of course,  
the significant 𝑓(𝑠)(𝑤) (𝑠 ∈ ℕ0) denotes s-th 
(ordinary) derivative (with respect to the 
independent variable 𝑤) of the function 𝑓 given. 
  We should particularly note that if the integral 
given by (9) exists, then the Caputo derivative of 
the relevant function will also exist.  
  Additionally, the fractional-order Caputo 
operator is a well-defined operator. From a basic 
perspective, two fundamental properties of this 
operator, which are scalar multiplication and 
linearity, are readily apparent.  
   At the same time, if the parameter 𝜌 
approaches the parameter 𝑠, it is evident that the 
ordinary derivative of any continuous (or 
piecewise continuous) function 𝑓 can also be 
obtained. A detailed examination of such special 
relationships and results is left to the dedicated 
efforts of researchers interested in these areas. 
   There are certainly numerous applications of 
the relevant operator across various fields of 
science and engineering. In particular, in 
mathematics, its applications are extensive, 
especially within the context of special functions. 
We will focus on just one such application within 
the scope of the definition given by (9). 
    Traditionally, the differential equation 
presented below is a special equation that is 
directly related to many real-world problems. One 
such problem is foundational to nuclear physics. 

From this perspective, when considering the 
special function of the form: 
 

                         𝒩(𝜏) = 𝒩0𝑒−𝜆𝜏,                       (10)  
 

which is a solution of the following first-order-
linear-ordinary differential equation given by 
 

                   𝑑𝒩

𝑑𝜏
= −𝜆𝒩  (𝒩 ≔ 𝒩(𝜏)).           (11) 

 

   As it is known, the significant equation (above) 
describes radioactive decay, where 𝒩 denotes the 
number of remaining radioactive atoms in a 
sample after time τ, and λ is the decay constant. 
For the extensive applications of expressions (10) 
and (11), it would be useful to consult the 
essential works listed in [2], [3], [4], [7], [8], and 
[14].  
    We would like to conclude this investigation 
by examining the function given by (10) in the 
context of the operator defined in (9), as detailed 
in the implication below. 
 

    As some implications, under the conditions 
mentioned in (7), and in light of the information 
provided in (6), using the definition given in (9) 
and considering the Maclaurin series expansion: 
 

 

                  𝑒𝑤 = ∑
1

𝑗!
∞
𝑗=0 𝑤𝑗   (𝑤 ∈ ℝ),   

  

and after some elementary calculations, we then 
get that  
 

      𝔇𝜌[𝑒−𝜆𝜏]𝐶 =
1

Γ(𝑠−𝜌)
∫

(𝒩0𝑒−𝜆𝑤)
(𝑠)

(𝑣−𝑤)𝜌−𝑠+1 𝑑𝑤
𝑣

0
   

 

                          = 𝒩0(−𝜆)𝑠  

Γ(𝑠−𝜌)
∫ (

∑
(−𝜆)𝑗

𝑗!
∞
𝑗=0 𝑤𝑗

(𝑣−𝑤)𝜌−𝑠+1) 𝑑𝑤
𝑣

0
  

 

                          = 𝒩0(−𝜆)𝑠  ∑
(−𝜆)𝑗 𝜏𝑗+𝑠−𝜌

 Γ(𝑗+𝑠−𝜌+1) 
∞
𝑗=0  ,  

or, equivalently,  
 

      𝔇𝜌[𝑒−𝜆𝜏] = (−𝜆)𝑠 𝜏𝑠−𝜌𝐶 E1,𝑠−𝜌+1(−𝜆𝜏),           
where the notation 𝚬𝑢,𝑣(𝑡) is called as the two-
parameters Mittag-Leffler function and it is also 
defined by  

    𝚬𝑢,𝑣(𝑤) = ∑
𝑤𝑗

Γ(𝑢𝑤+𝑣)
∞
𝑗=0   (𝑢, 𝑣 > 0; 𝑤 ∈ ℝ),  

 

which is its Caputo derivative of order 𝜌 of the 
exponential type function being of the form given 
by (10).   
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   In addition, as an extra special result of our  
implications, in the light of the Implication (just 
above), when setting 𝜌 ≔ 1/2 and 𝜆 ≔ −1 there, 
the special example, consisting of  the Caputo 
derivative of order 1/2, which belongs to the 
exponential function 𝑓(𝑡) = 𝑒𝑡, can also be 
obtained in the equivalent forms given by 
 

            𝔇1/2 [𝑒𝜏]𝐶 = ∑
 𝜏𝑗+1/2 

 Γ(𝑗+3/2) 
∞
𝑗=0    

 

                               = √τ 𝚬1,3/2(𝜏) 
 

                               = 𝑒𝜏𝑒𝑟𝑓(√𝜏)  
 

                               = 𝑒𝜏[1 − 𝑒𝑟𝑓𝑐(√𝜏)] , 
 

where 𝜏 > 0 and the special functions: 
 

𝑒𝑟𝑓 (⋅)    and   𝑒𝑟𝑓𝑐 (⋅) 
 

 are known as the error function and the 
complementary error function, respectively, and 
they are also defined by    
 

                    𝑒𝑟𝑓(𝜏) =
2

√𝜋
∫ 𝑒−𝜅2𝜏

0
𝑑𝜅  

and 
                𝑒𝑟𝑓𝑐(𝜏) = 1 −

2

√𝜋
∫ 𝑒−𝜅2∞

𝜏
𝑑𝜅 , 

where 𝜏 ∈ ℝ. 
 

 In particular, many earlier investigations given 
in [4], [8], [22], [23], [24], [25] and [26] can be 
consulted for additional information about various 
type error functions and their comprehensive 
applications. 
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