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Abstract: In this paper, we give an analysis of the embedded unbiasedness (EU) on optimal finite impulse response
(OFIR) estimates. By minimizing the mean square error (MSE) constrained by the unbiasedness condition, a new
OFIR-EU filter is derived. We show that the OFIR-EU filter does not require the initial conditions, and occupies an
intermediate place between the UFIR and OFIR filters. It is also shown that the MSEs of the OFIR-EU and OFIR
filters diminish with the estimation horizon. A numerical example has demonstrated that the OFIR-UE filter has
better robustness against temporary model uncertainties than the OFIR and Kalman filters.
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1 Introduction

The finite impulse response (FIR) filter is a device
or algorithm that utilizesV.-most resent neighbour-
ing measurements to obtain an estimate in real time.
Compared to the infinite impulse response (IIR) filter-
ing structures, the FIR filter exhibits some useful en-

the extended KF strategy. Moreover, unified forms
for KF and UFIR filter and smoother were shown and
investigated in [22]. These results have opened new
horizons in optimal and robust estimation of linear and
nonlinear models [23—-25].

In this paper, we investigate effect of the em-
bedded unbiasedness on OFIR estimates. We derive

gineering features such as the bounded input/bounded the OFIR filter with embedded unbiasedness, consider

output (BIBO) stability [1], robustness against tempo-
rary model uncertainties and round-off errors [2], and
immunity to errors in the noise statistics [3].

Due to these advantages, the interest to FIR esti-
mators has grown in last decades [4-27] . A signif-
icant progress was achieved in receding horizon FIR
filtering. Kwon, Kim and Park have combined in [18]
the receding horizon strategy with the Kalman filter
(KF) strategy. An optimal FIR filter with embedded

unbiasedness was proposed for discrete-time system

model in [19], and a fixed-lag FIR smoother devel-
oped in [20] for continuous-time models. There were
also important developments in real-time optimal FIR
filtering.

The unbiased FIR (UFIR) filter was derived by
Shmaliy in [21] for real-time state space models. Fur-
ther, thep-shift optimal FIR (OFIR) estimator was ob-
tained in [3] for time-variant state space model. Us-
ing in part the results obtained in [3], the Kalman-like
UFIR estimator was derived in [7] for the time-variant
case. Recently, the Kalman-like OFIR algorithm was
proposed in [27] for time-invariant case. In [17], a
suboptimal UFIR estimator was developed by using
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mean square errors (MSEs) in different OFIR struc-
tures, and investigate the trade-off between OFIR fil-
ter with and without the embedded unbiasedness.

2 State-Space Model

Let us consider a linear discrete-time model given
with the state and observation equations:

AXk_l + BWk 5
Cxy + Dvy.,

Xk
Yk

(1)
(2)

in which k is the discrete time index;, € R" is the
state vector, ang;,, € RP is the measurement vec-
tor. MatricesA € R"™", B € R"*%, C e RP*"
andD € RP*Y are time-invariant and known. We
suppose that the process noigg € R* and the mea-
surement noise;, € R are zero meank{wy} = 0
and E{vy} = 0, mutually uncorrelated, and have ar-
bitrary distributions and known covariand@gi, j) =
E{w;w]}, R(i,j) = E{v;v]} forall i andj, to
mean thaww; andv; are not o{)Iigatorin white Gaus-
sian.
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Following [3], the model (1) and (2) can be ex-
tended on a horizon a¥ points|l, k] as [28]

Xk,
Y =

Ap_x;+Br Wy, 3)
Crxi +H Wy +Dy Vi, (4)

wherel = k — N + 1 is a start point of the averaging
horizon. The time-variant state vecty, ; € RV"x1,
observation vectol, ; € RANPX1 process noise vec-
tor Wy, ¢ RNux1 and observation noise vector
Vi € RNv*1 gre specified as, respectively,

X =[xl (5)
Yo = [viviov] (6)
Wi = [wiwl o wl]', (7)
Vig = [Vivi ]! (8)

The extended model matrid,_; € RN»xn
process noise matriB;_; € RY»*Nu opservation
matrix C,_; € RNPX" auxiliary matrix H,_; €
RNPXNu ' and measurement noise mati,_; €
RANPXNv gre all time-invariant andN-dependent.

Model (1) and (2) suggests that these matrices can be

written as, respectively

A = [(A)TATHT AT, (9)
[ B AB A-'B  A'B ]
0 B A~?2B A'B
B; = : : : 10)
0O O B AB
0 0 0 B |
C; = CiA,, (11)
H; = CB;, 12)
D; = diag(DD---D), (13)
i+1
C, = diag(CC---C). (14)
i+1

For mode detail, see [27].
The FIR filtering estimate can be written as [2]
Xk = Kk Ygy, (15)
wherex,;, is the estimate, an& is the FIR filter

gain determined using a given cost criterion. A dis-
tinctive difference between the FIR filter and KF is

that the latter requires only one nearest past measure-

ment to produce the estimate, while the convolution-
based batch FIR filter require§ most recent mea-
surements.
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The estimate (15) will be unbiased if to obey the
following unbiasedness condition,

E{xy} = E{Xg}, (16)
in which x;, can be specified as
x; = AN "% + By Wy (17)

if to combine (3) and (4). HerB,,_; is the first vector
row in B;_;. By substituting (15) and (17) into (16),
replacing the termY, ; with (4), and providing the
averaging, one arrives at the unbiasedness constraint

AN =K, Chy (18)

or the deadbeat constraint. Provideg;,, the instan-
taneous estimation errey, can be defined as

€er = X — }Ack‘k . (19)

Given (1) and (2), below we derive an OFIR filter
with embedded unbiasedness (EU), called OFIR-EU,
by minimizing the variance as

KPPV (20)

= argmin E{ee} }
Ky

subject to (18).

In the next section, we derive and analyze the
OFIR filter with embedded unbiasedness.

3 OFIR-EU Filter

The following lemma will be used to derive the OFIR-
EU filter.

Lemma 1 The trace optimization problem is given by
argmin tr [(KF — G)H(KF — G)”
K

+(KL - M)P(KL — M)T + KSK7], (21)
subject to€ ku—z}

whereH = H? >0, P =PT > 0,8 = ST >
0, tr M is the trace ofM, 6 denotes the constraint
indication parameter such th@t= 1 if the constraint
exists andd = 0 otherwise. HereF, G, H, L, M,
P, S, U, andZ are constant matrices of appropriate
dimensions. The solution to (21) is

z 1" [ 6(UT="'U) 'UTE"!
K=| G HFT=-111 ,
M PLT="11
(22)
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whereIl =1 — ¢9U(UTE—1U)‘1UTE—1 and where=, 2 FHF? + LPLY + S, H > 0, P > 0,
. _ andS > 0. By multiplying the both sides of (31) with
LPL" +8S, if F=U, G=%,and =1 U7 from the left-hand side, using the constraint (27),

E={ FHFT+S, if L=U, M=2Z, and §=1 and arranging the terms, arrive at
FHF? + LPLT +S, if =0
(23) A= 2(UTE;U)TH(UTE; 'FHg;
+UTE; 'LPm; — z;). (32)

Proof: Represent the performance criterion in
(21) as Substituting (32) into (31) and taking into account

T thatH = H”, P = P7, S = ST andg, = &,
¢ = tr[(KF-GHKF - G)" + (KL-M)P

transformsk? to
x (KL — M)T + KSK”]. (24)
o ki, = (gl HF' +m/PL"E;"
By partitioningK asK” = [kiks - - - k], wherem T P -
is the dimension oK, rewrite as +[z; — (g; HF® + m; PL")

xE lU|(UuTEtu)tuTE L (33)

¢ = Z; i (25) At this point, reconstrucK, as
Tem—1 Tem—1
in which K, = (GHF'E, + MPL E.")
x(I-uulgtu)-tuTz
L= Tp _ gl _— T, —m?T “ “
¢Z - (kz F gz )H( ) + (kz L mz ) +Z(UTE(;1U)_1UTE(;1 ) (34)
xP(--- )" + kI'Sk;, (26)

Inthe case ob = 1, F = U andH = Z which
whereg; andm; are theith column vector oG and is denoted as case (b) 6r= 1, G = U andM =
M, respectively, and = 1,2,...,m. Reasoning sim- 7 which is denoted as case (c), the solutions can be
ilarly, theith constraint can be specified by obtained similarly to case (a), respectively,

‘ Tk. — 7. if = Tre—1 S G PR, e |
P U'k; =z, ifg=1 27) K, = MPL'E '1-UU'g;'U)"'UTE ")
’ +Z(U'E,'U)""U'E, ", (35)
Now note thatg; and SiuTk_:z_}w are independent K. = GHF'E '(1-UU'E;'U)"'UTE Y
onk;, j # 4, and the problem (21) can be reduced to +zuTetu)-tuts;t, (36)
m independent optimization problems as
‘ with
min ¢; subject to SZ{UTki:zi}\G , (28)
ki =, =LPL" +8, (37)
wherei = 1,2,...,m. Now, definep, g as =.=FHF” +8S. (38)
Pilp = i + HAZ-T(UTkZ- —zi), (29) Note that (35) and (36) are equal to the results found
in [2] for the receding horizon FIR filtering via pre-
where)\; denotes théth vector of the Lagrange mul-  diction state model.
tiplier. Note thaty;, depends ol which governs the In the case of = 0 which is denoted as case (d),

existing of constraint. Setting = 1, first consider a the derivative ofp; ; with respect tds; ; becomes
generalcase df # U,L # U, G # Z andM +# Z

which is denoted as case (a). Taking the derivative of ~ 9¢;)q
viq With respect tdk; and\; respectively and making k4
them equal to zero lead to

= QEdk“d -2 (FHgi + Lsz) =0, (39

whereZ,; = E,, and yields

a(IDZ"CL —_—
By, akila =2 (FHg; + LPm;) + UA; =0, KT, = (eTHF” + m!PLT)E;'.  (40)
(30)
which can further be rewritten as ThenK,; can be found to be
k;, =2, (FHg; + LPm; — 0.5U);). (31) K, = (GHF” + MPL")=E . (41)
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Finally, by observing that Referring to Lemma 1 witld = 1, the solution
P e e T 1 to the optimization problem (45) can be obtained by
GHF' E'I-UU E"U) UE") = 0, neglectingL, M, andP and using the replacements:
MPL =711 -UuTe"lu)-luTe"!h) = o, F < Hy,G <+ By, H <+ 0,,U «+ Gy,

Z +— AN-1 andS < A,. We thus have
whenF = U andL = U, and using as an indicating
parameter of the constraint, matrides, K,, K., and KOEU = KQFVa | gKOEUb (48)
K, can be unified with

where
K = (GHF'z"!+MPL'E™)
«(1—gU(UTE"U)lUTEY) KPP = AN O A L Cr) T ICILALL, , (49)
+zZo(UTEU)WUTEL,  (42) KPP =B, 0,H] AL, 0-2), (50)

whereZ is specified by (23). An equivalent form of  in which
(42) is (22) and the proof is complete. B B B
Q1= Cy(Cl_ AL Cr)'ClALL,, (B1)

w—+v w—+v >

3.1 The Gain for OFIR-EU Filter Auwto=But Ao, (52)
. . .. . Aw = Hk—ZGwHk—l . (53)
Using the trace operation, the optimization problem
(20) can be rewritten as The OFIR-EU filter structure can now be summa-
rized in the following theorem.
KgEU =argmin & {tr [ekeg] } g
K Theorem 2 Given the discrete time-invariant state
— arg min E {tr [(Xk — Kppp) (- )T] } (43)  space model (1) and (2) with zero mean mutually in-
Ky dependent and uncorrelated noise vectersandvy,

. . the OFIR-EU filter utilizing measurements frarto k&
subject to (18), wher¢- - - ) denotes the term that is g

. - is stated by
equal to the relevant preceding term. By substituting 2. = KOFUY, | (54)
x;, with (17) andxy,;, with (15), the cost function be- Hlk k "
comes where KPPV = KPEVa 4 KOEUP 7y, e RNVPXI

is the measurement vector given by (6), &iftVs
andKPFUP are given by (49) and (50) wit@),_; and

KSEU =argmin K {tr [(AN_lxl + Bk—lwk,l
K —
’ B_; specified by (11) and the first row vector of (10),

- KiYi) ()]} (44) respectively.
If we take into account constraint (18), provide the Proof: The proof is provided by (43)-(53)
averaging, and rearrange the terms, (44) can be trans- ' '
formed to Note that the horizon lengtlV for (54) should be
~ chosen such that the first inverse in (49) exists. In gen-
KPP = argmin B {tr [(Br_iWpy eral, N can be set a®" > n, wheren is the number
Ky of the model states.

—Kj, (Hp Wy + Dy Vi) ()7}

— in B {tr [((KiHy_; — Br_) W i '
arg min {tr [((KiHg—s — Brt) Wi 4 Estimation Errors

T
+KDip Vi) ()"} In what follows, we investigate MSEs in the OFIR and
= arg min tr [(Kka,l — Bk—l) O,(--)T OFIR-EU filters.
Ky
+KrAKL] (45) 4.1 Mean Square Errors

where the fact is invoked that the system noise vec- The MSEJ,, at timek can be calculated as
tor Wy, ; and the measurement noise veciof; are

pairwise independent. The auxiliary matrices are Jr = E{erer}
~ ~ T
O =E{Wr Wi} (46) =E {(Xk — Xy ) (X — Xk ) }
A, =D, E{V,/V[,} D]_,. (47) = E{xix}, } + E{SupXi} — 2E{xxX}}}, (55)
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which means that the MSE can be decomposed via
the squared bias and variance. Assuming that the
X}, is unbiased, we writd?{x;x} } = Var(x;) and
E{&ppX,) = Bias? (%) + Var(%gy,). We further
decompose the estimatg |, asxy,;, = Bias(Xy) +
Xp|k» Wherexy,;, is a random part ofy,, get

E{ka(ak} = E{xy[Bias(Xg,) + Xp)” }

= E{xz}Bias” (%) + E{xx %)

= Cov(xkfcz‘k)
and change (55) to

Jj, = Bias’ (X)) + Var (x;) + Var (Xy;)

—2Cov (kaf(lﬂk) s (56)

where the state variance Maty) is specified by

Var (x;) = By_1©,B]_, (57)
and, for unbiased estimate, we have

Based upon (55), below we specify the MSEs for
the above considered FIR filters. Accordingly, the
MSE in the UFIR filter becomes

_ _ T
J}cj = kaleBg—l + KgAw—i—v (Kg)
—2B,_,0,H} , (KY)" (59)

whereK} the filter gain of the UFIR filter.

4.2 MSE in the OFIR-EU Estimate

In the OFIR-EU filter, Vafxy;;) and Co\xy,Xx)
are given by, respectively,

Var(xy ;) = KPPV Ay 4o (KgEU)T , (60)
Cov(xy, i) = Br 1@, HY_; (KP™)" . (61)
From (48) we havd& PPV = KV + K and get

Var(&y) = K Ao (KE)T

12KV Ay (KE)T
HKP A (Kz)T . (62
Cov(x, Xpx) = Bro1©, HY_, (KE)T

+B,.,0,H] (K}) . (63)
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10°

UFIR

tr(J,)

—_OFIR-EU]
e

Figure 1:Typical RMSEs as functions a¥ for different
filters witho2 = 1.

Next, substituting (61), (62) and (63) into (55) and
rearranging the terms yield

T _
JOEU — 3V L KPA i <K2) — 2(By_©,HL,

_K}cherv) (KE)T ) (64)

wherelJ,, is the MSE of the UFIR filter.

5 Simulations

In this section, we show effect of the embedded unbi-
asedness on optimal estimates in more detail. In doing
so, we run the UFIR, OFIR-EU, and OFIR filters in
different noise environments using the two-state poly-
nomial model specified with
1 0.05
Al

C = [1 0], andB andD identity of proper dimen-
sions.

5.1 Accurate Model — Ideal Case

In an ideal case, the model represents a process accu-
rately and the noise statistics are known exactly. The
goal then is to show effect of the horizon length

on the FIR estimates. We set the measurement noise
variance asrg = 10, and the initial states as; = 1
andzyy = 0.01/s. We then compute the root MSE
(RMSE) of the estimate byr J; as a function ofN.

The results are illustrated in Fig. 1 fef, = 1 and in

Fig. 2 foro2 = 0.1.
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e
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10:0“ 10’ R 10°
N

Figure 2: Typical RMSEs as functions a¥ for different
filters with o2 = 0.1.

What we can see in Fig. 1 and Fig. 2 is that the
MSE function of the UFIR filter is traditionally con-
cave onN with a minimum atiN, [26]: with V <
Nopt, nNoise reduction is inefficient and, N > N,
the bias error dominates. The following generaliza-
tions can also be made:

e The embedded unbiasedness puts the OFIR-EU
filter error in between the UFIR and OFIR filters:
the OFIR-EU filter becomesssentially th&JFIR
filter whenN < Ny, and theOFIR filter if NV >
NOpt'

e An increase inN,; diminishes the error differ-
ence between the OFIR and UFIR filters (com-
pare Fig. 1 withNy,, = 33 and Fig. 2 with
Nopt = 47).

e Because MSEs in th@FIR andOFIR-EU filters
reduce withV, these filtersare full-horizon][3].

Referring to the fast that the ideal conditions are
not the case in practice, we further investigate effect of
temporary model uncertainties on the FIR estimates.

5.2 Filtering with Model Uncertainties

To learn effect of temporary model uncertainties on
the filtering accuracy, we next set = 0.1 s when
160 < k < 180 andT = 0.05 s otherwise. The noise
variances are allowed to bé, = 1,02, = 1/s2, and

o2 = 10. We also introduce a correction coefficient
p and substitute the noise covariances witi®);, and
Ry /p? in all the algorithms. The process is simulated
at 400 subsequent points.

Typical estimates are sketched in Fig. 3. As can
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0 200

Time
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Figure 3: Instantaneous estimation errors caused by the
temporary model uncertainties with< 1 for the KF, UFIR
filter, and OFIR-EU filter.

be seen, the OFIR-EU filter (cage= 0.2) and the
UFIR filter produce almost equal errors and demon-
strate good robustness against temporary model un-
certainties. In contrast, the KF demonstrates much
worse robustness for any< 1 and we conclude that
FIR filtering is more robust in real world than Kalman
filtering.

6 Conclusions

Unbiasedness imbedded to the OFIR filter instills into
it several useful properties. Unlike the OFIR filter, the
OFIR-EU filter completely ignores the initial condi-
tions. The OFIR-EU filter is equivalent to the MVU
FIR filter. In terms of accuracy, the OFIR-EU filter is
in between the UFIR and OFIR filters. Unlike in the
UFIR filter which MSE is minimized byV,,,, MSEs

in the OFIR-EU and OFIR filters diminish witN and
these filters are thus full-horizon.

The performance of OFIR-EU filter is developed
by varying the horizonV aroundN, or ranging the
correction coefficienp aroundp = 1. Accordingly,
the OFIR-EU filter in general demonstrates higher im-
munity against errors in the noise statistics and better
robustness against temporary model uncertainties than
the OFIR filter and KF.

This investigation was supported by the Royal
Academy of Engineering under the Newton Research
Collaboration Programme NRCP/1415/140.
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