
Recently authors the Birkhoff curves additive
theory has been constructed [1, 2, 3]. The Birkhoff
curves were researched to be invariant continua
with respect to the dissipative dynamic systems
ψ : N → Diff(E2) acting on Euclidean plane de-
fined by the formula

P (x, y) + iQ(x, y)
def7→ x+ iy (1)

at iterations. Also the authors had constructed
the Birkhoff curves at presence of prime or com-
plex equilibrium point [4].

Inter alia there subsists invariant set Λ (i. e.

Λ
def
== ψk(Λ) for all k ∈ Z) on the plane, such that

a homomorphism action

ψ : Z→ Diff(Λ)

has been defined by the formula (1).
The Birkhoff curve separates the plane and

one turns out to be indecomposable continuum
(atom) (even if Birkhoff curve separates the plane
on two regions). Then the invariant set Λ with

respect to dissipative action ψ is constituted to
be plane connected compact.

The colouring invariant regions problem has
been solved author in [5, 6]. Also this problem
solved in [9, 10, 11]. However the colouring prob-
lem every time had only empiric solution.

Suppose Υ be a Birkhoff curve being two or more
invariant regions common boundary on the plane
and Υ ⊂ Λ. If action ψ turns out to be dissipative
then addition E2 \ Λ be only semi-invariant set.

Now suppose that the Birkhoff curve Υ is ei-
ther the boundary of Λ, or Υ separates Λ into ν
invariant regions Gi, i ∈ 1, ν, being their common
boundary. Then the following equalities

Υ
def
== FrG1 = . . . = FrGν = Fr(E2 \ Λ)

def
== FrG0

are faithful.
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Remark 1 The Birkhoff curve Υ is constituted
to be (atom) and therefore one consists of only
tops of 1-umbrellas, because the oscillations in ev-
ery point of atom is equal to its diameter (see [1,
13] and e. g. [12], vol. II or [14]).

Therefore all tops of 1-umbrellas containing in
Birkhoff curve turn out to be irreducible points.
It is clear that the Birkhoff curve is not a mani-
fold, even if it turns out to be two regions com-
mon boundary.

The accessible point from region Gi, i ∈ 1, ν

is said to be point
◦
qi ∈ Υ, such that there exists

arc γi with end being
◦
qi and γi \ {

◦
qi} ∈ Gi. The

Wada basins
◦
Gi are called to be invariant regions

Gi and set of all accessible points from Gi union
for all i ∈ 1, ν, if ν>2 (see also e. g. [3]). The

Wada ocean
◦
G0 is said to be invariant region G0

and set of all accessible points from G0 union.
In this connotation, the following statements

Υ is the Birkhoff curve and
◦
Gi ∩

◦
Gj = Ø for all

i, j ∈ 0, ν, ν > 1 and i 6= j are equivalent (see
[15]). However there are no reasons to assume
that Υ does not contain inaccessible points from
any of the invariant regions.

For simplicity of further narration suppose
that Birkhoff curve turns out to be ω-limit conti-
nuum for dissipative action ψ. Then there subsist
ν fixed or periodic unstable antisaddles contained
into invariant regions with compact closure. This
means that the points of every trajectory accu-
mulate close enough to Υ, with the exception,
perhaps, of the fixed or periodic unstable antisad-
dles. Moreover every trajectory close enough to
Υ everywhere dense, with the exception, perhaps,
of the fixed or periodic points (for this occasion,
see [1]). This dynamic systems property Poincaré
has been called to be ergodic (see e. g. [7]). It
should be noted that the action ψ is dissipative,
but the invariant regions are incompressible.

Now let us colouring the Wada ocean and ev-
ery Wada basin in its own colour defined, for in-
stance, by the triple of positive numbers not ex-
ceeding one (ri, gi, bi), i ∈ 0, ν so, that∑

06i6ν

(ri, gi, bi) ≡ (1, 1, 1). (2)

Then what should be the ¡¡colouring density¿¿
of every invariant region (or Wada ocean and
basins) for their common border turns out to be

white; or that too it has been defined by triple
of ones (1, 1, 1) in the neighborhood of every the
boundary point?

A successful colouring has been obtained at the
dynamic system constructing with two invariant
centrally symmetric Wada basins [6]. However,
this colouring turned out intuitive or empirical.

First us define what is the colouring density.
Suppose u1, u2, . . . , uν are unstable antisaddles
with their neighbourhoods

U(u1), U(u2), . . . , U(uν),

such that U(ui) ⊂ Gi for all i ∈ 1, ν. In ad-
dition, let us choose some point u0 in G0 with
neighbourhood U(u0), such that U(u0) ⊂ G0.

For definiteness one can suppose that all the
neighbourhoods U(ui) appear identical open small
squares. Then the coloured points number #U(ui)
is called to be the region Gi colouring density.

So, coloured the open small squares of the
colouring densities

#U(u0), #U(u1), . . . , #U(uν)

have been determined.
Due to the fact that continuum Υ appears

stable boundary there are true the following

Proposition 1 For any neighbourhood U(ξ) of
the point ξ ∈ Υ there exists number k ∈ N, such
that for the forms of the map

ψk(U(u0)), ψk(U(u1)), . . . , ψk(U(uν))

the intersections ψk(U(ui))∩U(ξ) are non-empty
for all i ∈ 0, ν.

Corollary 1 For a sufficiently large k ∈ N the
inequality #(ψk(U(ui)) ∩ U(ξ))> 1 is faithful.

Suppose Gi is appeared to be invariant region
with respect to the action ψ containing neigh-
bourhood U(ui) of periodic point ui. Now assume
U(ui) contains either #U(ui) colouring points or
the only colouring point ci 6= ui, if i ∈ 1, ν. In
these ways, one can start colouring the Wada
basins. However for G0 one can colourize point

2. Wada Basins Colouring 
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u0 = c0 and neighbourhood U(c0) containing ei-
ther #U(c0) colouring points or the only colour-
ing point c0. In these ways, one can start colour-
ing the Wada ocean.

In the sequel, the basins and ocean can be col-
ored in the following two ways, either the forms
of the neighbourhoods U(ui) at iterations

U(ui), ψ1(U(ui)), . . . , ψK(U(ui)), . . .

with #U(ui) colouring points colourize the in-
variant regions or semi-trajectories O+(ci) colour-
ize the invariant regions for all i ∈ 0, ν. How-
ever the colours regions satisfy to condition (2)
and the colouring points numbers ratios or the
lengths of colourized semi-trajectories ratios must
appeared to be such that the boundary contin-
uum (Birkhoff curve) turns out to be white.

Remark 2 The condition (2) turns out to be sca-
lar. Indeed one can apply ¡¡grayscales¿¿ Si for
colouring as follows

∑
06i6ν

Si ≡ 1. It means that

for every region colouring by the only (scalar) pa-
rameter is determined.

It is quite natural to consider numerical topo-
logical or metric invariants of the region, for in-
stance the rotation number or γ-density [2], as a
colouring parameters.

The additive rotation number theory has been
constructed in application to the Birkhoff curve
(see [1]). The theory is interesting but one is
trivial applied to Jordan curve.

Birkhoff curves turn out to be nonwandering
continua Υ with respect to the dissipative dy-
namic systems ψ acting on the plane, such that
Υ separates the plane. Its appear in different dy-
namic situations.

For every invariant region Gl, l ∈ 0, ν and for

Wada basin
◦
Gi the iterations numbers sequence

Kl : k1 = 1, k2, k3, . . . has been defined. Rota-

tion number for
◦
Gi being Schnirelmann density

for Kl is defined to be following formula

σKl
def
== inf

K∈N

#({1,K} ∩ Kl)

K
(3)

(compare with the definition e. g. from [8]). Such
a way the set

{σK0, σK1, . . . , σKl, . . . , σKν}

turns out to be topological invariant for bound-
ary Υ. The Schnirelmann densities for Kl corre-

sponding to
◦
Gi turn out to be irrational numbers.

It means that that accessible point trajectory is
everywhere dense on Υ (the theory details, see
in [1]).

Proposition 2 If rotation numbers of basins are
equal then the colouring rates of their common
boundary are equal.

PROOF. Indeed, if the basins
◦
Gi and

◦
Gj , i, j ∈

0, ν, such that their rotation numbers are equal,
i. e. σKi = σKj for i 6= j. Then there exists

number ordKi = ordKj
def
== η, such that

σ(η ⊕ Ki) = σ(η ⊕ Kj) ≡ 1,

or that too

η ⊕ Ki = η ⊕ Kj ≡ N.

It means that colouring rate of region Gi is equal
to colouring rate of region Gj ut

Theorem 1 The difference in the rotation num-
bers of regions (basins) means the colouring rate
difference of their common boundary.

PROOF. Suppose
◦
Gi and

◦
Gj , i, j ∈ 0, ν, such

that their rotation numbers are different, i. e. for
instance σKi > σKj for i 6= j. Then there sub-
sist two numbers ordKi> ordKj (called the order
sequence), such that

σ(ordKi ⊕ Ki) = σ(ordKj ⊕ Kj) ≡ 1,

or that too

ordKi ⊕ Ki = ordKj ⊕ Kj ≡ N.

It means that colouring rate of region Gj does
not exceed of colouring rate of region Gi. In the
event that ordKi = ordKj let us cross it out,
for instance, even elements from the sequences Ki
and Kj . Thus new sequences K′i and K′j consisting
of odd elements of the sequences Ki and Kj are

3. Densities and Colourings 
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obtained. Then σK′i > σK′j and there subsist two
numbers ordK′i> ordK′j , such that

σ(ordK′i ⊕ K′i) = σ(ordK′j ⊕ K′j) ≡ 1.

Next, the process of crossing out even elements of
sequences is repeated until for new two sequences
σK′′i > σK′′j their orders will satisfy to the inequal-
ity ordKi > ordKj ut

Remark 3 Inter alia crossing out scheme can
be anything, if only it was the same for both se-
quences Ki and Kj.

Moreover if Υ turns out to be Birkhoff curve
then sequence Kl contains zero Schnirelmann den-

sity additive basis Bl for all
◦
Gl and l ∈ 0, ν. In

order to compare sequences zero Schnirelmann
density the γ-density has been applied defined by
the formula

γBl
def
== inf

K∈N

log(1 + #(1,K ∩Bl))

log(K + 1)
(4)

The γ-density theory in detail has been narrated
in [2, 3].

Due to the sequences B0, B1, . . . , Bν turn
out to be additive bases then for every l ∈ 0, ν
there exist numbers

ordB0, ordB1, . . . , ordBν ,

such that σ(ordBl ⊕Bl) ≡ 1.

Proposition 3 If γ-densities defined for regions
(basins) are equal then the colouring rates of their
common boundary are equal.

PROOF exactly repeats the proof of the propo-
sition (2) ut

Theorem 2 The difference in γ-densities defined
for regions (basins) means the colouring rate dif-
ference of their common boundary.

PROOF. Suppose
◦
Gi and

◦
Gj , i, j ∈ 0, ν, such

that their γ-densities are different, i. e. for in-
stance γBi > γBj for i 6= j. Then there exist
two numbers ordBi> ordBj , such that

σ(ordBi ⊕Bi) = σ(ordBj ⊕Bj) ≡ 1,

or that too

ordBi ⊕Bi = ordBj ⊕Bj ≡ N.

It means that colouring rate of region Gj does
not exceed of colouring rate of region Gi same as
for rotation numbers. In the event that ordBi =
ordBj at the crossing out even elements from the
sequences Ki and Kj the sequences K′i and K′j , con-
taining B′i ⊂ Bi and B′j ⊂ BJ respectively, are
obtained. Thus new bases B′i and B′j consisting
of odd elements of the sequences Ki and Kj have
been obtained. Therefore γB′i > γB′j and there
subsist two numbers ordB′i> ordB′j , such that

σ(ordB′i ⊕B′i) = σ(ordB′j ⊕B′j) ≡ 1.

Next, the process of crossing out even elements of
sequences is repeated until for new two sequences
σK′′i > σK′′j their orders will satisfy the inequality
ordB′′i > ordB′′j for both bases B′′i ⊂ K′′i and
B′′j ⊂ K′′j respectively ut

Thus, the colouring rates are only provided by
the existence of additive bases zero Schnirelmann
density Bl with γ-densities values for all different
invariant regions. However the colouring rates
are determined by corresponding to these regions
the rotation numbers.

Let us place

#U(u0), #U(u1), . . . , #U(ul), . . . , #U(uν)

colouring points contained in U(ul) ⊂ Gl for ev-
ery invariant region respectively, and let us build
for every colouring point ζ from neighbourhood
U(ul) the sequence Kl(ζ) on the following scheme
described in [1]:

1◦ suppose that an arbitrary ray Bl is selected
with its beginning at the point ul, so that
one sets the direction angle ϕ; then for ev-
ery point the direction with respect to the
point ul being equal arg ξ is defined;

2◦ a forms of all colouring points Kl contained
in U(ul)⊂Gl is separated on the finite dis-
joint classes number

K
(1)
l , K

(2)
l , . . . , K

(η)
l (5)

as follows:

(1) ζ ∈ K
(1)
l if arg(ψ1(ζ)) > arg ξ;

4. Invariant Regions Colouring 
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(2) ζ ∈ K
(2)
l if ξ ∈ Kl \K

(1)
l and

arg(ψ2(ζ))) > arg ζ;

(3) ζ ∈ K
(3)
l if ζ ∈ Kl \K

(1)
l \K

(2)
l and

arg(ψ3(ξ))) > arg ζ;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(η) ζ ∈ K
(η)
l if ζ ∈ Kl \K

(1)
l \ . . . \K

(η−1)
l

and arg(ψηζ))) > arg ζ;

disjoint classes number turns to be finite
due to σKl > 0, thus η = ordKl is finite for
any point ξ ∈ U(ul), and then

Kl
def
== K

(1)
l ∪K

(2)
l ∪ . . . ∪K

(η)
l

and along with that

#U(ul)
def
== #K

(1)
l + #K

(2)
l + . . .+ #K

(η)
l ;

3◦ the colouring points from the set

UK(ul)
def
== U(ul)∪ψ1(U(ul))∪. . .∪ψK(U(ul))

is separated on the finite disjoint classes
number (5) as well as U(ul) and full invari-
ant region colouring has been defined by the
number #UK(ul).

Suppose ξl ∈ Υ be a accessible point from the
region Gl and O(ξl) ⊂ Υ be an its trajectory. All
trajectory points ψk(ξl) are supplied with a self
neighbourhoods Uε(ψk(ξl)) of the same diameter
dε for all k ∈ Z. Due to the compactness Υ there
subsists number N(ε), such that

Υ ⊂
⋃

µ6N(ε)

Uε(ψkµ(ξl))
def
== Ωε(Υ).

Then for any ε > 0 there exists k > K, such that
Ωε(Υ) ∩ UK(ul) 6= Ø, or that too

#(Ωε(Υ) ∩ UK(ul)) > 0.

Indeed for any colouring point a form of the map (1)
at iterations due to the boundary Υ stability turns
out to be sufficiently close to Υ. Inter alia index
l for the coverage Ωε(Υ) building can choose any
from 0, ν. Then any neighbourhood Uε(ψkµ(ξl))
contains all colours points. In addition the cov-
erage Ωε(Υ) turns out to be minimal in the sense
that

Ωε(Υ) \ Uε(ψkµ(ξl))

is not connected for all µ ∈ 1, N(ε).
All colours points full number in any neigh-

bourhood Uε(ψkµ(ξl)) by the number every colour-
ing points summation has been determined

#(Uε(ψkµ(ξl))∩G0) + . . .+ #(Uε(ψkµ(ξl))∩Gν).

Theorem 3 Suppose Ki ⊂ UK(ui) ⊂ Gi and
Kj ⊂ UK(uj) ⊂ Gj, i, j ∈ 0, ν, are colouring
points from the different regions. Then

#U(ui) : #U(uj) = σKi : σKj

for all ε > 0 and sufficiently large K if

#(Uε(ψkµ(ξl)) ∩Ki) : #(Uε(ψkµ(ξl)) ∩Kj) = 1

for every µ ∈ 1, N(ε).

An explanation of the term ¡¡for sufficiently
large K¿¿ here and further will appear in the
course of the future narrative (see next section).

PROOF. If σKi = σKj then the statement is
trivial. Therefore it is quite natural to assume
σKi 6= σKj for some i, j ∈ 0, ν and one can sup-
pose σKi > σKj . Then for every K the inequality

#K
(1)
i > #K

(1)
j for UK(ui) and UK(uj) is faithful

in the event that #U(ui) = #U(uj). Thus

#(K
(1)
i ∪K

(2)
i ) > #(K

(1)
j ∪K

(2)
j )

for UK(ui) and UK(uj), because

K
(1)
l ∩K

(2)
l = Ø

for all l ∈ 0, ν, due to

σ(Ki ⊕ Ki) > σ(Kj ⊕ Kj).

Now let us increase the colouring points number
in neighbourhood U(uj) as follows, so that the

colouring points number of class K
(1)
j has been

increased to K
(1)
j so that

#K
(1)
i = #K

(1)
j = α ·#K

(1)
j ,

thereby lengthening the sequence of indices of the
coloured points in the region Gj . Then for suf-

ficiently large K, the intersections Ωε(Υ) ∩ K
(1)
i

and Ωε(Υ) ∩ K
(1)
j possess same density for any

ε > 0, i. e.

#(Ωε(Υ) ∩K
(1)
i ) = #(Ωε(Υ) ∩K

(1)
j ),

EQUATIONS 
DOI: 10.37394/232021.2024.4.5 Praskwya D. Serowa, Dmitry W. Serow

E-ISSN: 2732-9976 36 Volume 4, 2024



so that

#(Ωε(Υ) ∩K
(1)
i ) = α ·#(Ωε(Υ) ∩K

(1)
j ).

It is means that if α
def
== σKj : σKi then the colour-

ing point sets possess the same density for suffi-
ciently large K

σKj ·#(Ωε(Υ) ∩K
(1)
i ) = σKi ·#(Ωε(Υ) ∩K

(1)
j ).

on following condition

#(Uε(ψkµ(ξl)) ∩Ki) : #(Uε(ψkµ(ξl)) ∩Kj) = 1

is faithful for all ε > 0, if #U(ui) : #U(uj) =
σKi : σKj ut

Suppose for every region its colour has been
defined in PostScript codes, for instance, in case
of two Wada basins and Wada ocean (ν = 2) as
follows

0 1 0 setrgbcolor
1 0 0 setrgbcolor
0 1 0 setrgbcolor

≈ 1 1 1

, (6)

or that too, the boundary is coloured to be white
colour. The formula (6) is faithful ifN0 : N1 : N2 ≈
σK0 : σK1 : σK2 due to ¡¡different density¿¿ every
dense trajectories on the boundary.

Now suppose the positive semi-trajectories

O+(ζl), l ∈ 0, ν.

are colouring in self colours. Therefore all points
of O+(ζl) form finite disjoint classes number as

well as in 2◦, where Kl
def
== O+(ζl) and Kl be a

number of consecutive colouring points of O+(ζl)

(notation Kl
def
== #O+(ζl)). Then

#O+(ζl)
def
== #K

(1)
l + #K

(2)
l + . . .+ #K

(η)
l

for any ε > 0 there exists k > Kl, such that
Ωε(Υ) ∩ O+(ζl) 6= Ø, or that too

#(Ωε(Υ) ∩ O+(ζl)) > 0.

All colouring points full number in any neigh-
bourhood U(ψkµ(ξl)) from the coverage Ωε(Υ)
by the number every colouring points summation
has been determined∑

06l6ν

#(U(ψk(ξl)) ∩ O+(ζl)).

Theorem 4 Suppose

Ki ⊂ O+(ζi) and Kj ⊂ O+(ζj),

i, j ∈ 0, ν, turn out to be colouring points from
the different regions, such that O+(ζi) and O+(ζj)
are any two trajectories belonging to invariant re-
gions Gi and Gj respectively. Then

#O+(ζi) : #O+(ζj) = σKi : σKj

for all ε > 0 for sufficiently long O+(ζi) and
O+(ζj) if

#(U(ψkµ(ξl)) ∩ O+(ζi))

#(U(ψkµ(ξl)) ∩ O+(ζj))
= 1

for every µ ∈ 1, N(ε).

PROOF almost word for word repeats the pre-
vious theorem proof, but there are some nuances.
If σKi = σKj then the statement is trivial. Then
one can suppose σKi > σKj for some i, j ∈ 0, ν.

Therefore for every K the inequality #K
(1)
i >

#K
(1)
j for O+(ζi) and O+(ζj) is faithful in the

event that #O+(ζi) = #O+(ζj). Thus

#(K
(1)
i ∪K

(2)
i ) > #(K

(1)
j ∪K

(2)
j )

for O+(ζi) and O+(ζj), because

K
(1)
l ∩K

(2)
l = Ø

for all l ∈ 0, ν, due to

σ(Ki ⊕ Ki) > σ(Kj ⊕ Kj).

Let us increase the colouring points number in
trajectory O+(ζj) increasing the length of set the

colouring points, so that class K
(1)
j has been in-

creased to K
(1)
j so, that

#K
(1)
i = #K

(1)
j = α ·#K

(1)
j ,

thereby lengthening the sequence of indices of the
coloured points in the region Gj . Then exactly
repeating the proof of the previous theorem one
complete the proof ut

Remark 4 The Schnirelmann densities, or that
too, rotation numbers for two differ Wada basins
◦
Gi and

◦
Gj defined by the formula (3) clearly in-

dicate on the Birrkhoff curve ergodic properties.
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Indeed, densities for two colouring point sets of
the semi-trajectories O+(ζi) and O+(ζj) different
length defined by the expressions

inf
K6Ki

#(1,K ∩ Ki)

K
and inf

K6Kj

#(1,K ∩ Kj)

K

and their equality for σKi > σKj. Then subsists
sufficiently large Ki = inf{Ki,Kj}, such that

inf
K6Ki

#(1,K ∩ Ki)

K
= α · inf

K6Ki

#(1,K ∩ Kj)

K
,

or that too, α = σKi : σKj.

On other hand, let us place only point dif-
ferent from fixed point in every invariant region
by colouring the trajectories points O(x0), O(x1)
and O(x2). Then the formula (6) is faithful if
k0 : k1 : k2 ≈ σK0 : σK1 : σK2 for the same reason.

Now let us formulate ¡¡synthetic condition¿¿,
exactly the condition connecting of the colouring
points number and the colouring semi-trajectories
length. In order to formulate the condition, one
suppose #O+(ζl) is the colouring semi-trajectories
length and #ζl is the number of colouring points,
such that for any pair colouring points #ζl and
#ζ ′l the intersection their semi-trajectories

O+(ζl) ∩ O+(ζ ′l)

turn out to be empty. Then full colouring points
set has been defined by the formula

Kl
def
==

⋃
µ6#ζl

O+(ζµl ) (7)

forming finite disjoint classes number as well as
in 2◦. Therefore full colouring points number has
been defined by the formula

#Kl
def
== #O+(ζl) ·#ζl,

so that Ωε(Υ) ∩Kl 6= Ø, or that too

#(Ωε(Υ) ∩Kl) > 0.

Theorem 5 Suppose Ki ⊂ Gi and Kj ⊂ Gj,
i, j ∈ 0, ν (defined by equality (7)), are colouring
points from the different regions. Then

#O+(ζi) ·#ζi
#O+(ζj) ·#ζj

= σKi : σKj (8)

for all ε > 0 for sufficiently long O+(ζi) and
O+(ζj), and sufficiently large Ki and Kj if

#(U(ψkµ(ξl)) ∩Ki) : #(U(ψkµ(ξl)) ∩Kj) = 1

for every µ ∈ 1, N(ε).

This statement turns out to be synthetic. In-
deed, supposing

#O+(ζi) = #O+(ζj) or #ζi = #ζj

one comes to the conditions of previous theorems.

PROOF. In accordance with the remark 4 and
theorem 3 due to combination theorems 3 and 4
the formula (8) is obtained ut

Let us consider the following frequently oc-
curring dynamic situation, such that point p0 is
the fixed unstable antisaddle and everyone else
unstable antisaddles pl, l ∈ 1, ν are ν-periodic
points.

Proposition 4 det

(
#O+(ζi) #O+(ζj)

#ζj #ζi

)
= 1

supposing #ζj 6= #ζi or #O+(ζi) 6= #O+(ζj) for
all i, j ∈ 1, ν.

PROOF. This proposition turns out to be the
theorem 5 direct corollary. Indeed, if unstable
antisaddles pi and pj are periodic then σKi =

σKj for Wada basins
◦
Gi and

◦
Gj respectively, or

that too, there exist integers forming arithmetic
progression A arbitrary long, such that

◦
Gi = ψa(

◦
Gj)

for every a ∈ A ut

Let us call the 3-separatrix fixed or periodic point
B-saddle, by the bike saddle image.

Birkhoff curve containing the only B-saddle
turns out to be four regions common boundary.
One can prime example with rotary symmetry,
due to it three Wada basins have identical the
rotation number, in contrast to Wada ocean.

In paper [16], the authors did not solve the
regions colouring problem, because ones solved

5. B-saddle Colouring Example 
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other problems. Inter alia the possibility of con-
structing the Y-connection volt-ampere charac-
teristic as the dynamic system action result has
been studied with necessary properties.

Omitting the preliminary justifications and
constructions (about this, see [16]) let us define
the dynamical system by the diffeomorphism ac-
tion on the plane at iterations as follows:

1◦ at first, one introduce the notations

x̃
def
== tanh(% cosφ) and ỹ

def
== tanh(% sinφ);

2◦ Dynamic system defined by action of map
in polar coordinates

Z(%, φ) 7→ % · eiφ, (9)

where R = ±1, T = ±1 and

Z(%, φ)
def
== T

(
Rx̃+ ỹ

p
+iqỹ

)
eiRϕ(x̃,ỹ);

3◦ then for the mapping from the formula (9),
the formula (by the simplest means) is con-
structed when moving in a positive direc-
tion

(|Z(%, φ)|, argZ+ Φ(φ) + ∆) 7→ (%, φ) (10)

and when moving in a negative direction

(|Z(%, φ)|, argZ+Φ(φ)−∆) 7→ (%, φ); (11)

where Φ(φ)
def
== φ− φ (mod 2π);

4◦ the formula for component |Z(%, φ)| is con-
structed as follows

||||Z(%, φ)| def==

√(
Rx̃+ ỹ

p

)2

+ q2y2 7→ %, (12)

while components argZ, if R=1, and argZ,
if R = −1, are defined by the formulae

argZ
def
== Rϕ(x̃, ỹ) + arctan

qpỹ

Rx̃+ ỹ
, (13)

argZ
def
== Rϕ(x̃, ỹ)− arctan

qpỹ

Rx̃+ ỹ
; (14)

5◦ let us make a natural replacement of vari-
ables in the formulae (10) and (11)

% · exp i (φ/Π− φ0) 7→ u+ iv,

where 2 ·Π ∈ Z\{0}, φ0 ∈ R;

Then the maps acting at iterations are de-
fined by the formulae when moving in the
positive direction(
|Z(%, φ)|, argZ + Φ(φ) + ∆

Π

)
7→ u+ iv,

(15)
and when moving in the negative direction(
|Z(%, φ)|, argZ + Φ(φ)−∆

Π

)
7→ u+ iv;

(16)

6◦ therefore the replacement (u, v) 7→ (%, φ)
occurs according to the formulae√
u2 + v2 7→ %, Π·(φ0+arctan(v/u)+mπ) 7→ φ,

for all m ∈ Z;

7◦ then the formulae (15) and (16) are rewrit-
ten in the following form(

|Z(%, φ)|, argZ + Γ(u, v) + ∆

Π

)
7→ u+iv, (17)

(
|Z(%, φ)|, argZ + Γ(u.v)−∆

Π

)
7→ u+ iv, (18)

where

Γ(u, v)
def
== Φ(Π·(φ0+arctan(v/u)))+2πΠbm/2c;

8◦ the variables x̃ and ỹ are written as follows

x̃ = tan(
√
u2 + v2 cos(Π · ω(u, v))),

ỹ = tan(
√
u2 + v2 sin(Π · ω(u, v))),

where ω(u, v)
def
== φ0 + arctan(v/u) +mπ.

Now suppose R = 1 and Π = 3/2.

Remark 5 (on the technical details for the
colouring). Suppose for every invariant region
its colour has been defined in PostScript codes,
for own instance, in case of three Wada basins
and Wada ocean (ν = 3) as follows

K0 r0 g0 b0 setrgbcolor
K1 r1 g1 b1 setrgbcolor
K2 r2 g2 b2 setrgbcolor
K3 r3 g3 b3 setrgbcolor

K 1 1 1 (theorems condition),

(19)

or that too the boundary is summary coloured to
be white colour.
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Now one can colour the regions. There exist
four colouring variants accurate to the angle of
rotation.

Now back to the term ¡¡sufficiently large K¿¿.
Suppose σK1 = . . . = σKν > σK0 then

Theorem 6 Suppose the rotations numbers such,
that σKl > σK0 for colouring invariant regions G0

and Gl respectively. Then there subsists the se-
quence F0l for every l ∈ 1, ν, such that σF0l =
σK0 : σKl.

PROOF. Suppose K
(0)
0 ⊂ G0 and K

(0)
l ⊂ Gl,

for all l ∈ 1, ν (defined by (7)), are colouring
points sets from two different regions, such that
there exists ε0 > 0 for coverage Ωε0(Υ) and

#(U(ψkµ(ξl)) ∩K
(0)
0 ) : #(U(ψkµ(ξl)) ∩K

(0)
l ) = 1.

Now let us will increase consistently the colouring
points number in G0 as follows

#K
(1)
0 =2#K

(0)
0 , . . . , #K

(K)
0 =(K + 1)#K

(0)
0 , . . .

being an increasing arithmetic progression. The-
refore there exists decreasing sequence

ε1, ε2, . . . , εK , . . . ,

such that the following equalities

#(U(ψkµ(ξl)) ∩K
(K)
0 )

#(U(ψkµ(ξl)) ∩K
(K)
l )

= 1. (20)

are faithful for all K ∈ N. Then increasing se-
quence

#K
(0)
l , #K

(1)
l , . . . , #K

(K)
l , . . .

in combination with own majoritarian increasing
sequence

#K
(0)
l ·

(
1,

⌈
#K

(1)
l

#K
(0)
l

⌉
, . . . ,

⌈
#K

(K)
l

#K
(0)
l

⌉
, . . .

)
.

deliver the sequence

F0l : 1,

⌈
#K

(1)
l

#K
(0)
l

⌉
, . . . ,

⌈
#K

(K)
l

#K
(0)
l

⌉
, . . . (21)

Thus from condition (20) in combination with the
theorem 5 the result is σF0l = σK0 : σKl ut

Corollary 2 If σKl = σK0 then F0l ≡ N.

PROOF. Indeed, if σKl = σK0 then

#K
(K)
0 = #K

(K)
l

for all K ∈ N. Therefore F0l ≡ N and σF0l ≡ 1 ut

Corollary 3 For any Birkhoff curve Υ, there sub-
sists at least one sequence F0l such, that

0 < σF0l < 1.

However into practice far away not always
one can to definitely assert either σKl > σK0 or
σKl < σK0, and even one can not to define either
σKl 6= σK0 or σKl = σK0. Nevertheless in such
an uncertain situation, for any pair of regions Gi
and Gj the desire to find a sequence of type Fij
remains relevant regardless of whether σKl 6= σK0

or σKl = σK0.

Theorem 7 For any pair of invariant regions Gi
and Gj there exists increasing sequence Fij, such
that

σFij = σKi : σKj

for all i, j ∈ 0, ν, if the following equality

#(U(ψkµ(ξl)) ∩K
(K)
i )

#(U(ψkµ(ξl)) ∩K
(K)
j )

= 1. (22)

is faithful. Moreover increasing sequence Fij does
not depend from the construction method.

PROOF. The cases of σKi > σKj and σKi =
σKj have been considered in the proofs of the
theorem 6 and corollary 2. Now suppose

#K
(1)
j = 2#K

(0)
j , . . . , #K

(K)
j = (K+1)#K

(0)
j , . . .

be an increasing arithmetic progression. Then
there exists decreasing sequence

ε1, ε2, . . . , εK , . . . ,

such that equality (22) is faithful for all K ∈ N.
Then every element of the arithmetic progression
corresponds to an element of the increasing se-
quence

#K
(0)
i , #K

(1)
i , . . . , #K

(K)
i , . . .
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(a) (b)

(c) (d)

Figure 1: Invariant colourings for three Wada basins and an Wada ocean with a common boundary
being Birkhoff curve having the only fixed point being inverse B - saddle for the dissipative action
ψ at Π = 3/2 and R = 1, defined by formula (17), in relation 2 : 4 : 4 : 5.
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The source of the ergodic theory for Wada basins
served from a remark in recent article [4]. Pro-
ceed on empirical and intuitive considerations,
the author made estimates of the relations of the
colouring densities of invariant regions, in order
to their common border turns to be discoloured
(i.e. white). The problem solution of the ¡¡bound-
ary discolouration¿¿ is turned out to be directly
related to the Wada basins ergodic properties.

The circle diffeomorphisms with irrational ro-
tation number torn out to be in a certain sense
simple rotations, or more exactly.
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