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1 Introduction (some definitions and 

notations) 
 

Historically, the important motivation for the 

development of the theory of linear operators in 

Banach spaces was their application to the theory of 

the integral equations so Fredholm integral 

equations engender development of the theory of 

compact operators on the abstract reflexive Banach 

spaces, especially, when Banach space is self-

adjoint functional Hilbert space and operators are of 

the Schrodinger type. Crucial characterization of 

such operators is a property of preservation of 

positivity of the bilinear form such operators often 

arise in quantum information science as quantum 

density operators due to the correspondence 

principle.       

This article is dedicated to the trace class of 

linear operators in the reflexive Banach spaces. 

Although, there is extensive literature on the 

geometrical method of the reflexive Banach spaces 

and the theory of linear operator in such spaces [1- 

40], however, some questions that relate to spectral 

theory and trace operators need to be clarified.       

Let X  and Y  be a pair of reflexive Banach 

spaces and let A  be a linear operator from X  to Y

. The operator :A X Y  is called a finite rank 

operator or has a finite rank if the dimension of the 

image of the operator A  is a finite number.   

Let y Y  and x X  , by definition, the 

linear map :y x X Y   is  

   y x x x x y  , 

so that 

 

 

sup sup

sup

1 1

1

x x

x

y x y x x x y

y x x y x

  

 

 



  

 
 

and    y x span y  , so y x  is a finite 

rank operator. 

Definition 1. For every element x X , we 

define an adjoint x X   as an element for which 

achieves the following equality  

,x x x x  . 

Next, let us assume that  ix  and  ix  are 

two bases of reflexive Banach spaces X  and X 
, 

respectively, and let basis  ix  be orthonormal to 

 ix  in the following sense:  

, 1k k k kx x x x    

for any k  and  

, 0i jx x   

for all i j . 

Definition 2. A map :P X X  that 

satisfies the condition PP P   is called a 

projection (or the projection map or operator of 

projection). 
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Let linear operator A  maps from X  to Y , 

where X  , and Y  are a pair of reflexive Banach 

spaces. We denote  kx  and  ky
 the bases of 

space X  and Y 
, respectively.  

The trace  Trace A  of the operator A  is  

    ,k k

k

Trace A A x y , 

if this sum is independent of the choice of the 

bases.   

Definition 3. A pair of sets 
1

X X  and 

1
X X   is called orthogonal if the equality  

, 0x x   

holds for arbitrary 
1

x X   and for arbitrary 

1
x X  . 

Definition 4. Assume  
1

X  is a subspace of 

a Banach space X  and 
1

X 
 is a subspace of its 

adjoint X 
. Their annihilators 

1
X 

 and  1
X




  

are defined by formulae  

 : , 0
1 1

X x X x x x X         

and, similarly 

   : , 0
1 1

X x X x x x X


       . 

Definition 5. The subspace 
1

X 
 is a set of 

all bounded linear functionals on X , which equal 

zero (annihilates) on 
1

X ; the subspace  1
X




 is a 

set of all bounded linear functionals on 
1

X 
, which 

equal zero (annihilates) on 
1

X 
. 

Suppose  
1

x X  so  , 0x x   for all 

1
x X  , thus, we have  1

x X


 . The subset 

 1
X




 is closed in the strong norm so 

   1 1
X clos X


  . Let  1x clos X  according 

to the Hahn-Banach theorem gives 
1

x X  , 

, 0x x  , and so  1
x X


  thus 

   1 1
X clos X


  .  Analogously, the closure of 

the 
1

X 
  coincides with   1X




. 

2 Orthogonality in the Banach space 
 

Let us consider the finite rank operators.  

Theorem 1. Assume operator  A  has finite 

rank and there is a pair of sets  iu Y  and 

 iv X   such that  

1

k

i i

i

A u v



  

then  

1

k

i i

i

A v u 



 , 

where 
iv X   and 

iu Y  for all 1 i k  . 

Proof.  Assume y Y  , v X  , and 

x X  , y Y  , then we write  

    

 

, ,

, .

YY

Y

y v x y v x y y

v x y y

   

 

 


 

Now, for all y Y  let us denote map :yf Y C   

such that    
reflex

yf y y y Y Y     , so, we have  

     

    

, ,

, , .

X

y y
X X

v x y y x y y v

x f y v x f v y

   

   

 

 
 

Since  yf v  is a linear bounded map 

from Y 
 to X 

, we have   

  yy v f v y v


    . 

Thus, adjoints of iu   and iv
 belong to 

i iv u
 so an adjoint to the sum is the sum of the 

adjoint to the terms.  Theorem 1 has been proven. 

Theorem 2. Suppose 
1

X  is a subspace of a 

Banach space X . Then we have the following 

statements.  

1. Each    1
v clos X

  extends to a 

functional on whole x X  .  We denote 

isomorphism   :
1

v x clos X
   . Then 

isomorphism   is an isometry from   1
clos X



 

to   /
1

X clos X


. 

2. Let us denote the map 

 : / 1X X clos X  .  Then for each 

  /
1

w X clos X
 , the isomorphism    defined 

as  

w w    
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is an isometry from   /
1

X clos X


 to 

  1
clos X



. 

Proof.  

First, the restriction of any  x X   to 

 1clos X  belongs   1
clos X



 so the range of   

is whole   /
1

X clos X


. For any fixed 

  1
v clos X

  and x X   that extends v
, we 

have an estimation v x  , the infimum of such 

x  equals  1
x clos X  . Therefore, we obtain 

v v x     , however, according to the 

Hahn-Banach theorem if x
  is an extension of v

 

then x v   and so we have that v v    is 

proven. 

Second, let x X  and 

  /
1

w X clos X
  so  / 1x X clos X  , and 

since map x  to w x  vanishes on  1x clos X , 

we have   1
w clos X

 . We denote the null 

space of x
 by N , this null space contains 

 1clos X , so there is linear functional f  on 

 / 1X clos X  such that f x  , so that 

     / 1N f N X clos X  . Thus, we have 

  /
1

f X clos X


  , therefore f f x     so 

    1
rang clos X



 . For any open ball B  and 

any   /
1

w X clos X
 , we have   

 

 

sup , :

sup , :

w w x w x B

w w v B w

  



  

 

   

  

 

since w w   . The theorem has been proven. 

So, if we are given a set 
1

X  in a Banach 

space X , then we have that there are sets: 

 1clos X X  and   1
clos X X

  , 

  1
clos X X

   and   /
1

X clos X X
  , and 

  /
1

X clos X X
  , which satisfies the 

relationships  

     /
1 1

clos X X clos X X
     

and  

     /
1 1

clos X X clos X X
    , 

these set equalities must be understood in the sense 

of isometric isomorphisms. 

Theorem 3. Let X  be a reflexive Banach 

space. Let us denote  , ,..., ,...1 2 ne e e  and 

 , ,..., ,...1 2 ne e e  
 the orthonormal bases in X  and 

X 
, respectively. Let sets 

,...,1i n iE e   and 

,...,1i n iE e 

   be the closure of the spans  

 , ,...,1 2 ne e e  and  , ,...,
1 2 ne e e  

 respectively. Let 

map :P X X  be a projection in sense P P P  

and let this projection satisfies the following 

condition:   P X E . 

Then, we have   

,...,1

k k

k n

P e e


   

and 

 
,...,

,
1

k k

k n

P u u e e



   

for any u X .  

Proof.  Set E  is an n-dimensional closed 

subset of X . Assume  
,...,

,
1

k k

k n

Q u u e e



   

since  the definition ,i j ije e   , for each 

1 j n  , we have 

 
,...,

, , , ,
1

j k k j j

k n

Q u e u e e e u e   



 

 

so  

  , 0ju Q u e  , 

Thus, we conclude  u Q u E   so 

   u Q u E


  . Let us take 1 2u u u   , where 

1
u E  and  2

u E


 . Then we have 

   1 2
u u Q u E


    thus    1

u Q u E


  . 

On another hand, since u  is a finite sum of 

elements of E  so  1u Q u E  , and we have  

  01u Q u  . Thus, and conclude    Q u P u  

since   1P u u . The theorem is proven. 

Notation. Let us denote the set of all 

compact operators from X  to Y  by ( , )CB X Y . 
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And let us denote the set of all finite rank 

operators as ( , )RanB X Y .  

Theorem (of approximation) 4. Set 

( , )RanB X Y  is dense in ( , )CB X Y . That means if 

operator ( , )CA B X Y  then there is a sequence 

 nA  of operators  ( , )n RanA B X Y  such that 

nA A . 

Proof. The set  U A x      is closed and 

separable. If the set  U  has a finite dimension then 

the operator A  is a finite rank operator. Or else, 

assume  , ,..., ,...1 2 ne e e  and  , ,..., ,...1 2 ne e e    are 

the orthonormal bases of U  in Y  and Y 
, 

respectively. Let operator :nP Y Y  be defined as 

in the previous theorem for  
,...,1i n ie  then 

( , )n RanP B X Y . Thus, we construct the 

approximating sequence as 

( , ).n n RanA P A B X Y   

For u U  we get 

   
,...,...

,
1

k k

k

A u A u e e



  . So, operators nA  can 

be written in the form 

     
,...,

,
1

n n k k

k n

A u P A u A u e e



    

so, we have     0
n

nA u A u


  . 

Let B  be a close ball radius one. Since the 

operator A  is totally bounded we have that for any 

0    there is m  and ,...,
1 mu u X   such that 

    
m

j

j

A B B A u . If u B  then there is 

1 j m   such that     jA u B A u  and 

   jA u A u   . Since 1nP   we have  

       

        

       

   

2

2 .

n j

j n j n j

j j n j

j n j

A u A u A u A u

A u A u P A u A u

A u A u A u A u

A u A u

   

    

    

  

 

So, for each j ,  there is  n j  such that 

   j n jA u A u    since 

    0j n jA u A u  . For  max
1 j m

n n j
 

  and 

u B , we have  

    3nA u A u   . 

By definition of operator norm, we write   

   sup
1

n n
u

A A A u A u


    

thus, for all,   max
1 j m

n n j
 

  there is the estimation 

3nA A   , 

which means that nA A . The approximation 

theorem has been proven. 

 

3 Trace operators 
Let set E  be an orthonormal basis in 

reflexive Banach space as described above. 

Elements of the set E  can be presented in the form 

,

,
e E e E

u u e e
 



 

    for all u E .  

Let X  and Y  be two reflexive Banach 

spaces and let map :A X Y  be a bounded linear 

operator, and A
 be its adjoint operator 

:A Y X   . Let us denote the set of eigenvalues 

of A  by   :i i I  , then the set of eigenvalues of 

A
 is  :i i I  . Assume there is an orthonormal 

basis XE  of X  each element of which is an 

eigenvector of A  associated with eigenvalues of A . 

Let Ye Y  and Xe X   then there is the 

linear map :Y Xe e X Y  .  

Definition 6. We introduce a sequence of 

the linear maps X Y  defined by 

   i Y Xi i
i

e e  , and we introduce an adjoint 

sequence of the linear adjoint maps  Y X    

defined by    i X Y ii
i

e e  . 

The norms of A  and A
 equal to 

 sup i
i I

A 


  and  sup i
i I

A 



 , respectively. 

That is consistent with the previous result 

A A , which holds for the arbitrary operator  

:A X Y  and arbitrary pair of the Banach spaces.  

Also, we remark that  ,A A A A  , 

however, it does not necessarily mean that operators 

are self-adjoint i.e. A A  also possible. 

EQUATIONS 
DOI: 10.37394/232021.2022.2.19 Mykola Yaremenko

E-ISSN: 2732-9976 126 Volume 2, 2022



Let us clarify the definition of trace class in 

the reflexive Banach space. 

Definition 7. Let   :X i
e i I  and 

  :Y i
e i I  be orthogonal bases for reflexive 

Banach spaces X  and Y , respectively. We say 

that linear operator  ,A B X Y  is trace class if  

    ,X Yi i
i I

A e e 



  . 

The trace of the linear operator 

 ,A B X Y  is  

        ,X Yi i
i I

Trac A Tr A A e e 



    . 

In the definition of the trace class, the sum 

is independent of the bases of the Banach spaces. 

The map  : ,CTrac B X Y   is a linear 

function and if the operator A  is positive then 

 Tr A  is real and not negative. If the operator A  

is positive then there are orthogonal bases 

  :X i
e i I  and   :Y i

e i I  for Banach 

spaces X  and Y  such that A  can be presented as  

        ,X Y Y Xi ii i
i

A A e e e e   

and A
 in the form  

        ,X Y X Yi ii i
i

A e A e e e    . 

Theorem 5. Let    X n
e  and   Y n

e  be 

a basis in X  and Y , and let :A X Y  be a 

linear operator. If     X n Yn n
A e e   for all n , 

then  ,CA B X Y  if and only if  0
n

n


 . 

Proof. Let   ,CA B X Y  then 

 ,CA B Y X   . Let    n X n
A e   is an 

eigenvalue corresponding to  X n
e  . Let  X n

P  be 

the projection onto ,...,1i n ie  as defined above. So, 

we have   X n
P A A


  , and we define 

 n X n
A A A P  . Since n nA A   we get  

  

   0,

n n X n

X n

A A A A P

A P A





 

   

  

 

where :A Y X   . Since 0nA   we have 

limsup 0n
n j n


 

 . 

On another hand, since 0
n

n


  all 

absolute values of the eigenvalues are bounded so 

 ,A B X Y . For natural numbers k n , we have 

          X X X j Yn j j j
A P e A e e   and for 

k n        0X Xn j
A P e  , thus 

  ( , )X Rann
A P B X Y . Let us denote 

 n X n
A A A P   so supn n

j n

A 


 , thus 

lim 0n
n

A


 .  

We have obtained that the sequence 

 X n
A P  converges to A  as n , here all 

  ( , )X Rann
A P B X Y , therefore  ,CA B X Y . 

The theorem is proven. 

 

4 Examples  

 
Let us consider several examples.  

1. Let 
2X R  and 

3Y R , linear operator 

: 2 3A R R , y A x  is defined by 

,

, 1, 2, 3
1 2

i ik k

k

y a x i


  , where ika   are 

components of the [2, 3] - matrix  ikA , 

  2ikrank A  . Then : 3 2A R R   is defined as 

Tx A y  or 
, ,

, 1, 2, 3
1 2 3

i ki k

k

x a y i


  . We can 

define the operator : 2 2A A R R   by the 

multiplication of the matrices 
TA A , the product 

is a square [2, 2] matrix; the operator 

: 3 3AA R R   analogously is given by 
TA A  

whose product is a square [3, 3] – matrix. The 

operator : 2 3A R R  is embedding  
2R  in 

3R , 

and the operator : 3 2A R R   is the projection 
3R  

on 
2R . 

2. In our next example, let   pX L R  and 

 qY L R , , 1p q pq p   , then the linear 

map    : p qA L R L R  is defined as an integral 

operator with the singular kernel  ,K t s , which 
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satisfies certain conditions (for instant Gaussian 

distribution), in the form  

       ,y t Ax t K t s x s ds   . 

The adjoint operator     : p qA L R L R   is also 

defined by a singular integral with the transpose 

kernel  ,K t s
.  

3. The most important example is the case, 

when X Y H  , where H  is a Hilbert space. Let 

the map :A H H be a compact operator, then 

A A AA   if and only if there is an orthonormal 

basis of space each vector of which is its 

eigenvector. So, there is a basis   ie  so that 

i i iAe e , i I , then i i iA e e  , so 

 

,

.

k i k i i

i

k k k k k k

AA e A e e e

A e e A Ae
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