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Abstract: - In the previous paper, a modification of Maxwell's equations was proposed, from which formula for 
Doppler effect follows. However, as was noted later, the equations proposed do not have symmetry with respect 
to the transformation B→-E, E→B, which the original Maxwell equations have and which was discovered by 
Heaviside in 1893. The equations proposed in present paper have this symmetry. The obtained equations are 
analyzed for several physical situations. 
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1 Introduction to the Problem 
In the paper [1], the formula for the Doppler effect 
was given, which describes the dependence of the 
radiation frequency recorded by the observer, 
depending on the angle between the direction to the 
source and the direction of movement of the source. 
As shown in our work [2], the expression for the 
Doppler effect can be written as 
 

        (
𝛺

𝑘

𝒌

𝑘
− 𝒗)

2
= 𝑐2,                      (1) 

 
which is just a record of the cosine theorem for the 
difference between the velocity vectors of the wave 
front and the source. Here k is the wave vector, Ω - 
frequency, 𝒗 - vector of movement of the source of 
light, c - the speed of light. 

In the same place, a modification of Maxwell's 
equations was proposed, from which formula (1) 
follows. However, as was noted later, the equations 
proposed in [2] do not have symmetry with respect to 
the transformation 

 
 𝑩 → −𝑬,      𝑬 → 𝑩, 
 
which the original Maxwell equations have and 
discovered by Heaviside in 1893 (see [3]). The 
equations proposed below have this kind symmetry 
as shown in the present paper. 

2 Mathematical model 
 
 

2.1 The Modified Maxwell Equations  
Consider the modified Maxwell equations of the 
following form: 

 
 𝑑𝑩

𝑑𝑡
+ [𝒗 × 𝜵] × 𝑩 + 𝜵 × 𝑬 = 0,  

                                                     (2) 
 𝑑𝑬

𝑑𝑡
+ [𝒗 × 𝜵] × 𝑬 − 𝜵 × 𝑩 + 𝒋 = 0. 

 
Here and further, the Heaviside system of units is 
used everywhere, according to which ћ = c = 1. 

Here the time derivatives are total, i.e., 
d/dt=∂/∂t+(v∙∇), where v - constant speed of the 
source.  
 
 
2.2 Fourier Expansion for the Modified 

Maxwell Equations 
Since the equations are linear with constant 
coefficients, we use the Fourier expansion to solve 
them: 

 
 𝑩 = 𝒃 ∙ 𝑒𝑖(−𝜔𝑡+𝒌∙𝒙), 
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 𝑬 = 𝒆 ∙ 𝑒𝑖(−𝜔𝑡+𝒌∙𝒙), 
 
 𝒋 = 𝒋𝒌 ∙ 𝑒𝑖(−𝜔𝑡+𝒌∙𝒙). 
 
In this representation referred to in the literature 

as the impulse representation, system (2) has the 
form: 

 
 𝑠𝒃 + [𝒗 × 𝒌] × 𝒃 + 𝒌 × 𝒆 = 0,  

                                      (3) 
 𝑠𝒆 + [𝒗 × 𝒌] × 𝒆 − 𝒌 × 𝒃 = 𝑖𝒋𝒌 

 
where 𝑠 ≡ −𝜔 + 𝒗 ∙ 𝒌. 

The determinant of the system (3) is 
 

det =  𝑠2(𝑠2 − 𝑘2 + [𝒗 × 𝒌]2)2. (4) 
 
By substitution 
 
 𝒃 = 𝑖𝒌 × (𝑨 − 𝒗𝛷) + 𝑖𝒌𝛹,  
   (5) 
 𝒆 = −𝑖𝑠(𝑨 − 𝒗𝛷) − 𝑖𝒌(𝛷 − 𝒗 ∙ 𝑨) +
𝑖[𝒗 × 𝒌]𝛹, 
 
where are: 
 𝑨 – vector, 
 𝛷 – scalar 
 𝛹 – pseudoscalar 
 
potentials, we can get the following conditions for the 
potentials: 
 

 𝑨 = −
𝒋

(𝑠2−𝑘2+[𝒗×𝒌]2)
,        (6) 

 
 𝑠𝛷 + 𝒌 ∙ 𝑨 = 0,                     (7) 
 
 𝑠𝛹 + [𝒗 × 𝒌] ∙ 𝑨 = 0.                    (8) 
 
 
2.3 The Modified Maxwell Equations in 

Coordinate Form 
The above is presented in the coordinate form as 
follows: 
 
 𝒃 = 𝛁 × (𝑨 − 𝒗𝛷) + 𝛁𝛹,      (9) 
 

𝒆 = −
𝑑

𝑑𝑡
(𝑨 − 𝒗𝛷) − 𝛁(𝛷 − 𝒗 ∙ 𝑨) + [𝒗 × 𝛁]𝛹, 

 

where are 
 
 (

𝑑2

𝑑𝑡2 − 𝛁2 + [𝒗 × 𝛁]2) 𝑨 = 𝒋,     (10) 
 

                𝑑

𝑑𝑡
𝛷 + 𝛁 ∙ 𝑨 = 0,    (11) 

 
       𝑑

𝑑𝑡
𝛹 + 𝒗 × 𝛁 ∙ 𝑨 = 0.     (12) 

 
 

Applying the operator ( 𝑑2

𝑑𝑡2 − 𝛁2 + [𝒗 × 𝛁]2) to 

the calibration condition 𝑑

𝑑𝑡
𝛷 + 𝛁 ∙ 𝑨 = 0, yields 

 
 𝑑

𝑑𝑡
(

𝑑2

𝑑𝑡2 − 𝛁2 + [𝒗 × 𝛁]2) 𝛷 + 𝛁 ∙ 𝒋 = 0. 
 
And using the continuity equation  𝑑

𝑑𝑡
𝜌 + 𝛁 ∙ 𝒋 = 0, 

we obtain an expression for the charge density: 
 
 𝜌 ≡ (

𝑑2

𝑑𝑡2 − 𝛁2 + [𝒗 × 𝛁]2) 𝛷.          (13) 
 

It follows from the first formula (9) that the 
divergence of the magnetic field is not equal to zero 
in motion, while at rest it is still zero: 
 
                  𝜵 ∙ 𝒃 = ∇2𝛹,                 (14) 
 
therefore, the lines of force of a magnetic field source 
moving at a constant speed are not closed circles in 
classical electrodynamics. 
 
 
2.4 The Galilean Transformations 
Applying the formulae (5) – (8) yields: 
 

𝑖𝒌 ∙ (𝒆 − 𝒗 × 𝒃) = −(𝑠2 − 𝑘2 + [𝒗 × 𝒌]2)𝛷,    

                                                                      (15) 

𝑖𝒌 ∙ (𝒃 + 𝒗 × 𝒆) = +(𝑠2 − 𝑘2 + [𝒗 × 𝒌]2)𝛹, 
 

or in coordinate form 
 
 𝛁 ∙ (𝒆 − 𝒗 × 𝒃) = 𝜌.  (16) 
 
The expressions in (9): 
 
 𝜜′ = 𝑨 − 𝒗𝛷      
                              (17) 

𝛷′ = 𝛷 − 𝒗 ∙ 𝑨 
 
obviously mean the transition to a moving frame of 
reference (the Galilean transformations). 

Thus, the scalar potential 𝛷 and vector potential 𝑨 
create a pair in these transformations. And а 
pseudoscalar potential 𝛹 does not take part  in this as 
seen from direct calculation: the expression 𝒗 ∙ 𝛁 × 𝑨 
is invariant under transformation (17). 
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2.5 The Inverse Galilean Transformations 
The inverse Galilean transformations have the form: 

 
 𝐴 =

𝜜′+𝒗𝛷′

1−𝑣2        
                                  (18) 

 𝛷 =
𝛷′+𝒗∙𝜜′

1−𝑣2  
 
Unlike the Lorentz transformations used in 

relativistic electrodynamics, formulas (17) and (18) 
are asymmetric, since in formulas (17) the medium in 
which the wave propagates is at rest, and in (18) it 
moves relative to the coordinate system with a speed 
of −𝒗. 

 
 

3 Change of Variables 
The equations (15) suggest the idea to make a change 
of variables: 

 
 𝜺 = 𝒆 − 𝒗 × 𝒃    

                                (19) 
 𝜷 = 𝒃 + 𝒗 × 𝒆 

 
In such variables the system (2) transforms to: 
 

   𝑑𝜺

𝑑𝑡
− 𝜵 × (𝜷 − 𝒗(𝒗 ∙ 𝜷)) + 𝒋 = 0,   

                                     (20) 
𝑑𝜷

𝑑𝑡
+ 𝜵 × (𝜺 − 𝒗(𝒗 ∙ 𝜺)) + [𝒗 × 𝒋] = 0. 

 
From the continuity equation 𝑑

𝑑𝑡
𝜌 + 𝛁 ∙ 𝒋 = 0 

follows 
 
 𝛁 ∙ 𝜺 = 𝜌,    

                                 (21) 
 
 

4 Energy-Momentum Tensor and 

Dispersion Equation 
 
 
4.1 Energy-Momentum Tensor 
Let us scalarly multiply the first of equations (20) by 
the vector 𝜺 − 𝒗(𝒗 ∙ 𝜺), and the second by the vector 
𝜷 − 𝒗(𝒗 ∙ 𝜷), and add, we get 
 
𝑑

𝑑𝑡

(𝜀2 − (𝒗 ∙ 𝜺)2 + 𝛽2 − (𝒗 ∙ 𝜷)𝟐)

2
+ ∇

∙ (𝜺 × 𝜷 + 𝒗 × [𝒗 × [𝜺 × 𝜷]])
= −(𝜺 − 𝒗(𝒗 ∙ 𝜺) − [𝒗 × 𝜷]) ∙ 𝒋 

 

And then multiply vectorially (on the right) the first 
of equations (20) by the vector 𝜷, β, and the second 
(on the left) by the vector ε and add, we get 
 
𝑑

𝑑𝑡
[𝜺 × 𝜷] + 𝛁

(𝛽2 − (𝒗 ∙ 𝜷)2 + 𝜀2 − (𝒗 ∙ 𝜺)2)

2
− 𝜷

∙ 𝛁(𝜷 − 𝒗(𝒗 ∙ 𝜷)) − 𝜺

∙ 𝛁(𝜺 − 𝒗(𝒗 ∙ 𝜺)) = [𝜷 × 𝒋] + 

      +𝜺 × [𝒗 × 𝒋]. 
 
 
4.2 Dispersion Equation 
Dispersion equation for the system (20) 𝑑𝑒𝑡 = 0 has 
the following form: 
 
 𝑠2(𝑠2 − 𝑘2 + [𝒗 × 𝒌]2)2 = 0.         (22) 
 

The roots of this equation are: 
 
 𝑠0 = 0  (longitudinal mode), 
 
     𝑠± = ±√𝑘2 − [𝒗 × 𝒌]2  (transversal modes). 
 
Recalling the definition of s, we have: 
 
 𝜔0 = 𝒗 ∙ 𝒌   (23) 
 
and 
 

 𝛺± = 𝒗 ∙ 𝒌 ± √𝑘2 − [𝒗 × 𝒌]2.   (24) 
 
Denoting by θ the angle between the vectors 𝒗 and 𝒌,  
we obtain the last expression in the form 
 
 𝛺± = 𝑘 ∙ 𝑣 ∙ 𝑐𝑜𝑠𝜃 ± 𝑘 ∙ √1 − 𝑣2 ∙ 𝑠𝑖𝑛𝜃2, 
 
or 
        𝑉± = 𝑣 ∙ 𝑐𝑜𝑠𝜃 ± √1 − 𝑣2 ∙ 𝑠𝑖𝑛𝜃2.       (25) 
 
Here 𝑉± ≡

𝛺±

𝑘
 – the amplitude of the phase speed for 

transversal wave. This expression (25) was given in 
[1] (𝑐 = 1 was accepted in (25)). 

Formula (25) is actually a record of the cosine 
theorem for the difference of vectors. Expressions for 
the group velocity and the delayed Green's function 
are given in [2]. 
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5 Conclusion 
From the results presented above follows that the 
non-relativistic explanation of the Doppler effect, 
based on the concept of a continuous medium in 
which elastic - longitudinal and transverse - 
oscillations propagate, may explain some more about 
the Doppler effect, as well as about the other 
interesting features. 
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