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Abstract: In this paper, we give an analysis of the embedded unbiasedness (EU) on optimal finite impulse response
(OFIR) estimates. By minimizing the mean square error (MSE) constrained by the unbiasedness condition, a new
OFIR-EU filter is derived. We show that the OFIR-EU filter does not require the initial conditions, and occupies an
intermediate place between the UFIR and OFIR filters. It is also shown that the MSEs of the OFIR-EU and OFIR
filters diminish with the estimation horizon. A numerical example has demonstrated that the OFIR-UE filter has
better robustness against temporary model uncertainties than the OFIR and Kalman filters.
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1 Introduction

The finite impulse response (FIR) filter is a device
or algorithm that utilizesN most resent neighbour-
ing measurements to obtain an estimate in real time.
Compared to the infinite impulse response (IIR) filter-
ing structures, the FIR filter exhibits some useful en-
gineering features such as the bounded input/bounded
output (BIBO) stability [1], robustness against tempo-
rary model uncertainties and round-off errors [2], and
immunity to errors in the noise statistics [3].

Due to these advantages, the interest to FIR esti-
mators has grown in last decades [4–27] . A signif-
icant progress was achieved in receding horizon FIR
filtering. Kwon, Kim and Park have combined in [18]
the receding horizon strategy with the Kalman filter
(KF) strategy. An optimal FIR filter with embedded
unbiasedness was proposed for discrete-time system
model in [19], and a fixed-lag FIR smoother devel-
oped in [20] for continuous-time models. There were
also important developments in real-time optimal FIR
filtering.

The unbiased FIR (UFIR) filter was derived by
Shmaliy in [21] for real-time state space models. Fur-
ther, thep-shift optimal FIR (OFIR) estimator was ob-
tained in [3] for time-variant state space model. Us-
ing in part the results obtained in [3], the Kalman-like
UFIR estimator was derived in [7] for the time-variant
case. Recently, the Kalman-like OFIR algorithm was
proposed in [27] for time-invariant case. In [17], a
suboptimal UFIR estimator was developed by using

the extended KF strategy. Moreover, unified forms
for KF and UFIR filter and smoother were shown and
investigated in [22]. These results have opened new
horizons in optimal and robust estimation of linear and
nonlinear models [23–25].

In this paper, we investigate effect of the em-
bedded unbiasedness on OFIR estimates. We derive
the OFIR filter with embedded unbiasedness, consider
mean square errors (MSEs) in different OFIR struc-
tures, and investigate the trade-off between OFIR fil-
ter with and without the embedded unbiasedness.

2 State-Space Model

Let us consider a linear discrete-time model given
with the state and observation equations:

xk = Axk−1 +Bwk , (1)

yk = Cxk +Dvk , (2)

in which k is the discrete time index,xk ∈ R
n is the

state vector, andyk ∈ R
p is the measurement vec-

tor. MatricesA ∈ R
n×n, B ∈ R

n×u, C ∈ R
p×n

andD ∈ R
p×v are time-invariant and known. We

suppose that the process noisewk ∈ R
u and the mea-

surement noisevk ∈ R
v are zero mean,E{wk} = 0

andE{vk} = 0, mutually uncorrelated, and have ar-
bitrary distributions and known covariancesQ(i, j) =
E{wiw

T
j }, R(i, j) = E{viv

T
j } for all i and j, to

mean thatwk andvk are not obligatorily white Gaus-
sian.
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Following [3], the model (1) and (2) can be ex-
tended on a horizon ofN points[l, k] as [28]

Xk,l = Ak−lxl +Bk−lWk,l , (3)

Yk,l = Ck−lxl +Hk−lWk,l +Dk−lVk,l , (4)

wherel = k −N + 1 is a start point of the averaging
horizon. The time-variant state vectorXk,l ∈ R

Nn×1,
observation vectorYk,l ∈ R

Np×1, process noise vec-
tor Wk,l ∈ R

Nu×1, and observation noise vector
Vk,l ∈ R

Nv×1 are specified as, respectively,

Xk,l =
[

xT
k xT

k−1 · · ·x
T
l

]T
, (5)

Yk,l =
[

yT
k yT

k−1 · · ·y
T
l

]T
, (6)

Wk,l =
[

wT
k wT

k−1 · · ·w
T
l

]T
, (7)

Vk,l =
[

vT
k vT

k−1 · · ·v
T
l

]T
. (8)

The extended model matrixAk−l ∈ R
Nn×n,

process noise matrixBk−l ∈ R
Nn×Nu, observation

matrix Ck−l ∈ R
Np×n, auxiliary matrix Hk−l ∈

R
Np×Nu, and measurement noise matrixDk−l ∈

R
Np×Nv are all time-invariant andN -dependent.

Model (1) and (2) suggests that these matrices can be
written as, respectively

Ai =
[

(Ai)T (Ai−1)T · · ·AT I ]T , (9)

Bi =















B AB · · · Ai−1B AiB

0 B · · · Ai−2B Ai−1B
...

...
. . .

...
...

0 0 · · · B AB

0 0 · · · 0 B















,(10)

Ci = C̄iAi , (11)

Hi = C̄iBi , (12)

Di = diag(DD · · ·D
︸ ︷︷ ︸

i+1

) , (13)

C̄i = diag(CC · · ·C
︸ ︷︷ ︸

i+1

) . (14)

For mode detail, see [27].
The FIR filtering estimate can be written as [2]

x̂k|k = KkYk,l , (15)

wherex̂k|k is the estimate, andKk is the FIR filter
gain determined using a given cost criterion. A dis-
tinctive difference between the FIR filter and KF is
that the latter requires only one nearest past measure-
ment to produce the estimate, while the convolution-
based batch FIR filter requiresN most recent mea-
surements.

The estimate (15) will be unbiased if to obey the
following unbiasedness condition,

E{xk} = E{x̂k|k} , (16)

in whichxk can be specified as

xk = AN−1xl + B̄k−lWk,l (17)

if to combine (3) and (4). HerēBk−l is the first vector
row in Bk−l. By substituting (15) and (17) into (16),
replacing the termYk,l with (4), and providing the
averaging, one arrives at the unbiasedness constraint

AN−1 = KkCk−l (18)

or the deadbeat constraint. Providedx̂k|k, the instan-
taneous estimation errorek can be defined as

ek = xk − x̂k|k . (19)

Given (1) and (2), below we derive an OFIR filter
with embedded unbiasedness (EU), called OFIR-EU,
by minimizing the variance as

KOEU
k = argmin

Kk

E{eke
T
k } (20)

subject to (18) .

In the next section, we derive and analyze the
OFIR filter with embedded unbiasedness.

3 OFIR-EU Filter

The following lemma will be used to derive the OFIR-
EU filter.

Lemma 1 The trace optimization problem is given by

argmin
K

tr
[

(KF−G)H(KF−G)T

+(KL−M)P(KL−M)T +KSKT ] , (21)

subject toL{KU=Z}|θ

whereH = HT > 0, P = PT > 0, S = ST >

0, trM is the trace ofM, θ denotes the constraint
indication parameter such thatθ = 1 if the constraint
exists andθ = 0 otherwise. Here,F, G, H, L, M,
P, S, U, andZ are constant matrices of appropriate
dimensions. The solution to (21) is

K =





Z

G

M





T 



θ
(

UTΞ−1U
)−1

UTΞ−1

HFTΞ−1Π

PLTΞ−1Π



 ,

(22)
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whereΠ = I− θU
(

UTΞ−1U
)−1

UTΞ−1 and

Ξ =







LPLT + S, if F = U, G = Z, and θ = 1
FHFT + S, if L = U, M = Z, and θ = 1

FHFT + LPLT + S, if θ = 0
.

(23)

Proof: Represent the performance criterion in
(21) as

φ = tr [(KF −G)H(KF −G)T + (KL−M)P

×(KL−M)T +KSKT ] . (24)

By partitioningK asKT = [k1k2 · · ·km], wherem
is the dimension ofK, rewriteφ as

φ =

m
∑

i=1

φi , (25)

in which

φi =
(

kT
i F− gT

i

)

H(· · · )T +
(

kT
i L−mT

i

)

×P(· · · )T + kT
i Ski , (26)

wheregi andmi are theith column vector ofG and
M, respectively, andi = 1, 2, . . . ,m. Reasoning sim-
ilarly, the ith constraint can be specified by

L
i
{UTki=zi}|θ

=

{

UTki = zi, if θ = 1
0, if θ = 0

. (27)

Now note thatφi andLi
{UTki=zi}|θ

are independent
onkj , j 6= i, and the problem (21) can be reduced to
m independent optimization problems as

min
ki

φi subject to L
i
{UTki=zi}|θ

, (28)

wherei = 1, 2, . . . ,m. Now, defineϕi|θ as

ϕi|θ = φi + θλT
i (U

Tki − zi) , (29)

whereλi denotes theith vector of the Lagrange mul-
tiplier. Note thatϕi|θ depends onθ which governs the
existing of constraint. Settingθ = 1, first consider a
general case ofF 6= U, L 6= U, G 6= Z andM 6= Z

which is denoted as case (a). Taking the derivative of
ϕi|a with respect toki andλi respectively and making
them equal to zero lead to

∂ϕi|a

∂ki|a
= 2Ξaki|a − 2 (FHgi + LPmi) +Uλi = 0 ,

(30)
which can further be rewritten as

ki|a = Ξ−1
a (FHgi + LPmi − 0.5Uλi) . (31)

whereΞa
∆
= FHFT + LPLT + S, H > 0, P > 0,

andS > 0. By multiplying the both sides of (31) with
UT from the left-hand side, using the constraint (27),
and arranging the terms, arrive at

λi = 2(UTΞ−1
a U)−1(UTΞ−1

a FHgi

+UTΞ−1
a LPmi − zi) . (32)

Substituting (32) into (31) and taking into account
that H = HT , P = PT , S = ST andΞa = ΞT

a ,
transformskT

i to

kT
i|a = (gT

i HFT +mT
i PLT )Ξ−1

a

+[zTi − (gT
i HFT +mT

i PLT )

×Ξ−1
a U](UTΞ−1

a U)−1UTΞ−1
a . (33)

At this point, reconstructKa as

Ka = (GHFTΞ−1
a +MPLTΞ−1

a )

×(I−U(UTΞ−1
a U)−1UTΞ−1

a )

+Z(UTΞ−1
a U)−1UTΞ−1

a . (34)

In the case ofθ = 1, F = U andH = Z which
is denoted as case (b) orθ = 1, G = U andM =
Z which is denoted as case (c), the solutions can be
obtained similarly to case (a), respectively,

Kb = MPLTΞ−1

b
(I−U(UTΞ−1

b
U)−1UTΞ−1

b
)

+Z(UTΞ−1
b U)−1UTΞ−1

b , (35)

Kc = GHFTΞ−1
c (I−U(UTΞ−1

c U)−1UTΞ−1
c )

+Z(UTΞ−1
c U)−1UTΞ−1

c , (36)

with

Ξb = LPLT + S , (37)

Ξc = FHFT + S . (38)

Note that (35) and (36) are equal to the results found
in [2] for the receding horizon FIR filtering via pre-
diction state model.

In the case ofθ = 0 which is denoted as case (d),
the derivative ofϕi|d with respect toki|d becomes

∂ϕi|d

∂ki|d
= 2Ξdki|d − 2 (FHgi + LPmi) = 0 , (39)

whereΞd = Ξa, and yields

kT
i|d = (gT

i HFT +mT
i PLT )Ξ−1

d
. (40)

ThenKd can be found to be

Kd = (GHFT +MPLT )Ξ−1

d
. (41)
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Finally, by observing that

GHFTΞ−1(I−U(UTΞ−1U)−1UTΞ−1) = 0 ,

MPLTΞ−1(I−U(UTΞ−1U)−1UTΞ−1) = 0 ,

whenF = U andL = U, and usingθ as an indicating
parameter of the constraint, matricesKa,Kb, Kc, and
Kd can be unified with

K = (GHFTΞ−1 +MPLTΞ−1)

×(I− θU(UTΞ−1U)−1UTΞ−1)

+Zθ(UTΞ−1U)−1UTΞ−1 , (42)

whereΞ is specified by (23). An equivalent form of
(42) is (22) and the proof is complete.

3.1 The Gain for OFIR-EU Filter

Using the trace operation, the optimization problem
(20) can be rewritten as

KOEU
k = argmin

Kk

E
{

tr
[

eke
T
k

]}

= argmin
Kk

E
{

tr
[

(

xk − x̂k|k

)

(· · · )T
]}

   (43)

subject to (18), where(· · · ) denotes the term that is
equal to the relevant preceding term. By substituting
xk with (17) andx̂k|k with (15), the cost function be-
comes

KOEU
k = argmin

Kk

E
{

tr
[(

AN−1xl + B̄k−lWk,l

− KkYk,l) (· · · )
T
]}

. (44)

If we take into account constraint (18), provide the
averaging, and rearrange the terms, (44) can be trans-
formed to

KOEU
k = argmin

Kk

E
{

tr
[(

B̄k−lWk,l

−Kk (Hk−lWk,l +Dk−lVk,l)) (· · · )
T
]}

= argmin
Kk

E
{

tr
[((

KkHk−l − B̄k−l

)

Wk,l

+KkDk−lVk,l) (· · · )
T
]}

= argmin
Kk

tr
[(

KkHk−l − B̄k−l

)

Θw(· · · )
T

+Kk∆vK
T
k

]

, (45)

where the fact is invoked that the system noise vec-
tor Wk,l and the measurement noise vectorVk,l are
pairwise independent. The auxiliary matrices are

Θw =E
{

Wk,lW
T
k,l

}

, (46)

∆v =Dk−lE
{

Vk,lV
T
k,l

}

DT
k−l . (47)

Referring to Lemma 1 withθ = 1, the solution
to the optimization problem (45) can be obtained by
neglectingL, M, andP and using the replacements:
F ← Hk−l, G ← B̄k−l, H ← Θw, U ← Ck−l,
Z← AN−1, andS←∆v. We thus have

KOEU
k = KOEUa

k +KOEUb
k , (48)

where

KOEUa
k =AN−1(CT

k−l∆
−1
w+vCk−l)

−1CT
k−l∆

−1
w+v ,  (49)

KOEUb
k = B̄k−lΘwH

T
k−l∆

−1
w+v(I−Ωk−l) , (50)

in which

Ωk−l =Ck−l(C
T
k−l∆

−1
w+vCk−l)

−1CT
k−l∆

−1
w+v ,     (51)

∆w+v =∆w +∆v , (52)

∆w =Hk−lΘwH
T
k−l . (53)

The OFIR-EU filter structure can now be summa-
rized in the following theorem.

Theorem 2 Given the discrete time-invariant state
space model (1) and (2) with zero mean mutually in-
dependent and uncorrelated noise vectorswk andvk,
the OFIR-EU filter utilizing measurements froml to k

is stated by
x̂k|k = KOEU

k Yk,l , (54)

whereKOEU
k = KOEUa

k + KOEUb
k , Yk,l ∈ R

Np×1

is the measurement vector given by (6), andKOEUa
k

andKOEUb
k are given by (49) and (50) withCk−l and

B̄k−l specified by (11) and the first row vector of (10),
respectively.

Proof: The proof is provided by (43)-(53).

Note that the horizon lengthN for (54) should be
chosen such that the first inverse in (49) exists. In gen-
eral,N can be set asN > n, wheren is the number
of the model states.

4 Estimation Errors

In what follows, we investigate MSEs in the OFIR and
OFIR-EU filters.

4.1 Mean Square Errors

The MSEJk at timek can be calculated as

Jk =E {ekek}

=E
{

(

xk − x̂k|k

) (

xk − x̂k|k

)T
}

=E{xkx
T
k }+E{x̂k|kx̂

T
k|k} − 2E{xkx̂

T
k|k} ,   (55)
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which means that the MSE can be decomposed via
the squared bias and variance. Assuming that the
xk is unbiased, we writeE{xkx

T
k } = Var(xk) and

E{x̂k|kx̂
T
k|k} = Bias2(x̂k|k) + Var(x̂k|k). We further

decompose the estimatêxk|k asx̂k|k = Bias(x̂k|k) +
x̃k|k, wherex̃k|k is a random part of̂xk|k, get

E{xkx̂
T
k|k}=E{xk[Bias(x̂k|k) + x̃k|k]

T }

=E{xk}Bias
T (x̂k|k) + E{xkx̃

T
k|k}

=Cov(xkx̂
T
k|k)

and change (55) to

Jk = Bias2
(

x̂k|k

)

+ Var(xk) + Var
(

x̂k|k

)

−2Cov
(

xk, x̂k|k

)

, (56)

where the state variance Var(xk) is specified by

Var(xk) = B̄k−lΘwB̄
T
k−l (57)

and, for unbiased estimate, we have

Bias
(

x̂k|k

)

= 0 . (58)

Based upon (55), below we specify the MSEs for
the above considered FIR filters. Accordingly, the
MSE in the UFIR filter becomes

JU
k = B̄k−lΘwB̄

T
k−l +KU

k ∆w+v

(

KU
k

)T

−2B̄k−lΘwH
T
k−l

(

KU
k

)T
, (59)

whereKU
k the filter gain of the UFIR filter.

4.2 MSE in the OFIR-EU Estimate

In the OFIR-EU filter, Var(x̂k|k) and Cov(xk, x̂k|k)
are given by, respectively,

Var(x̂k|k) =KOEU
k ∆w+v

(

KOEU
k

)T
, (60)

Cov(xk, x̂k|k) = B̄k−lΘwH
T
k−l

(

KOEU
k

)T
. (61)

From (48) we haveKOEU
k = KU

k +Kb
k and get

Var(x̂k|k) =KU
k ∆w+v

(

KU
k

)T

+2KU
k ∆w+v

(

Kb
k

)T

+Kb
k∆w+v

(

Kb
k

)T

, (62)

Cov(xk, x̂k|k) = B̄k−lΘwH
T
k−l

(

KU
k

)T

+B̄k−lΘwH
T
k−l

(

Kb
k

)T

. (63)

10
0

10
1

10
2

10
0

10
1

10
2

UFIR

N

(
)

J
k

tr

OFIR

OFIR-EU

Figure 1:Typical RMSEs as functions ofN for different
filters withσ2

w
= 1.

Next, substituting (61), (62) and (63) into (55) and
rearranging the terms yield

JOEU
k = JU

k +Kb
k∆w+v

(

Kb
k

)T

− 2(B̄k−lΘwH
T
k−l

−KU
k∆w+v)

(

Kb
k

)T

, (64)

whereJk is the MSE of the UFIR filter.

5 Simulations

In this section, we show effect of the embedded unbi-
asedness on optimal estimates in more detail. In doing
so, we run the UFIR, OFIR-EU, and OFIR filters in
different noise environments using the two-state poly-
nomial model specified with

A =

[

1 0.05
0 1

]

,

C = [ 1 0 ], andB andD identity of proper dimen-
sions.

5.1 Accurate Model – Ideal Case

In an ideal case, the model represents a process accu-
rately and the noise statistics are known exactly. The
goal then is to show effect of the horizon lengthN
on the FIR estimates. We set the measurement noise
variance asσ2

v = 10, and the initial states asx10 = 1
andx20 = 0.01/s. We then compute the root MSE
(RMSE) of the estimate bytrJk as a function ofN .
The results are illustrated in Fig. 1 forσ2

w = 1 and in
Fig. 2 forσ2

w = 0.1.
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J
k

tr

Figure 2:Typical RMSEs as functions ofN for different
filters withσ2

w
= 0.1.

What we can see in Fig. 1 and Fig. 2 is that the
MSE function of the UFIR filter is traditionally con-
cave onN with a minimum atNopt [26]: with N <
Nopt, noise reduction is inefficient and, ifN > Nopt,
the bias error dominates. The following generaliza-
tions can also be made:

• The embedded unbiasedness puts the OFIR-EU
filter error in between the UFIR and OFIR filters:
theOFIR-EU filter becomesessentially theUFIR
filter whenN < Nopt and theOFIR filter ifN >

Nopt.

• An increase inNopt diminishes the error differ-
ence between the OFIR and UFIR filters (com-
pare Fig. 1 withNopt = 33 and Fig. 2 with
Nopt = 47).

• Because MSEs in theOFIRandOFIR-EU filters
reduce withN , these filtersare full-horizon[3].

Referring to the fast that the ideal conditions are
not the case in practice, we further investigate effect of
temporary model uncertainties on the FIR estimates.

5.2 Filtering with Model Uncertainties

To learn effect of temporary model uncertainties on
the filtering accuracy, we next setτ = 0.1 s when
160 6 k 6 180 andτ = 0.05 s otherwise. The noise
variances are allowed to beσ2

w1 = 1, σ2
w2 = 1/s2, and

σ2
v = 10. We also introduce a correction coefficient

p and substitute the noise covariances withp2Qk and
Rk/p

2 in all the algorithms. The process is simulated
at 400 subsequent points.

Typical estimates are sketched in Fig. 3. As can
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E
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ti
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e

rr
o

r

Figure 3: Instantaneous estimation errors caused by the
temporary model uncertainties withp < 1 for the KF, UFIR
filter, and OFIR-EU filter.

be seen, the OFIR-EU filter (casep = 0.2) and the
UFIR filter produce almost equal errors and demon-
strate good robustness against temporary model un-
certainties. In contrast, the KF demonstrates much
worse robustness for anyp 6 1 and we conclude that
FIR filtering is more robust in real world than Kalman
filtering.

6 Conclusions

Unbiasedness imbedded to the OFIR filter instills into
it several useful properties. Unlike the OFIR filter, the
OFIR-EU filter completely ignores the initial condi-
tions. The OFIR-EU filter is equivalent to the MVU
FIR filter. In terms of accuracy, the OFIR-EU filter is
in between the UFIR and OFIR filters. Unlike in the
UFIR filter which MSE is minimized byNopt, MSEs
in the OFIR-EU and OFIR filters diminish withN and
these filters are thus full-horizon.

The performance of OFIR-EU filter is developed
by varying the horizonN aroundNopt or ranging the
correction coefficientp aroundp = 1. Accordingly,
the OFIR-EU filter in general demonstrates higher im-
munity against errors in the noise statistics and better
robustness against temporary model uncertainties than
the OFIR filter and KF.
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