
With the development of modern technology, many scien-
tists are studying a wide variety of movements of complex
systems, as well as control of the movements of linear systems
subjected to complex external actions. Similar studies are
carried out both in the field of motion control of composite
linear systems, and in the field of motion control of systems
with heteronode influences (hybrid actions). Some of those
problems are addressed as hybrid control problems. In [1],
[2] the authors present a method to achieve such a hybrid
control of position and force. In [3] the hybrid systems as
causal and consistent dynamical systems were discussed, and a
general formulation for an optimal hybrid control problem was
proposed. In [4] the authors survey recent results in the field
of optimal control of hybrid and switched systems. They first
summarize results that use different problem formulations and
then explore the underlying relations among them. Specifically,
based on the type of switching, they focus on two important
classes of problems: internally forced switching (IFS) prob-
lems and externally forced switching (EFS) problems. For
IFS problems, they focus on optimal control techniques for
piecewise affine systems. For EFS problems, methodologies
of two-stage optimization, embedding transformation, and
switching LQR design are investigated. Detailed optimization
methods found in the literature are discussed.

Research on hybrid control problems has also been done
for the study of the Covid-19 epidemic. In [5] is being study
epidemics using mathematical modeling, which is crucial for

understanding its dynamics and proposing potential control
measures. A generalized epidemiological model corresponding
to a pandemic is proposed, in which its dynamics are presented
as a new hybrid system obtained by combining a deterministic
model with a stochastic model.

A new hybrid method for construction of control actions of
a linear control system with constant coefficients is considered
in paper [6]. Let as start by presenting some of the main points
of the work.

Assume we have a state space model which have the
following dynamics

ẋi = ai1x1 + · · ·+ ainxn + pi1y1 + · · ·+
+ pikyk + bi1u1 + · · ·+ birur, (1)

ẏj = cj1y1 + · · ·+ cjkyk + dj1x1 + · · ·+ djmxm, (2)

where the coefficients ail, bis, cjq , djf , piq are real constants
and i = 1, . . . , n, j = 1, . . . , k, r ⩽ n−m, l = 1, . . . , n, m ⩽
k ⩽ n, s = 1, . . . , r, q = 1, . . . , k. Also x1, . . . , xn, y1 . . . , yk
are the states of the system, and u1, . . . , ur is the control
actions applied to the system. We can rewrite the system (1)-
(2) as a system of matrix equations

ẋ = Ax+ Py +Bu, (3)
ẏ = Cy +Dx̄. (4)
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where

A =

 a11 · · · a1n
...

...
...

an1 · · · ann

 , P =

 p11 · · · p1k
...

...
...

pn1 · · · pnk

 ,

B =

 b11 · · · b1r
...

...
...

bn1 · · · bnr

 , C =

 c11 · · · c1k
...

...
...

ck1 · · · ckk

 ,

D =

 d11 · · · d1m
...

...
...

dk1 · · · dkm

 .

Here, x = (x1 · · ·xn)
T is an n dimensional column vector,

y = (y1 · · · yk)T is a k dimensional column vector, x̄ =
(x̄1 · · · x̄m)T is an m dimensional column vector that contains
some m states of x and u = (u1 · · ·ur)

T is an r dimensional
column vector.

Let us now define the following problem.

Problem Definition 1. We are given the system (1)-(2) (or
(3)-(4), the time period [t0, t1], the initial position of some of
the states (maximum number of the states of (3) can be n/2
and for (4) the number can be k of the system (x(t0); y(t0)) =
(x0; y0) and the desired final position of some of the states
(maximum number of the states of (3) can be n/2 and for (4)
the number can be k of the system x(t1) = x1. It is required
to find the control inputs u(t), (t0 ⩽ t ⩽ t1) such that it drives
the system from its given initial position to its desired final
position.

Assume, the matrices A, B, C, D are such that

rankK1 = {D,CD, . . . , Ck−1D} = k (5)

and

rankK2 = {B1, A1B1, . . . , A
n+k−1
1 B1} = n+ k. (6)

Where A1 is the following (n+ k)× (n+ k) matrix

A1 =



a1 1 · · · a1m a1m+1 · · · a1n p11 · · · p1 k

...
...

...
...

...
...

...
...

...
an 1 · · · anm anm+1 · · · ann pn 1 · · · pnk

d1 1 · · · d1m 0 · · · 0 c1 1 · · · c1 k

...
...

...
...

...
...

...
...

...
dk 1 · · · dkm 0 · · · 0 ck 1 · · · ck k


and B1 is an (n+ k)× r matrix as shown below.

B1 =



b1 1 · · · b1 r

...
...

...
bn 1 · · · bn r

0 · · · 0
...

...
...

0 · · · 0


.

Suppose, also, that there is an additional condition for the
system (2) (or (4)) which assumes that the states y1, . . . , yk
remain close to the point O(0, · · · , 0), y(t1) = y1 is infinitely
close to zero and there is a constraint given on the system (2)
(or (4)). Now suppose that the constraint is given as

J [•] =
∞∫

t0

 k∑
i,j=1

αijyiyj +
m∑

i,j=1

βijxixj

 dt. (7)

Thus, we can choose x1, . . . , xm to be control actions for
the system (2) (or (4)), and hence, we can define to the
following problem.

Problem Definition 2. Assume we are given the dynamics
of the state space model (2) (or (4)) and the constraint (7).
We need to find the control actions x̄0

1[t], . . . , x̄
0
m[t] such that

the system (2) (or (4)) becomes asymptotically stable and the
constraint (7) reaches its minimal value.

Now, because of the assumption (5) the system (2) (or
(4)) becomes fully controllable [1], hence, for any reasonable
initial position y(t0) = y0 there exists unique (x0

1 · · ·x0
m)T

column vector of control actions which solve the problem 2
[2]. This means that also the states y01(t), . . . , y

0
k(t) will be

calculated uniquely, moreover

lim
t→∞

x̄0
i [t] = 0, (i = 1, . . . ,m) (8)

and
lim
t→∞

y0i (t) = 0, (i = 1, . . . , k). (9)

Now that we solved the second problem, we will discuss the
problem 1. So, by substituting the functions x̄0

1[t], . . . , x̄
0
m[t]

and y01(t), . . . , y
0
k(t), which we gained by solving the prob-

lem 2, into the system (1) (or (3)), we can rewrite the system
as

ẋi = aim+1xm+1 + . . .+ ai nxn+

+ bi 1u1 + . . .+ bi nun + fi(t) (10)

where i = m+ 1, . . . , n, and

fi(t) = ai 1x̄
0
1[t] + . . .+ aimx̄0

m[t]+

+ pi 1y
0
1(t) + . . .+ pi ky

0
k(t) (11)

where i = 1, . . . , n. It is obvious that first m equations from
the system (10) will become algebraic equations because the
functions x0

1[t], . . . , x
0
m[t] will be already known.

According to (6) the system (1)-(2) is fully controllable,
hence, it remains to calculate the control actions u =
(u1(t) · · ·ur(t))

T which solve the first problem, and that
can be done by choosing some known algorithm. Thus, the
problem is solved.

Assume we have a cart with mass M that can move freely
on a horizontal plane. Furthermore, assume that there is an
inverted pendulum made of a weightless rod of length l and a

3. Differential Equations of Motion and 
the Definition of the Problem 
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small ball of mass m attached to the center of mass C of the
cart end. Assume the pendulum is attached to the cart with a
ball joint (Fig. 1):

Fig. 1.

Let us introduce a fixed coordinate system Oxyz and a
coordinate system Cx1y1z1 attached to the center of mass
C of the cart to study the movement of the abovementioned
mechanical system. It is also assumed that the axis of Cx1y1z1
remains parallel to corresponding axis of Oxyz while the
mechanical system moves and the control action u⃗ which is
in the plane Oxy acts on the cart.

In that case, the coordinates of the ball in Oxyz will be the
following

x = xC + l sin θ cosφ, y = yC + l sin θ sinφ, (12)

where (xC , yC , 0) are the coordinates of the center of mass of
the cart C in the fixed coordinate system, and (l, θ, φ) are the
spherical coordinates of the ball in Cx1y1z1.

Let us write the differential equations of the mechanical
system. The kinetic energy of the system will be as follows.

T =
1

2
M

(
ẋ2
C + ẏ2C

)
+

1

2
m

(
ẋ2
C + ẏ2C + l2 cos2 θ · θ̇2+

l2 sin2 θ · φ̇2 + 2lẋC θ̇ cos θcosφ− 2lẋC φ̇ sin θ sinφ+

+ 2lẏC θ̇ cos θ sinφ+ 2lẏCφ sin θ cosφ
)
, (13)

As for the potential energy, we will have

Π = −mgl(1− cos θ) : (14)

Using the Lagrangian [7] the mechanical system we will have
the below system as a linear approximation of the differential
equations of the motion. (M +m)ẍC +mlθ̈ = ux,

(M +m)ÿC = uy,

lθ̈ + ẍC = −gθ.

(15)

where ux and uy are the projections of control aciton u⃗ in the
coordinate system Oxyz. It is easy to check that the system
(15) is fully controllable. Let us now define the following
problem.

Problem 1.1. Given the system (15), the time interval
[t0, t1], initial position xC(t0) = xC0, yC(t0) = yC0,

ẏC(t0) = ẏC0, θ(t0) = θ0, θ̇(t0) = θ̇0 and the desired
final position xC(t1) = xC1, yC(t1) = yC1, ẏC(t1) = ẏC1

for the system (15). Find a control action u⃗ such that it
drives the system from its given initial position to its final
position in [t0, t1] while keeping the pendulum close to its
upper equilibrium point.

We will solve this problem using the hybrid control method
mentioned in part 1. Let us consider only the last equation of
the system (15) which is

lθ̈ + ẍC = −gθ. (16)

Let us make the notations x1 = θ, x2 = θ̇, and consider ẍC

as a control action. We will then have{
ẋ1 = x2,
ẋ2 = −k2x1 + u1.

(17)

Here k2 = g
l , u1 = − ẍC

l . It is easy to check that the system
(17) is fully controllable as well.

Now let us state an optimal stabilization problem for the
system (17).

Problem 2.1. Assume we are given the control system (17).
It is required to find a control action u0

1(x1, x2, t) such that
the system (17) becomes asymptotically stable when u1 =
u0
1(x1, x2, t) and the constraint

J [·] =
∞∫
0

(x2
2 + u2

1) dt (18)

reaches its minimal value.
We will solve the second problem using Lyapunov-Belman

method [8]. Belman’s expression will have the form

B[·] = x2 +
∂V

∂x2
(u1 − k2x1) + x2

2 + u2
1.

Here V is Lyapunov function. For the optimal control action,
we know

∂B

∂u1

∣∣∣∣
u1=u0

1

= 0,

Thus
u0
1 = −1

2

∂V

∂x2
. (19)

Hence, to get the optimal Lyapunov’s function we will get

∂V

∂x2
x2 − k2

∂V

∂x2
x1 + x2

2 −
(
∂V

∂x2

)2

= 0. (20)

differential equation with partial derivatives. We will look for
a Lyapunov’s function as a quadratic form. From (20) we will
have

V 0(x1, x2) = k2x2
1 + x2

2, thus u0
1 = −x2 = −θ̇.

Substituting into (17) we get{
ẋ1 = x2,
ẋ2 = −k2x1 − x2.

(21)

4. Solution of the Problem
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Solving the system (21) for k > 0, 5 we will have for the
spherical pendulum the optimal deflection angle from the
vertical position and its angular velocity as functions of time:

θ0(t) = x0
1(t) = e−0,5t

(
A sin

√
4k2 − 1 t+

+ B cos
√
4k2 − 1 t

)
, (22)

θ̇0(t) = x0
1(t) =

= e−0,5t
((

−0, 5A−B
√
4k2 − 1

)
sin

√
4k2 − 1 t+

+
(
A
√
4k2 − 1− 0, 5B

)
cos

√
4k2 − 1 t

)
(23)

For the case when 0 < k ⩽ 0, 5 the solutions will be
exponentially decreasing functions. We will not show those
solutions here.

A and B in (22) and (23) are integration constants and are
calculated using the initial conditions θ(t0) = θ0 and θ̇(t0) =
θ̇0:

A =
2θ̇0 + θ0

2
√
4k2 − 1

, B = θ0. (24)

Now let us get back to solving the Problem 1.1. According
to the notation u1 = − ẍC

l we will have

ẍc(t) = −lu0
1(t) = lθ̇0(t) =

= le−0.5t
((

−0, 5A−B
√
4k2 − 1

)
sin

√
4k2 − 1 t+

+
(
A
√
4k2 − 1− 0, 5B

)
cos

√
4k2 − 1 t

)
,

thus

ẋC(t) = lθ0(t) + C1 =

= le−0,5t(A sin
√

4k2 − 1 t+B cos
√
4k2 − 1 t) + C1,

xC(t) =
le−0,5t

4k2 − 0, 75

((
B
√
4k2 − 1− 0, 5A

)
·

· sin
√
4k2 − 1 t−

(
A
√
4k2 − 1 + 0, 5B

)
·

· cos
√

4k2 − 1 t
)
+ C1t+ C2. (25)

Using the initial and the desired final positions xC(t0) =
xC0 and xC(t1) = xC1 from the system (25) we can calculate
the integration constants C1 and C2.

Let us now calculate the ux part of the control action. From
the first equation of (15) we get

ux(t) =(M +m)ẍC +mlθ̈ = le−0,5t·

·
((

(M +m)
(
−B

√
4k2 − 1− 0, 5A

)
+

+m
(
(1, 25− 4k2)A+B

√
4k2 − 1

))
·

· sin
√
4k2 − 1 t+

+
(
(M +m)

(
A
√

4k2 − 1− 0, 5B
)
+

+ m
(
(1, 25− 4k2

)
B −A

√
4k2 − 1

))
·

· cos
√

4k2 − 1 t
)

(26)

It remains to solve only the second equation of (15) which
is

(M +m)ÿC = uy (27)

This equation itself is a simple control equation. We can add
a cost function and define an optimal control problem for (27)
which we can solve by any known method (e.g. the method
of solution may be a problem of momentums). However, we
will not present the problem in this paper.

Let us introduce the below values to calculate the control
actions and the trajectories as functions of time only.
M = 10kg, m = 1kg, l = 0.5m, t0 = 0s, t1 = 50s,

xC(t0) = 0m, yC(t0) = 0m, θ(t0) = 0.5, θ(t0) = 1s−1,
xC(t1) = 3m, yC(t1) = 2m.
We will have

θ0(t) = e−0.5t(0.1421 sin 8.7977t+ 0.5 cos 8.7977t),

θ̇0(t) = e−0.5t(−4.4699 sin 8.7977t+ 0.9922 cos 8.7977t),

xc(t) = 0.0097 + 0.0598t+ 0.0064e−0.5t(−1.5 cos[8.7977t]+

+ 4.3278 sin[8.7977t]),

ẋC(t) = 0.5e−0.5t(0.1421 sin 8.7977t+

+ 0.5 cos 8.7977t) + 0.0598,

ux(t) = −0.5e−0.5t(28.825 cos 8.7977t+

+ 55.7317 sin 8.7977t)

State trajectories and graphs of control actions are constructed
and shown in pictures 2-4.

Fig. 2. The graph of the change in the θ0(t) angle of deviation of the
pendulum from the vertical as a function of time.

5. Numerical Example
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Fig. 3. The graph of the change in the xC(t) coordinate of the center of
mass of the pendulum as a function of time.

Fig. 4. Graph of control action ux(t)

A hybrid control problem of a system of linear differential
equations with constant coefficients is discussed in this paper.
It was assumed that some of the states of the system have to
satisfy some additional conditions. To ensure those conditions
are satisfied, some of the states of one subsystem were chosen
to be additional control actions in second subsystem. Then,
an optimal stabilization problem was defined and solved for
the second subsystem using Lyapunov-Bellman method. The
special states which were chosen to be control actions and
the corresponding optimal trajectories were acquired for the
second subsystem. Afterwards, those solutions are substituted
in the first subsystem and the main control problem was
solved. An example of a hybrid control problem of an inverted
spherical pendulum with a moving base is studied. The pendu-
lum is chosen as a subsystem the motion of which is controlled
by the moving base (the cart). Analytical representations of
the states and control action are calculated and presented. The
optimal trajectories and the graph of the control action are
constructed for a numerical example.
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