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Abstract: - In this paper, we consider pl -periodical functions  pcs m  and  psn m , which 

are defined on the curve given by the equation: 1,     1
p p

x y p    on 2R  as functions of its 

length. Considering  pcs m  and  psn m  as an independent functional system, we 

construct the theory similar to Fourier analysis with the proper weights. For these weights, we 

establish an analogous of the Riemannian theorem. The adjoint representations are introduced 

and dual theory is developed. These Fourier representations can be used for approximation of 

the oscillation processes.   
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Introduction 
A curved line given by the equation 

1
p p

x y   on  2R -plane is called a p -curve 

and denoted by Cp . Let us denote the length of 

p -curve by pl . We introduce a pair of C1 -

smooth functions  pcs   and  psn   of the 

real argument 0, pl     defined as  

 

  for allpcs x R                 (1) 

and  

  for allpsn y R   ,           (2) 

where coordinates  x  and y  belongs to p -

curve,  i.e. bound by the equation 1
p p

x y  , 

so that   

 0 0
4

pl
psn pcs

 
  

 
 and 

 0 1
4

pl
pcs psn

 
  

 
, and 

 

    1 for all
p p

psn pcs R     . (3) 

 

These functions satisfy the integral identity   

   

      p p

psn pcs

pcs psn d

 

  



 
.               (4) 

p -Fourier transform  

Assume 0,p

pf L l     and let us write a 

Fourier-type series with appropriate weights on 

the interval 0, pl    as  

 

    
, ,...

,m m

m

f x

a a pcs mx b psn mx




  0

1 2

      (5) 

with some real coefficients , , ,.., , ,...m ma a b a b
0 1 1 .  

By usual means. integrating the identity 

(3) over the period pl , we obtain  

   
2

p pl l
p p pl

pcs d psn d     
0 0

     (6)             
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and 

 
1

pl

p

a f x dx
l

 0

0

.                    (7) 

Next, we have  

     
2

pl
p

m

p

a f x pcs mx pcs mx dx
l



 
2

0

   (8) 

and 

     
2

pl
p

m

p

b f x psn mx psn mx dx
l



 
2

0

.    (9) 

Thus, we obtain the mapping of the 

functions 0,p

pf L l      in the set of the 

infinite series according to the formula  

   

       

       
, ,...

1

2
.

p

p

p

l

p

l
p

l
mp p

f x f x dx
l

f y pcs my pcs my pcs mx

dy
l

f y psn my psn my psn mx



 

 

 
 

 
 
 
 
 








0

2

0

1 2 2

0

                            (10) 

 

Statement (analogous Riemannian 

theorem) 1.  Assuming g  is an integrable 

function over an arbitrary interval  ,a b R  

then  

     lim 0

b
p

m
a

g x psn mx psn mx dx





2

     (11) 

and  

     lim 0

b
p

m
a

g x pcs mx pcs mx dx





2

. (12) 

Theorem (adjoint) 2.  Let  g  be an 

integrable function over an arbitrary interval 

 ,a b R  then there are  

   lim 0

b

m
a

g x psn mx dx


          (13) 

and  

   lim 0

b

m
a

g x pcs mx dx


 .           (14) 

Adjoint series 

Assume pf L   then 

p
p pf f L
 

2 1  and 

we can write 

   

   

   , ,...

,

p

p

m

p
m

m

f x f x a

a pcs mx pcs mx

b psn mx psn mx








 

 
 
 
 



2

0

2

2
1 2

       (15) 

where , , ,..., , ,...m ma a b a b
0 1 1  defined as follows   

   
1

pl
p

p

a f x f x dx
l



 
2

0

0

,              (16) 

     
2

pl
p

m

p

a f x f x pcs mx dx
l



 
2

0

  (17) 

and                   

     
2

pl
p

m

p

b f x f x psn mx dx
l



 
2

0

.  (18) 

 

The morphism from the real line 

to the complex plane :Epp R Cp  

 

We introduce a function :Epp R Cp , 

which maps from the real line to the  p -curve 

on the complex plane as follows  

 

     ,Epp i pcs i psn R        (19) 

and dual function  

 

      ,

,

Epq i pcs i psn

R p q

  



 

 
,     (20) 

assume that p  is renaming q .  The function 

:Epp R Cp  is a surjective morphism of the 

topological groups from the real line R  to the  

p -curve Cp  and covering the space of the p -

curve Cp . In case 2p  , the function Epp  is a 

classical exponent on the complex plane of the 

imaginary argument. 

 

From formula (19), we have   

      
1

,
2

pcs Epp i Epp i R        

and  

      
1

,
2

psn Epp i Epp i R
i

       . 

We introduce an integral transformation 

Tp  of a function  p qf L L  in the form  
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ˆp

p

f

Epp l i x f x dx Tp f



 






  
     (21) 

 

where pl  is a length of the p -curve Cp . 

This integral transformation Tp  is a 

linear mapping relative to the function f  and in 

case 2p   coincides with the Fourier 

transformation. 

 

If 2p   then the integral transformation 

of function g  

 

      pEpp l i x g d Rp g x  




     (22) 

 

coincides with the inverse Fourier transform, in 

the general case it is not necessarily true since 

the dual structure does not coincide with the 

natural complex structure, the inverse transform 

is not always given by formula (22).   

We define the inverses integral 

transformation Tp1
 of a function   ˆp f   as  

    ˆpf x Tp f x 1                            (23) 

for all transforms  ˆp f  . 

So, we introduce two types of mappings: 

the first is an analog of the Fourier transform  

Tp  and its inverse Tp1
, second is an analog of 

the inverse Fourier transform Rp  and we can 

easily define its inverse Rp1
.  These 

morphisms do not have the structure of the 

group except for 2p  .  

 

Generalization of the Wigner 

function 

Let functions  p nL R   and 

 q nL R  then we introduce a general 

Wigner function   , ,W x p    as any quasi-

probability distribution, which satisfies the 

following conditions: 

1.       , ,
nR

W x p dp x x     ; 

2. 

  

     

, ,

.

nR

W x p dx

Tp p Tp p

  

 






 

As a consequence of the first condition, 

we have   

      , ,
n

x

R

W x p dpdx x x    
2

. 

For a pair of functions  p nL R   and 

 q nL R  such that | 0   , we define a 

density   in the point  ,x p  by  

   
  

, ,

, ,
, ,

|

W x p
x p x p



   

 
 

 
  . 

The probability density function is a 

homogeneous function of degree one so that 

   , ,, ,x p x p      for all complex 

0  .  

Let us introduce the generalization of 

the Weyl quantization by  

       ,
n

p

R

Epp l i x x dx       , 

where   is a symplectic form. 

We define an operator  

       , , ,pV Epp l i x Q P    , 

where Q  is position operators and P  is a 

momentum. 

The Weyl quantization   Dp    is 

defined by  

         Dp V         

for any test function  .  

We estimate   
p

Dp      . 

Similarly to the classical case, the new Weyl 

quantization is a linear mapping so that  

     Dp Dp Dp         

holds for all complex numbers ,  . 

Definition. The Schwartz space is a 

space of all  functions such that   
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:

.
sup , 0

n

n

n

a n

x
x R

C R

S R
x x a N



 





 
 

  
     

 

 

Now, let us consider a case when 

Epp Exp . The exponent function satisfies the 

characteristic identity 

     Exp a b Exp a Exp b   so the Weyl 

product has the property   

     #Dp Dp Dp     

for some function ,  . 

The symbol #  denotes a non-

commutative product (often called Weyl 

product) so that      #Dp Dp Dp      

for some functions. 

Let us assume  AK  and BK  are kernels 

for the integral operators A  and B  

respectively. So, we have   

 

   

  

     

  

     

exp 2

1
,

2

exp 2

,1 1
,

2 2

n

n

n

R A

n

R A

Dp Dp A x

i z x p

W K x z p z dpdz

i z x y p

K z x y z x y z dpdzdy





 

 






 

  

 
  

 

   

 
    

 





2

3

1

 

we take  Dp A   then  Dp A  1  and 

calculate  

  , ,
2 2

n

AK x z x z F x z
 

   
   

 

1 , 

thus  

     , , .Dp Dp x p x p  1  

Generally speaking, the product 

 n n

A BK K S R R   does not commute. So, 

we obtain the following lemma. 

 

Lemma 1. Let AK  be a kernel of an 

operator     ,n nA BL L R L R 2 2
. Then the 

mapping Dp1
 is an inverse to Weyl 

quantization so that  n

ADp A W K 1
  and 

  n

AA Dp W K ; the Weyl kernel is given 

by  

 

    

  

1
exp 2 ,

2

1
, ,

2

nR

n

K i z x p x z p dp

z x
F x z

   

 


 
    

 

   
   

  



 

then  

   

     

,

, ,n

Dp Dp x p

W K x p x p



 

 



1

 

holds for  nL R  2 . 

Lemma 2. Let AK  and BK  be integral 

kernels of the operators A  and B  respectively.  

Then the product 

      , , ,A B A BK K x z K x K z    is 

correctly defined and is a kernel of the 

operator; in other words 

     : n n n n n nS R R S R R S R R      . 

Proof. Let us denote the multi-indices 

by , , , na b N  
0

 then we estimate 

  

   

   

   

   

   

   

,

, ,

, ,

, ,

1sup , ,

2max sup , ,

1 , ,

2m

n

n

a b

x z A B

a b

x z A B

a b

x z A B

a b

x z A B L

a b

x z A B
R

a b

x z A B
c n

R

a b

x z A B

x z K K x z

x z K x K z

x z K x K z

x z K x K z

Const x z K x K z

Const x z K x K z

Const x z K x K z

Const

 

 

 

 

 

 

 






  

    

     

    

     

     

     



1

2

00

   ax , , .a b

x z A B cc n
x z K x K z 


   

02

 

Next, we exchange the order of the 

supremum and integration and obtain   
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,

,

,

sup , ,

sup , ,

sup , ,

n

n

n

a b

x z A B
x z R

a b

x z A B
x z R

a b

x z A B
x z R L

x z K x K z

x z K x K z

x z K x K z

 

 

 







    

    

    
1

 

so, we have   

   

     

     

,

,

,

sup , ,

1 sup sup , ,

2 max sup sup , , ,

n

n n

n n

a b

x z A B
x z R L

a b

x z A B
x z R R

a b

x z A B
c n

x z R R

x z K x K z

C x z K x K z

C x z K x K z

 

 

 



 


 

    

     

     

1

2

 

thus, we obtain   n n

A BK K S R R  . 

 

For the Weyl system, we can formulate 

the following Weyl quantization theorem. 

 

Theorem.  Let functions  , nS R  2  

then the function  # nS R  2  and such 

that satisfies the equality  

     #Dp Dp Dp    , 

where   

  

     

    

    
   

     

 

   

,
,

# ,

exp 2 , , ,

exp 2 , , ,
2

, ,

2
2

exp
, , , , .

,

, ,

z
z

x p

i x p z z

i
z z

F z F z

i

x p z x p

z

z z

 




 

   


   

   









   



  

 
  

 

 
 

 
   

    
  

 

 

Proof. Assume  , nS R  2  and 

employ the definition of Dp , we have   

 

    

    

   
   

   

 

   
 

 
 

   

,
,

,
,

, ,

, ,

, , ,2
exp 2

,
.

,
, ,

,

z
z

z
z

Dp Dp

F z F z

W z W z

z zi

z

z
F z F W z

z

 




 




 

   

 

 
 
 


   






 

  
  

  
  

 
 
 
 

 

Now, we are going to establish that  

 # nS R  2  

  

 

 

      
 

 

     

    

    
   

   

 

    

,

,
,

# ,

, ,2
exp 2

, ,

, ,

exp 2 , , ,

exp 2 , , ,
2

, ,

, , ,2
exp 2

,

2
exp 2 , , ,

z

z
z

x p

zi

zF x p

F z F z

i x p z

i
z z

F z F z

x p zi

z

i
z z



 


 




 


 
 

   

  


   

   


 
 

   




      
       

  
 



 
  

 

  
  

  
  

    

   
,

,

, ,

z
z

F z F z 




   

 
 

 

 

so #   belongs  nS R2 . 

Let us denote K  and K  kernels, 

which belong to  nS R2 , then we have    
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,

, # .

z

z

Dp Dp x

K K x

K K z z Dp x

 

 

  



  



    

  

 

Next, using the properties of the 

exponential function, we have   

  

       

    

    

    

   

# ,

exp 2 , , , ,

exp 2 , , ,
2

exp 2 , , ,
2

exp 2 , , ,
2

, ,

nR

x p

i x p z y

i
z y

i
z z

i
y y

z y dzd dyd dzd dyd

 

   


   


   


   

       



  

 
 

 

 
 

 

 
 

 




8

 

       

     

exp 2 , , , ,

, , , .
2

nR

i z z x p

z x p z dzd dzd

   


     

  

 
 

 


4

 

By changing variables 

     , , , ,
2

y x p z


    we are completing 

the proof of the theorem. 

From semigroup properties of 

exponential function follows: let a  be a symbol 

of  2nS R   then the  Weyl operator is given by 

 

 

   
 ,

ˆ

1
,

21
,

2
exp

n

z p

A x

a x z p

i
p x z z










 
  

  
 

  
  

 

 

the kernel of the Weyl operator A  is    

 

   

ˆ ,

1 1
exp ,

2 2

A

n

p

K x y

i
p x y a x y p

 



     
      

    

, 

and the symbol is written as     

 

ˆ

,

1 1
exp , .

2 2A

z

a x p

i
p z K x z x z





   
     

  

 

These formulae are circular via to the 

semigroup properties.   

 

 

Since 

    

   

ˆ ,

exp 2 2

RT x p x

i
p x x x x








 
   

 

0 0

0 0 0

          (24) 

the Weyl operator can be written in the form    

 

      
 ,

ˆ

1 ˆ, , .
2

n

R
z p

A x

a z p T z p x








 
 
 

    (25) 

Statement. The Weyl operator extends 

to the continuous operator   

   ˆ : n nA S R S R  . 

Indeed, Since  2na S R  the function 

     ˆ, , 2n

x Ra z p x T z p S R     for all 

functions  nS R   and all multi-indices 

nN  therefore  ˆ
xx A x     . 

Weyl established that correspondence 

between symbols a  and  Weyl operators A  is 

one-to-one and linear, unit symbol corresponds 

to the identity operator on  nS R .   Thus the 

set of all Weyl operators coincides with the set 

of all symbols on  n nS R R . The Weyl 

operators are pseudo-differential operators with 

rapidly decreasing kernels. 
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Since the Weyl operator can be rewritten 

as   

 

 

   
 ,

ˆ

1
,

21
,

2
exp

n

z p

A x

a x z p

i
p x z z










 
  

  
 

  
  

 

                

(26) 

so that the kernel of the Weyl operator A  can 

be calculated by the formula   

 

   

ˆ ,

1 1
exp ,

2 2

A

n

p

K x y

i
p x y a x y p

 



     
      

    

,                  

(27) 

then, the symbol can be represented as    

 

ˆ

,

1 1
exp ,

2 2A

z

a x p

i
p z K x z x z





   
     

  

.   (28) 

The last three formulae are circular. 

Theorem 4.  Let ˆ
Weyl

A a  be the Weyl 

correspondence then 

1.  for  n na S R R   it is necessary 

and sufficient 

   ˆ , n n

A
K x y S R R   and 

      ˆ
ˆ ,

A z
A x K x z z  ; 

2. the map ˆa A  extends to an 

isomorphism    

      ,n n n nS R R L S R S R   , 

where     ,n nL S R S R  is the 

space of continuous linear 

operators from  nS R  to  nS R . 

Proof. The theorem follows from the 

Schwartz kernel theorem.  

Theorem 5. Let the Weyl operator Â  

corresponds to the symbol 

  , 1 2r n na L R R r     so ˆ
Weyl

A a , then 

there is a constant  Const r  such that the 

inequality  

 
     

ˆ
2 2

2
n r n

n L R L RL R
A Const r a     (29) 

holds for all  2 nL R  . 

From this theorem follows that for all 

symbols  2 n na L R R   corresponding Weyl 

operators are  2L -bounded. However, there are 

examples of the symbols 

  , 2r n na L R R r    on which 2L  

boundness is ruined so that Weyl operators Â   

are not 2L - bounded for these symbols 

  , 2r n na L R R r   .  

The complete analysis of 2L - regularity 

for Weyl operators can be made in terms of the 

Calderon -Zygmund theory. 

Theorem 6. Let Â  be trace-class Weyl 

operator on  2 nL R  corresponded to symbol 

  , 1 2r n na L R R r    . Then for  ˆ 0A   it 

is necessary and sufficient that   

 

       
 ,

,

exp , , , ,
x p

F a x p

i x p x p a x p
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is continuous and such that the matrix with 

entries  

    

    

exp , , ,
2

, ,

j j k k

j j k k

i
x p x p

F a x p x p


 
  
 



 

is positive semidefinite for all possible sets of 

       , , , , ...., , 2

1 1 2 2

N
n

N Nx p x p x p R . 
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