
Abstract: In this note, we extended the well known criterion of Banach-Grunblum and the
Bessaga-Pełczyński Theorem to normed spaces context, not necessarily complete (Banach) one.
As application, we show the Principle of Selection of Bessaga-Pełczyński for normed spaces and
the Spectral Theorem for compact self-adjoint operators on inner product spaces.
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1 Introduction
In 1933, S. Banach affirmed that every in-
finitely dimensional Banach space contains
an infinite dimensional subspace with a ba-
sis, without proof. In 1958, Bessaga and
Pełczyński [3] developed several generaliza-
tions and modifications of Banach’s claim,
and proved their well known Selection Prin-
ciple in this setting.

In this paper, as a short complement of
this theory, we work on Banach’s problem
for normed (not necessarily complete) spaces,
giving an expected generalization of the pre-
vious results, but not formally proved yet, as
long as we know. We also generalize Banach-
Grublum’s criterion in this context, and give
a Spectral Theorem on inner product spaces.

Vector space basis play a key role in the
most varied problems of functional analysis,
as example we refer the reader to see [3, 12,
16, 17, 18, 19].

For any vector space, it is well known that
there exists an algebraic basis (or Hamel ba-
sis). However, there is another notion of ba-
sis, due to J. Schauder [16, 17], defined as fol-
lows:
Definition 1. A sequence (xn)

∞
n=1 in a

normed space X is called a Schauder ba-
sis for X if for each x in X there is an
unique sequence (an) of scalars such that x =
∞∑
i=1

anxn.

The uniqueness of the representation al-
lows us to consider the linear operator for
each n in N:

x∗n : X → K, x∗n
( ∞∑

i=1
ajxj

)
= an,

this operators are called coefficient operators
(or coordinates operator).

Let (xn)∞n=1 be a Schauder basis in the
normed space (X, ∥ · ∥), and consider the
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linear space LX = {(an)∞n=1 |
∞∑
i=1

anxn

is convergent}. A computation shows that
the function η : LX → R given by

η((an)
∞
n=1) := sup

{∥∥∥∥ n∑
i=1

aixi

∥∥∥∥ : n ∈ N
}

gives a norm in LX .
In this paper, our purpose is to pro-

vide the criterion of Banach-Grunblum and
the Bessaga-Pełczyński Theorem for normed
spaces, generalizing the Banach’s version [2,
?]. In the conclusion, we explain possible ap-
plications of this theory to pure and applied
mathematical sciences, as the combination of
least-squares method and a Schauder basis to
provide a numerical solution for a wide class
of linear differential or integral equations (see
[15]).

To deduce these results, we start with the
following broad notion of Schauder basis.

Definition 2. Let X be a normed space and
(xn)

∞
n=1 be a Schauder basis in X . We

say that (xi)∞i=1 is an essential Schauder ba-
sis for X if TX : LX → X given by
TX((an)

∞
n=1) =

∞∑
n=1

anxn is an isomor-

phism.

It is not difficult to show that in Banach
spaces, every Schauder basis is an essen-
tial Schauder basis. This identification is
important because, with it, any space that
admits a Schauder basis can be seen as a
space of sequences. In the original defini-
tion of Schauder, there was the requirement
that coordinates functional should be contin-
uous. However, in 1932 Banach [2, pag 111]
showed that in complete normed spaces this
is always true. But, if the space is not com-
plete, this assertion is false (see [5, Example
12.5]).

A sequence (xn)
∞
n=1 may not be a

Schauder basis for a normed space X , be-
cause [xn : n ∈ N] does not reach all the
space X . In this case, we say that:

Definition 3. A sequence (xn)
∞
n=1 in a

normed space X is a basic sequence if
the sequence (xn)n is a Schauder basis for
[xn : n ∈ N].

In Banach spaces theory, we have the fol-
lowing practical and useful criterion for de-

ciding whether a given sequence is basic or
not.
Theorem 1.1. (Banach-Grunblum’s Crite-
rion) A sequence (xn)∞n=1 of non null vector
in a Banach space X is a basic sequence if,
and only if, there exists M ⩾ 1 such that for
all sequence of scalar (an)∞n=1:∥∥∥∥∥

m∑
i=1

aixi

∥∥∥∥∥ ⩽ M

∥∥∥∥∥
n∑

i=1

aixi

∥∥∥∥∥ (1)

whenever n ⩾ m.
Proof. See e.g. [1, Proposition 1.1.9] or [4,
Theorem 10.3.13].

One of the consequences of the above
theorem was proved by S. Banach in 1932
and another one, by M. Grunblum in 1941.
We generalize the Theorem 1.1 for normed
spaces setting. For this purpose, it is neces-
sary to introduce the concept of essential ba-
sic sequence.
Definition 4. A sequence (xn)

∞
n=1 in a

normed space X is called an essential basic
sequence if it is an essential Schauder basis
for [xn : n ∈ N].

Note that ifX is a Banach space, then ev-
ery basic sequence is an essential basic se-
quence.

Let (S, ∥·∥) be a normed space. We denote
by Ŝ the completion of S such that S is dense
in Ŝ.
Theorem A. (Banach-Grunblum’s criterion
for normed spaces) Let (xn)

∞
n=1 be a se-

quence of non null vectors in a normed space
X . Then the following conditions are equiv-
alents.
(i) (xn)

∞
n=1 is an essential Schauder basis

for ̂[xn : n ∈ N] ⊆ X̂;

(ii) (xn)
∞
n=1 is an essential basic sequence in

X;

(iii) there exists M ⩾ 1 such that for all se-
quence of scalar (an)∞n=1:∥∥∥∥∥

m∑
i=1

aixi

∥∥∥∥∥ ⩽ M

∥∥∥∥∥
n∑

i=1

aixi

∥∥∥∥∥ (2)

whenever n ⩾ m.
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As it has been said before, in his clas-
sic book [2], Banach announced, without
proof, that in every complete normed (Ba-
nach) space of infinite dimension there is an
infinite dimensional subspace with Schauder
basis. The proof of this result only appeared
in the literature in 1958, in a celebrated article
by Bessaga and Pełczyński [3] (in the same
year Bernard R. Gelbaum [10] also presented
another proof). The demonstration presented
in [3] is a consequence of the main result of
their work, which became known as selec-
tion’s principle of Bessaga-Pełczyński.

Here, we show the Bessaga-Pełczyński’s
Theorem for normed spaces, and so the Se-
lection Principle for normed spaces, as an ap-
plication.

We introduce the definition of equivalent
sequence for Essential Schauder’s Basis.
Definition 5. Let (xn)∞n=1 be an essential
Schauder’s basis in a normed space X and
(yn)

∞
n=1 be an essential Schauder’s basis in

a normed space Y . We say that (xn)∞n=1
is equivalent to (yn)

∞
n=1. In this case, we

write (xn)
∞
n=1 ≈ (yn)

∞
n=1, to means that,

for any scalar’s sequence, the series
∞∑
n=1

anxn

is convergent in [xn : n ∈ N] ⊆ X if, and

only if, the series
∞∑
n=1

anyn is convergent in

[yn : n ∈ N] ⊆ Y .
We are able to present the Bessaga-

Pełczyński Theorem for normed spaces.
Theorem B. Let X be a normed space,
(xn)

∞
n=1 be an essential basic sequence inX ,

and (x∗n)∞n=1 be the functional coefficients. If
(yn)

∞
n=1 is a sequence in X such that

0 <

∞∑
n=1

∥xn − yn∥.∥x∗n∥ =: λ < 1 (3)

then (yn)
∞
n=1 is an essential basic se-

quence in X equivalent to (xn)
∞
n=1.

2 Applications
2.1 Bessaga-Pełczyński’s Selection

Principle
Using Theorem A and B, we obtain the fol-
lowing Bessaga-Pełczyński’s Selection Prin-
ciple and its consequence for normed spaces,
as follow.

Definition 6. Let (xn)∞n=1 be an essential
Schauder’s basis in a normed space X , and
(kn)

∞
n=0 be a sequence strictly increasing of

positive integers, with k0 = 0. A sequence of
non null vectors (yn)∞n=1 inX is called essen-
tial block basic sequence relative to (xn)

∞
n=1

if

yn =
kn∑

i=kn−1+1

bixi

where bi ∈ K.
The Bessaga-Pełczyński’s Selection Prin-

ciple is the following.
Theorem 2.1. Let (xn)

∞
n=1 be an essen-

tial Schauder basis in a normed space X
and (x∗n)

∞
n=1 be the functional coefficients.

If (yn)
∞
n=1 is a sequence in X such that

inf
n
∥yn∥ > 0 and

lim
n→∞

x∗i (yn) = 0 for all i ∈ N

then (yn)
∞
n=1 contains an essential ba-

sic subsequence equivalent to block basic se-
quence relative to (xn)

∞
n=1.

Corollary 2.2. Let X be a normed space,
(yn)

∞
n=1 is a sequence in X such that

inf
n
∥yn∥ > 0 and yn → 0 weakly. Then

(yn)
∞
n=1 contains an essential basic subse-

quence.

2.2 Banach problem for normed
spaces

As mentioned before, the Bessaga and
Pełczyński’s proof that in every Banach space
of infinite dimension there is an infinite-
dimensional subspace with Schauder basis
is a consequence of the nowadays known
as the Bessaga-Pełczyński selection princi-
ple. As we have obtained this result for
normed spaces, it is possible to follow the
same steps and to show the same result in this
broad setting. We stress that this is already
known result (see [6]). But here, the proof
is done in an elementary way, by using only
the Banach-Grunblum’s Criterion for normed
spaces (Theorem A).
Theorem 2.3. Every normed space contains
an infinite-dimensional closed subspace with
Schauder basis in which the canonical pro-
jections (Pn)n are bounded operators. More-
over, sup

n
∥Pn∥ < +∞.
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2.3 Spectral Theorem on inner
product spaces

Let T : N → N be a compact self-adjoint op-
erator, and T̂ : N̂ → N̂ be the compact self-
adjoint operator such that T̂ is the bounded
linear extension of T .

The following is the Spectral Theorem on
inner product spaces.
Theorem 2.4. Let N be an inner product
space, T : N → N be a compact self-adjoint
operator such that T ̸= 0, sp(T ) be the spec-
trum of T , and sp(T̂ ) be the spectrum of T̂ .
(i) If sp(T ) is an infinite set such that

sp(T ) ( sp(T̂ ), then for each x ∈ N ,
there exists wx ∈ N such that T (x) =
∞∑
i=1

xiλi⟨x, xi⟩+ wx;

(ii) If sp(T ) is an infinite set such that
sp(T ) = sp(T̂ ), then for each x ∈ N ,

T (x) =
∞∑
i=1

xiλi⟨x, xi⟩;

(iii) If the cardinality of sp(T ) is a non-null
natural number, then there exists a natu-
ral number s ∈ N \ {0} such that for all

x ∈ N , T (x) =
s∑

i=1
xiλi⟨x, xi⟩

where (λi)
′s are the eigenvalues of T .

3 Problems
It is known that every Banach space with
Schauder basis is separable (see [13, Propo-
sition 4.1.10]). Banach has questioned if the
converse holds: Does every separable Ba-
nach space admits a Schauder basis? In [9],
Enflo gave a negative answer to this question,
exhibiting a separable Banach space that has
no Schauder basis.
Problem 1. (The basis problem for normed
spaces) Let X be a separable normed space
which is not a Banach one. Does X admits
an essential Schauder basis?

In the sequence, we introduce the defini-
tion of (essential) unconditional basis.
Definition 7. Let X be a Banach space, and
(xn)

∞
n=1 a Schauder basis in X . The basis

(xn)
∞
n=1 is an unconditional basis if, for each

x inX , there exists a unique expansion of the
form

x =
∞∑
n=1

anxn

where the sum converges unconditionally.

Gowers and Maurey in [11] showed that
there exists a Banach space that do not contain
unconditional basis.

Definition 8. Let X be a normed space, and
(xn)

∞
n=1 an essential Schauder basis in X .

The basis (xn)
∞
n=1 is an essential uncondi-

tional basis if, for each x in X , there exists
a unique expansion of the form

x =
∞∑
n=1

anxn

where the sum converges unconditionally.

We end this section with the following
question.

Problem 2. (The unconditional basic se-
quence problem for normed spaces) Let X
be a normed space which it is not a Banach
space. Does X admits an essential uncondi-
tional basis?

3.1 Organization of the text
In Sections 1, 2 and 3, we provide prelimi-
nary definitions in order to present the state-
ments of the main results together with some
applications and problems. In Section 4 we
state some auxiliary results and prove some
useful properties of Essential Schauder Basis.
In Section 5, we give the proofs of applica-
tions of main results, divided into three sub-
sections 5.1, 5.2 and 5.3, one for each of the
applcations. In Section 6, we give the proofs
of our theorems, divided into two subsections
6.1 and 6.2, one for each of the Main Theo-
rems A and B, respectively.

4 Auxilar Results
4.1 Essential Schauder basis
In the original Schauder’s definition, there
was the requirement that coordinates func-
tional should be continuous. However, in [2,
pag 111] is proved that this condition holds
for Banach spaces. But, if the space is not
complete, this assertion is false (see [5, Ex-
ample 12.5]). We observe that if there exists
an essential Schauder basis, then we recover
this important property, as follows.
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Theorem 4.1. Each coordinate functional
associated to an essential Schauder basis
(xn)

∞
n=1 is a bounded linear application.

Proof. Fix n ∈ N, and let x ∈ X be an arbi-
trary element, so we can write x =

∞∑
i=1

ajxj .

We are going to show that x∗n : X → K is a
bounded linear application. In fact,

∥xn∥ · |x∗n(x)| = ∥xnx∗n(x)∥

= ∥
n∑

i=1

x∗i (x)xi −
n−1∑
i=1

x∗i (x)xi∥

≤ ∥
n∑

i=1

x∗i (x)xi∥+ ∥
n−1∑
i=1

x∗i (x)xi∥

≤ 2η((aj)
∞
j=1) ≤ 2∥(TX)−1∥ · ∥x∥.

Corollary 4.2. Let (xn)
∞
n=1 be an essen-

tial Schauder basis for the normed space X .
Then, for each n ∈ N, the linear operator

Pn : X → X , Pn

( ∞∑
i=1

ajxj

)
=

n∑
i=1

ajxj

is bounded.

Proof. Note that Pn(·) =
n∑

i=1
x∗i (·)xi, so by

Theorem (4.1), Pn is a bounded operator.

In the proof of the next result, we are go-
ing to use some arguments from the proof of
Corollary 4.1.17 of [13].

Theorem 4.3. Let (xn)
∞
n=1 be an essen-

tial Schauder basis for a normed space X
and (Pn)

∞
n the canonical projections. Then

sup
n

∥Pn∥ < ∞.

Proof. For each x in X such that ∥x∥ ≤ 1,
we have that

∥Pn(x)∥ =

∥∥∥∥ n∑
i=1

ajxj

∥∥∥∥ ≤

sup
n

∥∥∥∥ n∑
i=1

ajxj

∥∥∥∥ = η((aj)
∞
j=1) ≤∥∥(TX)−1

∥∥ · ∥x∥ ≤
∥∥(TX)−1

∥∥.
So, ∥Pn∥ ≤ ∥(TX)−1∥ for all n in N and

sup
n

∥Pn∥ ≤ ∥(TX)−1∥, and we are done.

The number K(xn)∞n=1
:= sup

n
∥Pn∥ is

called essential constant of basis (xn)
∞
n=1.

Note that ∥Pn∥ ≥ 1 for alln, thenK(xn)∞n=1
≥

1.

Corollary 4.4. Let (xn)∞n=1 be an essential
Schauder basis for a normed space X and
(x∗n)

∞
n=1 be the coefficient operators. Then,

for each k ∈ N,

1 ≤ ∥x∗k∥ · ∥xk∥ ≤ 2K(xn)∞n=1
(4)

Proof. First, we note that

1 = x∗k(xk) = |x∗k(xk)| ≤ ∥x∗k∥ · ∥xk∥. (5)

Now, let x be an arbitrary element of X
such that x ̸= 0, so

∥xk∥ · |x∗k(x)| = ∥xkx∗k(x)∥

= ∥
k∑

i=1

x∗i (x)xi −
k−1∑
i=1

x∗i (x)xi∥

≤ ∥
k∑

i=1

x∗i (x)xi∥+ ∥
k−1∑
i=1

x∗i (x)xi∥

= ∥Pk(x)∥+ ∥Pk−1(x)∥
≤ ∥Pk∥ · ∥x∥+ ∥Pk−1(x)∥ · ∥x∥

≤ 2K(xn)∞n=1
∥x∥.

This implies that
∥xk∥ · ∥x∗k∥ ≤ 2K(xn)∞n=1

.

5 Proof of applications of main
results

5.1 Proof of Bessaga-Pełczyński’s
Selection Principle

Using Theorem A, it is possible to show the
following result.

Corollary 5.1. Let (xn)∞n=1 be an essential
basic sequence in a normed space X . Then
K(xn)∞n=1

= inf{M : M satisfies (2)}.

We are going to provide the definitions
and required results to show the Bessaga-
Pełczyński’s Selection Principle for normed
spaces.
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Lemma 5.2. Let (xn)
∞
n=1 be an essential

Schauder’s basis in a normed space X and
(yn)

∞
n=1 be an essential block basic sequence

relative to (xn)
∞
n=1. Then (yn)

∞
n=1 is an es-

sential basic sequence in X and K(yn)∞n=1
≤

K(xn)∞n=1
.

Proof. Use the Banach-Grunblum’s criterion
for normed spaces, TheoremA, and Corollary
5.1.

Following the proof given in Theorem
4.3.19 of [13] for Banach spaces, and using
Corollary 4.4, Lemma 5.2 and Theorem B
we obtain the Bessaga-Pełczyński’s selection
principle for normed spaces, Theorem 2.1.

In the proof of Corollary 2.2, we use the
arguments from the proof of Corollary 10.4.9
of [4].

Proof of Corollary 2.2. Consider the sub-
space [yn : n ∈ N] of X , that is separable.
By Banach-Mazur’s Theorem, [yn : n ∈ N]
is isometrically isomorphic to a subspace
of C[0, 1], so there exists a linear isom-
etry T : [yn : n ∈ N] → C[0, 1] such
that [yn : n ∈ N] and T ([yn : n ∈ N]) are
isometrically isomorphic. Observe that
inf
n
∥T (yn)∥ = inf

n
∥yn∥ > 0. Let (xn)∞n=1 be

a Schauder basis for C[0, 1], and (x∗n)
∞
n be

the coefficient operators. By boundedness
of operator T , since (yn)n converges to 0 in
the weak topology, we obtain that (T (yn))n
converges to 0 in the weak topology. So

lim
n→∞

x∗k(Tyn) = 0 for all k in N.

By Bessaga-Pełczyński’s selection prin-
ciple for normed spaces (Theorem 2.1),
there exists an essential basic subsequence
(T (ynk

))∞k=1 of (T (yn))∞n . Using that T−1 :

T ([yn : n ∈ N]) → [yn : n ∈ N] is an isomet-
ric isomorphism, we have that (ynk

)∞k=1 =
(T−1(T (ynk

)))∞k=1 is an essential basic se-
quence. This concludes the proof of Corol-
lary 2.2.

5.2 Proof of Banach problem for
normed spaces

Proof of Theorem 2.3. We will use the same
sequence (xn)∞n=1 obtained in the traditional

proof (see e.g. [7, 8]). By Banach-
Grunblum’s criterion for normed spaces, The-
orem A, we obtain that (xn)∞n=1 is an essen-
tial basic sequence. In particular, (xn)∞n=1 is
an essential Schauder basis. Then, by Theo-
rem (4.3), the canonical projections (Pn)n are
bounded and sup

n
∥Pn∥ < +∞.

5.3 Proof of Spectral Theorem
We begin by proving a consequence of Theo-
rem A.
Lemma 5.3. Let N be an inner product
space, S = {xn : n ∈ N} be an orthonor-
mal set of N . Then
(i) For all x ∈ N , and any n ∈ N, we

have that
n∑

i=1
|⟨x, xi⟩|2 ≤ ∥x∥2 (and then

∞∑
i=1

|⟨x, xi⟩|2 ≤ ∥x∥2);

(ii) (xn)
∞
n=1 is an essential Schauder basis

for ̂[xn : n ∈ N] ⊆ N̂ ;

(iii) (xn)
∞
n=1 is an essential Schauder basis

for [xn : n ∈ N] ⊆ N .
Proof. Just note that 0 ≤ ⟨x −
n∑

i=1
⟨x, xi⟩xi, x −

n∑
i=1

⟨x, xi⟩xi⟩ to prove

item (i). To obtain items (ii) and (iii), by
Banach-Grunblum’s criterion for normed
spaces, Theorem (A), we are reduced to
prove that for all sequence of scalar (an)∞n=1

we have that
∥∥∥∥ m∑
i=1

aixi

∥∥∥∥ ⩽
∥∥∥∥ n∑
i=1

aixi

∥∥∥∥ when-

ever n ⩾ m. But it is clear by orthonormality
of S.

We need these auxiliar results.
Lemma 5.4. LetN be an inner product space
and T : N → N be a compact self-adjoint
operator. Then T̂ : N̂ → N̂ is a compact
self-adjoint operator where T̂ is the bounded
linear extension of T and N̂ is the completion
of N such that N is dense in N̂ .
Proof. The proof is straightforward.

Lemma 5.5. LetN be an inner product space
and U : N → N be a compact self-adjoint
operator. If U is not the null-operator, there
exist x ∈ N \ {0} and λ ∈ R \ {0} such that
U(x) = λx.
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Proof. Use the same arguments present in the
proof of this result for compact self-adjoint
operators on Hilbert spaces.

Proof of Theorem 2.4. By Lemma 5.4, T̂ :

N̂ → N̂ is a compact self-adjoint operator on
a Hilbert space. There exist αi ∈ R \ {0}
eigenvalues of T̂ for i in a not empty sub-
set A of N such that ker(T̂ − αiÎ) is a finite
dimensional subspace where I : N → N

is given by I(x) = x and Î is the exten-
sion of I to N̂ . For each n ∈ A, note that
N ∩ ker(T̂ − αnÎ) = ker(T − αnI) ⊆ N ,
define tn := dim ker(T − αnI) and t̂n :=

dim ker(T̂−αnÎ). Let be J be the subset ofN
given by {n ∈ A : N∩ker(T̂−αnÎ) ̸= {0}},
we have that 1 ≤ tn ≤ t̂n. So for each
n ∈ J there exist vn,1, · · · , vn,tn such that
T (vn,j) = αnvn,j for all j ∈ {1, · · · , tn}
and {vn,j : 1 ≤ j ≤ tn} is an orthonor-
mal set. Then S = {vn,j : n ∈ J and
j ∈ {1, · · · , tn}} is an orthonormal set of
N . We may write the orthonormal set S as
{xℓ ∈ N : ℓ ∈ J } where J is a subset of N,
and T (xℓ) = λℓxℓ for each ℓ ∈ J .

For each n ∈ A, there exists an orthonor-
mal set {vn,tn+1, · · · , vn,t̂n} of ker(T̂−αnÎ),
and then {vn,1, · · · , vn,t̂n} is an orthonormal
set of ker(T̂−αnÎ). ThenR = {vn,j : n ∈ A

and j ∈ {tn + 1, · · · , t̂n}} is an orthonormal
set of N̂ . We may write the orthonormal set
R as {yℓ ∈ N : ℓ ∈ Ã} where Ã is a subset
of N, and T̂ (yℓ) = βℓyℓ for each ℓ ∈ Ã.

Suppose that sp(T ) is an infinite set, then
J = N. We are going to prove items (i) and
(ii).

Let F̂ be the completion of F = [xℓ :

ℓ ∈ J ], Ĝ be the completion of G =

[yℓ : ℓ ∈ Ã], Ê be the completion of E =[ ∞⋃
n=1

ker(T̂ − αnÎ)

]
= [F ∪ G]. From the

Spectral Theorem for Hilbert Spaces, we have
that N̂ = Ê ⊕ ker(T̂ ), and observe that
Ê = F̂ ⊕ Ĝ.

Since S is an orthonormal set of N , from
Lemma 5.3, we have that (xℓ)∞ℓ=1 is an essen-
tial Schauder basis for F̂ . For any a ∈ F̂ ,
there exists a sequence of scalar (ξn)∞n=1 such

that a =
∞∑
i=1

ξixi where ξi = ⟨a, xi⟩ for each

i ∈ N, so T̂ (a) =
∞∑
i=1

xiλi⟨a, xi⟩.

Since R is an orthonormal set of N̂ , from
Lemma 5.3, we have that (yℓ)ℓ∈Ã is an essen-
tial Schauder basis for Ĝ. For any b ∈ Ĝ,
there exists a sequence of scalar (γn)n∈Ã such
that b =

∑
i∈Ã

γiyi where γi = ⟨b, yi⟩ for each

i ∈ Ã, so T̂ (b) =
∑
i∈Ã

yiβi⟨b, yi⟩.

We need the following result.

Lemma 5.6. T̂ (F̂ ) ⊆ N ∩ F̂ .

Proof of Lemma 5.6. Let x be an arbitrary el-
ement of F̂ . Since S is an orthonormal set
ofN , from Lemma 5.3, we have that (xℓ)∞ℓ=1

is an essential Schauder basis for F̂ . There
exists a sequence of scalar (an)∞n=1 such that

x =
∞∑
i=1

aixi where ai = ⟨x, xi⟩ for each

i ∈ J̃ .
Note that T̂ (x) =

∞∑
i=1

aiλixi =

lim
n→∞

n∑
i=1

aiλixi, so T̂ (x) ∈ F̂ .

Consider the sequence (yn)
∞
n=1 where

yn =
n∑

i=1
xiai ∈ N for each n ∈ N. Using

Lemma 5.3, we see that ∥yn∥2 =
n∑

i=1
(ai)

2 =

n∑
i=1

|⟨x, xi⟩|2 ≤ ∥x∥2. Then (yn)
∞
n=1 is a

bounded sequence of N , by compactness of
T , there exists a subsequence (T (ynk

))∞n=1
that converges to some point y ∈ N . We
have that yn converges to x, and then T̂ (yn)

converges to T̂ (x), so T̂ (x) = y ∈ N . This
complets the proof of Lemma 5.6.

So for each x ∈ N̂ there exist ax ∈ F̂ ,
bx ∈ Ĝ and cx ∈ ker(T̂ ) such that x = ax +

bx + cx, and then T̂ (x) = T̂ (ax) + T̂ (bx)

where T̂ (ax) =
∞∑
i=1

xiλi⟨ax, xi⟩ and T̂ (bx) =∑
i∈Ã

yiβi⟨bx, yi⟩. By Lemma 5.6, we get that

T̂ (ax) ∈ N .
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Now, suppose that x ∈ N , so T (x) =

T̂ (x) ∈ N and T̂ (x) = T̂ (ax) + T̂ (bx)

with T̂ (ax) ∈ N , then T̂ (bx) ∈ N . Note
that ⟨ax, xi⟩ = ⟨x, xi⟩ and ⟨bx, yi⟩ =
⟨x, yi⟩. For x ∈ N , we obtain that

T (x) =
∞∑
i=1

xiλi⟨x, xi⟩ +
∑
i∈Ã

yiβi⟨x, yi⟩

where
∞∑
i=1

xiλi⟨x, xi⟩,
∑
i∈Ã

yiβi⟨x, yi⟩ ∈ N .

This proves item (i).
Suppose that sp(T ) = sp(T̂ ), this implies

that Ã = ∅, and then T (x) =
∞∑
i=1

xiλi⟨x, xi⟩

for all x ∈ N . The item (ii) is proved.
It remains to show item (iii). Now, sp(T )

is a natural number k. This implies that
S = {vn,j : n ∈ J and j ∈ {1, · · · , tn}}
is a finite orthonormal set of N such that
T (vn,j) = αnvn,j for all j ∈ {1, · · · , tn} for
each n ∈ J . We may write the orthonormal
set S as {xℓ ∈ N : ℓ ∈ {1, · · · , s}} for some
s ∈ N \ {0} where T (xℓ) = λℓxℓ for each
ℓ ∈ {1, · · · , s}.

Note that F = [xℓ : ℓ ∈ {1, · · · , s}] is a
Banach space since F is a finite dimensional
space. This implies thatN = F ⊕F⊥ where
F⊥ = {w ∈ N : ⟨w, z⟩ = 0 for all z ∈ F}.

We claim thatF⊥ = ker(T ). A trivial ver-
ification shows that ker(T ) ⊆ F⊥. Using that
T (F ) ⊆ F , we have that T (F⊥) ⊆ F⊥. De-
fine U = T |F⊥ : F⊥ → F⊥, and note that
U is a compact self-adjoint operator. Sup-
pose that F⊥ is not contained in ker(T ), there
exists q ∈ F⊥ such that T (q) ̸= 0, then
U(q) = T (q) ̸= 0 and U is not null-operator.
By Lemma 5.5, there exist λ ∈ R and p ∈
F⊥ \ {0} such that T (p) = U(p) = λp, so
p ∈ F . We obtain that p ∈ F ∩F⊥, so p = 0.
This contradiction shows thatU is the null op-
erator, and the claim is proved.

For x ∈ N = F ⊕ ker(T ), there ex-
ist ax ∈ F and bx ∈ ker(T ) such that
x = ax + bx. Note that for a ∈ F , we
have that a =

s∑
i=1

⟨a, xi⟩xi and T (a) =

s∑
i=1

⟨a, xi⟩λixi. We obtain that T (x) =

T (ax) =
s∑

i=1
⟨x, xi⟩λixi since ⟨ax, xi⟩ =

⟨x, xi⟩ for all i ∈ {1, · · · , s}, and we are

done.

6 Proofs of main results
6.1 The Banach-Grunblum’s

criterion for normed spaces
Proof of Theorem A. It is clear that (i) im-
plies (ii). We are going to show that (ii)
proves (iii).

Suppose that (xn)
∞
n=1 is an essential

Schauder basis for [xn : n ∈ N]. Now, con-
sider the canonical projections (Pn)

∞
n=1 in

E = [xn : n ∈ N]. By Theorem (4.3), we
know that

1 ⩽ K(xn)∞n=1
= sup

n
∥Pn∥ < ∞

Given a sequence of scalar (an)
∞
n=1, if

n ⩾ m, then

∥
m∑
i=1

aixi∥

= ∥Pm(

n∑
i=1

aixi)∥

⩽ ∥Pm∥ · ∥
n∑

i=1

aixi∥ (6)

⩽ K(xn)∞n=1
∥

n∑
i=1

aixi∥.

We are reduced to proving (i) from (iii).
Suppose that (2) holds forM ⩾ 1. A straight-
forward calculation shows that the set {xℓ :
ℓ ∈ N} is linearly independent.

For each n ∈ N consider the linear func-
tional given by

φn : [xℓ : ℓ ∈ N] → K, φn

(
k∑

i=1
aixi

)
= an

and the linear operator

Tn : [xℓ : ℓ ∈ N] → [xℓ : ℓ ∈

N], Tn

(
k∑

i=1
aixi

)
=

n∑
i=1

aixi

defining ak+1 = · · · = an = 0 if necessary.
It is clear that φn is a bounded linear op-

erator for all n.
By (2), we have that
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∥∥∥∥Tn

(
k∑

i=1
aixi

)∥∥∥∥ =

∥∥∥∥ n∑
i=1

aixi

∥∥∥∥ ≤

M

∥∥∥∥ k∑
i=1

aixi

∥∥∥∥
and Tn is bounded with ∥Tn∥ ≤ M .

There exists a bounded linear extension
Φn : F̂ → K such that Φn|F = φn and
∥Φn∥ = ∥φn∥ where F = [xℓ : ℓ ∈ N].

Consider the bounded linear operator Tn :
F → F , so we may consider this bounded
linear operator Tn : [xℓ : ℓ ∈ N] → F̂ . There
exists a bounded linear extension Rn : F̂ →
F̂ such that Rn|F = Tn and ∥Rn∥ = ∥Tn∥.

Note that Tn(z) =
n∑

i=1
aixi =

n∑
i=1

φi(z)xi

for all z ∈ F .
For all x ∈ F̂ we have that

Rn(x) =

n∑
i=1

Φi(x)xi. (7)

In fact, let x ∈ F̂ be an arbitrary element,
so x = lim

k→∞
yk where yk ∈ [xℓ : ℓ ∈ N]. But

Rn is a bounded linear operator, so

Rn(x) = lim
k→∞

Rn(yk) =

lim
k→∞

n∑
i=1

φi(yk)xi = lim
k→∞

n∑
i=1

Φi(yk)xi =

n∑
i=1

Φi(x)xi.

We obtain that Rn(x) =
n∑

i=1
Φi(x)xi for

all x in F̂ . Now, given x ∈ F̂ and ε > 0,
there exists y =

m∑
j=1

ajxj ∈ [xℓ : ℓ ∈ N] for

some m ⩾ 1 such that ∥x − y∥ < ε. For
n > m, we have

∥x−Rn(x)∥
⩽ ∥x− y∥+ ∥Rn(y)− y∥

+∥Rn(x)−Rn(y)∥
⩽ ∥x− y∥+ ∥y − y∥

+∥Rn∥ · ∥x− y∥ ≤ (1 +M)ε.

Then x = lim
n→∞

Rn(x). Using (7), we ob-
tain

x = lim
n→∞

Rn(x) = lim
n→∞

n∑
i=1

Φi(x)xi =

∞∑
i=1

Φi(x)xi.

The uniqueness of the above representa-
tion is clear. So (xn)

∞
n=1 is a Schauder basis

for F̂ .

Given x ∈ F̂ with x =
∞∑
i=1

aixi. By (2),

for each n ∈ N we have that

∥∥∥∥∥
n∑

i=1

aixi

∥∥∥∥∥ ≤ M

∥∥∥∥∥
∞∑
i=1

aixi

∥∥∥∥∥ = M∥x∥. (8)

Then

sup
n

∥
n∑

i=1

aixi∥ ≤ M∥
∞∑
i=1

aixi∥ = M∥x∥.

(9)

and note that

∥x∥ =

∥∥∥∥∥
∞∑
i=1

aixi

∥∥∥∥∥
= lim

n→∞

∥∥∥∥∥
n∑

i=1

aixi

∥∥∥∥∥ ≤ sup
n

∥∥∥∥∥
n∑

i=1

aixi

∥∥∥∥∥ .
(10)

Using (9) and (10), we obtain that TF̂ :

LF̂ → F̂ given by TF̂ ((an)
∞
n=1) =

∞∑
n=1

anxn

is a linear isomorphism. Then (xn)
∞
n=1 is an

essential Schauder basis for F̂ , and we are
done.

6.2 The Bessaga-Pełczyński Theorem
for normed spaces

Proof of Theorem B. Given a sequence
(an)

∞
n=1 of scalars,
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∥
n∑

i=1

ai(xi − yi)∥

= ∥
n∑

i=1

x∗i (

n∑
j=1

ajxj)(xi − yi)∥

⩽
n∑

i=1

|x∗i (
n∑

j=1

ajxj)|.∥xi − yi∥

⩽ ∥
n∑

j=1

ajxj∥(
n∑

i=1

∥x∗i ∥.∥xi − yi∥)

⩽ λ∥
n∑

i=1

aixi∥,

we obtain that∣∣∣∣∥∥∥∥ n∑
i=1

aixi

∥∥∥∥−
∥∥∥∥ n∑
i=1

aiyi

∥∥∥∥∣∣∣∣ ⩽∥∥∥∥ n∑
i=1

aixi −
n∑

i=1
aiyi

∥∥∥∥ ⩽ λ

∥∥∥∥ n∑
i=1

aixi

∥∥∥∥.
So

(1− λ)∥
n∑

i=1

aixi∥

⩽ ∥
n∑

i=1

aiyi∥ (11)

⩽ (1 + λ)∥
n∑

i=1

aixi∥,

for all n in N. But (xn)∞n=1 is an essential ba-
sic sequence in X . By Banach-Grunblum’s
criterion for normed spaces, Theorem (A),
there existsM ⩾ 1 such that ifm ⩾ n then

∥
n∑

i=1

aiyi∥

⩽ (1 + λ)∥
n∑

i=1

aixi∥ (12)

⩽ (1 + λ)M∥
m∑
i=1

aixi∥

⩽ (1 + λ)M

(1− λ)
∥

m∑
i=1

aiyi∥.

From Banach-Grunblum’s criterion for
normed spaces, Theorem (A), (yn)∞n=1 is an
essential basic sequence in X .

We are going to show that the series
∞∑
n=1

anyn converges if the series
∞∑
n=1

anxn is
convergent.

Define F = [xn : n ∈ N] and Y =

[yn : n ∈ N]. Consider T : F → Y the linear

operator given by T

(
k∑

i=0
xiai

)
=

k∑
i=0

yiai

for x =
k∑

i=0
xiai in F . Note that if x ̸= 0, we

have that
∥∥∥T (

x
∥x∥

)∥∥∥ = ∥T (x)∥
∥x∥ =

∥∥∥∥ k∑
i=1

aiyi

∥∥∥∥∥∥∥∥ k∑
i=1

aixi

∥∥∥∥
for x =

k∑
i=0

xiai in F , and by (11) we obtain

that
∥∥∥T (

x
∥x∥

)∥∥∥ ⩽ (1 + λ).
So T : F → Y is a bounded linear op-

erator. We may consider T as the following
bounded operator T : F ⊆ X → Y . There
exists a bounded linear extension T̂ : F̂ → Ŷ
such that T̂ |[xn:n∈N] = T with ∥T̂∥ = ∥T∥.

Now, suppose that x =
∞∑
n=1

anxn ∈ F ⊆

X is convergent. This implies that

T (x) = T̂ (x) = T̂

(
lim
n→∞

n∑
i=1

aixi

)
=

lim
n→∞

T̂

(
n∑

i=1
aixi

)
= lim

n→∞

n∑
i=1

aiyi,

then the series T (x) = T̂ (x) =
∞∑
i=1

aiyi ∈

Y ⊆ X is convergent.
Analogously, we can show that if the

∞∑
i=1

aiyi is convergent, then
∞∑
i=1

aixi is conver-

gent.

7 Conclusion
We give a generalization of the well known
criterion of Banach-Grunblum and the
Bessaga-Pełczyński Theorem in normed
spaces setting (not necessarily Banach one).
As application, we show the Principle of
Selection of Bessaga-Pełczyński for normed
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spaces and the Spectral Theorem for com-
pact self-adjoint operators on inner product
spaces.

In the case of Banach spaces (normed
and complete), this theory can be applied
to solve differential equations with a low
computational cost [15]. This is an impor-
tant issue in applied sciences, because many
problems can be formulated through differ-
ential/integral equations. Although our work
in this paper is not specifically on applied
science, we expect that our generalization of
this theory to spaces beyond Banach ones
help to improve its application. Also, in it
has been developed a method, by using the
least-squares method and a Schauder basis
[14], which provides a numerical solution for
a wide class of linear differential or integral
equations. The least squares method is a sta-
tistical technique used to find the line of best
fit for a given set of data points. This method
minimizes the sum of the squares of the resid-
uals, which are the differences between the
observed values and the values predicted by
the model. We hope that our techniques help
to improve these results and be useful to ap-
plied sciences in some moment.
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