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Abstract: Integration of Unmanned Aerial Vehicles (UAVs) into civil airspace is becoming a fundamental require-
ment to satisfy the even more consumer growing demand. The limiting issues for this integration are related to
the development of a reliable Sense and Avoid (SAA) system able to equate the human eye performances. Multi-
sensor data fusion techniques are generally used in order to overcome single sensor shortcomings. Although much
research addresses toward the realisation of better performing sensors, system degradation could arise from bad
numerical behaviours injected by the specific fusion algorithm. Bayesian estimators are the most widely used tech-
niques to perform this task but they could be affected by round-off errors. To improve filter instabilities, induced
by ill-conditioned matrices, an alternative numerical approach, based on the Joseph form of the state covariance
matrix update applied to non-linear systems is presented. The novelty of this technique lies on taking advantage
from the higher order accuracy ensured by Sigma-Point Kalman Filters for solving non-linear inference problems,
and using the more numerically robust Joseph update equation.
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Nomenclature
x State space vector
f Non-linear state transition function
u Control vector
v Unmodeled dynamics
z Measurement vector
h Non-linear measurement function
w Measurement noise
p(x|z) Conditional probability
x̂ Estimated state space vector
Pxx State covariance matrix
Q Noise covariance matrix
ẑ Estimated measurement vector
Pzz Innovation matrix
R Measurement covariance matrix
Pxz State-Measurement covariance matrix
K Kalman gain
F Linear state transition matrix
H Linear measurement matrix
c(j) Normalised sigma-points
ωj Sigma-point weights

x, y, z Cartesian coordinates
∆t Time Step
qx, qy, qz Acceleration Power Spectral Density
R, θ, φ Range, Azimuth and Elevation
σR, σθ, σφ Sensor error standard deviation
κ(P) Condition Number of a matrix P

1 Introduction
One of the main difficulty for the integration of Un-
manned Aerial Vehicles (UAV) into civil airspaces is
related to the development of a reliable Sense And
Avoid (SAA) system [18, 19, 1]. This can be ac-
complished by requiring performances that are equal
or better than the see-and-avoid ability of the pilot in
manned aircraft. The challenge for the future Air Traf-
fic Management (ATM) [16, 11, 20, 22] system will be
to dynamically manage UAVs, including structures to
support 2D, 3D and 4D operations, precise navigation
technologies and enhancing surveillance capabilities,
fusing airborne and radar information [18].

Currently, many research fields are focused on de-
veloping state-of-the-art sensors working properly for
obstacle detection and surveillance, particularly when
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are involved platforms with a very high dynamics, like
military aircraft, rockets and controlled bombs. Pas-
sive and active MMW radar, Forward Looking Infra-
Red (FLIR), LIDAR, Electronic Surveillance Mod-
ule (ESM), Electro-Optical (EO) sensors [2, 25, 13],
sonars [8] are suitable systems for sensing and track-
ing intruders, estimating location, velocity and size of
both ground and flying obstacles [21, 23, 5, 8].

In order to compensate individual sensors short-
comings and to provide a much reliable tracking so-
lution, multi-sensor data fusion techniques have been
developed [6, 19, 5, 17, 10]. As it is well known, the
optimal solution to the nonlinear filtering problem is
infinite dimensional, for this reason, suboptimal ap-
proaches like the Extended Kalman filter (EKF), Un-
scented Kalman filter (UKF), Particle Filter (PF) [6],
Statistically linearized filter, Gauss–Hermite Kalman
filter (GHKF), Cubature Kalman filter (CKF), Spher-
ical Simplex Kalman Filter (SSKF) [12, 9, 24, 14],
are normally considered. However, the EKF has
shown several limitations and easily exhibits divergent
characteristics when the system model is highly non-
linear. An improvement in performances can be ob-
tained using the Sigma-Point Kalman Filters (SPKF)
like the Unscented one, which determines the mean
and covariance approximating a Gaussian distribu-
tion instead of linearising a non-linear transformation.
This technique is accurate to the second order, while
the EKF is only able to obtain first order accuracy
[3]. An other cause producing a degradation in perfor-
mances and divergence of the filter is due to round-off
errors affecting the covariance matrix. Increasing the
computation precision can help, however this solution
is costly in computer hardware and time. To limit this
problem the square root version of the Sigma Point
Kalman Filters (SRKF) was proposed [15]. Using this
technique the square-root covariance is predicted and
updated achieving better numerical accuracy.

In this work is proposed an alternative method to
avoid numerical instabilities and to limit the effect of
the round-off errors. The adopted solution makes use
of the Joseph formulation for the state covariance ma-
trix update applied to the SPKF algorithm. In the fol-
lowing paragraphs is firstly described the Bayesian in-
ference from a theoretical point of view, then it is pre-
sented the proposed solution and simulation results.

2 Bayesian inference
In a discrete dynamic process, the current state of
the system is dependent on one or more prior states.
When observations are provided at discrete times, es-
timation conditioned on those observations can only
occur at those times [12]. Considering a first order

Markov process, it is possible to describe a random
Markov dynamic process as

xn = fn−1(xn−1) + un + vn−1 (1)

where xn is the state of the system at time tn, fn−1

is a deterministic transition function that moves the
state x from time tn−1 to time tn, un is a known con-
trol vector and vn−1 is a white noise describing un-
certainties about unmodeled dynamics. The goal is
to estimate the unobservable state vector xn based on
the set of all experimental observation vectors z1:n =
{z1, z2, . . . , zn}. It is assumed that an analytical link
is known between the observation vector at time tn
and the state vector at time tn represented by

zn = hn(xn) + wn. (2)

Here, zn is designated as the observation vector and
hn is a deterministic observation function linking the
state vector with the observation and wn is a white
noise (not necessarily Gaussian) representative of the
sensor accuracy. The equations 1 and 2 represent a
complete model of the system and the inference can be
turned into an estimation of the conditional posterior
density p(xn|z1:n) using the Bayes’ law

p(xn|z1:n) =
p(zn|xn)p(xn|z1:n−1)

p(zn|z1:n−1)
. (3)

where

p(xn|z1:n−1) =

∫
p(xn|xn−1)p(xn−1|z1:n−1)dxn−1.

(4)
From equation 3 and 4, a recursive link has
been established between the previous posterior
p(xn−1|z1:n−1) and the current posterior p(xn|z1:n)
[12] as desired.

2.1 Recursive estimation of mean and co-
variance

Using equations 3 and 4 it is possible to obtain xn|n
and Pxx

n|n conditioned on all observations up to time
tn as shown below. The state prediction is obtained as
follow

x̂n|n−1 =

∫
Rnx

fn−1(xn−1)p(xn−1|z1:n−1)dxn−1

+ un +

∫
Rnx

vn−1p(xn−1|z1:n−1)dxn−1. (5)

Defining
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x̃n−1|n−1 =
[
fn−1(xn−1) + un − x̂n|n−1

]
the state covariance matrix is

Pxx
n|n−1 =

∫
Rnx

[x̃n−1|n−1][x̃n−1|n−1]T

× p(xn|z1:n−1)dxn−1 + Q (6)

where the noise covariance matrix Q is

Q =

∫
Rnx

vn−1v
T
n−1p(xn|z1:n−1)dxn−1. (7)

The estimation of the measurement vector is obtained
as follow

ẑn|n−1 =

∫
Rnx

hn(xn|n−1)p(xn|z1:n−1)dxn

+

∫
Rnx

wnp(xn|z1:n−1)dxn. (8)

Defining

z̃n|n−1 =
[
hn(xn−1)− ẑn|n−1

]
the innovation covariance matrix is provided by the
following relation

Pzz
n|n−1 =

∫
Rnx

[z̃n|n−1][z̃n|n−1]T

× p(xn|z1:n−1)dxn + R (9)

where R is

R =

∫
Rnx

wnw
T
np(xn|z1:n−1)dxn. (10)

The covariance matrix between the state and measure-
ments is

Pxz
n|n−1 =

∫
Rnx

[x̃n−1|n−1][z̃n|n−1]T

× p(xn|z1:n−1)dxn (11)

and the Kalman gain Kn is given by

Kn = Pxz
n|n−1

[
Pzz

n|n−1

]−1
. (12)

Now it is possible to update the state vector and the
covariance matrix as follow

x̂n|n = x̂n|n−1 + Kn

(
zn − ẑn|n−1

)
(13)

Pxx
n|n = Pxx

n|n−1 −KnP
zz
n|n−1Kn

T (14)

3 Methodology
Particularising the previous relations for the case of
linear state and measurement equations we get the
LKF algorithm shown in table 1. In the case the state
or measurement equations are non-linear, this algo-
rithm can be used by linearising them by means of a
Taylor series expansion, getting the EKF. In this case
the state transition matrix F and the measurement ma-
trix H are substituted by the respective Jacobian ma-
trices FJ and HJ.

Table 1: LKF algorithm

x̂n|n−1 = Fx̂n−1|n−1 + un

Pxx
n|n−1 = FPxx

n−1|n−1F
T + Q

ẑn|n−1 = Hx̂n|n−1

Pzz
n|n−1 = HPxx

n|n−1H
T + R

Pxz
n|n−1 = Pxx

n|n−1H
T

Kn = Pxz
n|n−1(Pzz

n|n−1)−1

x̂n|n = x̂n|n−1 + Kn(z− ẑn|n−1)

Pxx
n|n = Pxx

n|n−1 −KnP
zz
n|n−1Kn

T

Table 2: SPKF algorithm

X
(j)
n−1|n−1 = x̂n−1|n−1 +

√
Pxx

n−1|n−1c
(j)

x̂n|n−1 =
∑ns

j=0 ωjf(X
(j)
n−1|n−1) + un

Pxx
n|n−1 =

∑ns
j=0 ωj

[
f(X

(j)
n−1|n−1)− x̂n|n−1

]
×
[
f(X

(j)
n−1|n−1)− x̂n|n−1

]T
+ Q

X
(j)
n|n−1 = x̂n|n−1 +

√
Pxx

n|n−1c
(j)

ẑn|n−1 =
∑ns

j=0 ωjh(X
(j)
n|n−1)

Pzz
n|n−1 =

∑ns
j=0 ωj

[
h(X

(j)
n|n−1)− ẑn|n−1

]
×
[
h(X

(j)
n|n−1)− ẑn|n−1

]T
+ R

Pxz
n|n−1 =

∑ns
j=0 ωj

[
f(X

(j)
n−1|n−1)− x̂n|n−1

]
×
[
h(X

(j)
n|n−1)− ẑn|n−1

]T
Kn = Pxz

n|n−1(Pzz
n|n−1)−1

x̂n|n = x̂n|n−1 + Kn(z− ẑn|n−1)

Pxx
n|n = Pxx

n|n−1 −KnP
zz
n|n−1Kn

T
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More accurate filtering solutions are based on the nu-
merical estimation of the integrals shown in equations
5-11. Filters using these techniques are called SP-
KFs. The SPKF algorithm is shown in table 2 where
ns is the number of sigma-points c(j), and ωj are the
weights. In order to find a compete procedure to cal-
culate them see [12].

Using the formulation shown in equation 14 for
the state covariance matrix update Pxx

n|n, a matrix
subtraction is performed. This operation could gen-
erate numerical errors, which can cause even the loss
of its positive definiteness. The alternative form (see
equation 15), is known as the Joseph form covariance
update, which is less sensitive to round-off errors [9]

Pxx
n|n = (I−KnH)Pxx

n|n−1(I−KnH)T

+ KnRKn
T (15)

where I is the identity matrix and H is the measure-
ment matrix or equivalently the Jacobian of the mea-
surement function h(x) indicated as HJ before. With
the proper implementation of the products of three
matrices, the symmetry is preserved. Furthermore,
since the only place it has a subtraction is in the term
(I − KnH), which appears “squared”, this form of
the covariance update has the property of preserving
the positive definiteness [9]. This formulation can be
applied in the case of LKF or EKF once we have de-
fined H or HJ, but it can not be used for the SP-
KFs. As said before, the common technique adopted
in this case to increase the filter numerical stability is
to use a Square-Root formulation (SRKF). This filter
requires to perform the square-root of the covariance
matrix which needs symmetry and positive definite-
ness. These two properties might be lost due to errors
introduced by arithmetic operations performed on fi-
nite word-length digital computers, or ill-conditioned
non-linear filtering problems [15].

The proposed approach make use of the Jacobian
matrix HJ of the non-linear measurement function
h(x) estimated at the point x̂n|n in order to apply the
Joseph form of the covariance update as shown below

HJ =
∂h(x)

∂x

∣∣
x=x̂n|n

(16)

Pxx
J n|n = (I−KnHJ)Pxx

n|n−1(I−KnHJ)T

+ KnRKn
T . (17)

Using this approach we take advantage of the
better filtering performances provided by the Sigma-
Point Kalman Filters and at the same time we improve

numerical stability using the Joseph formulation at the
expense of a slightly computational cost as can be
seen in table 3. For the SRKF should be considered an
additional complexity of nm square root operations
[4].

Table 3: Filters Computational Complexity. n is the state
space vector dimension and m the number of measure-
ments.

Algorithm Math Operations

+ × ÷

Conventional
(1.5n2 + 3.5n)m (1.5n2 + 4.5n)m m

Px −KP zKT

U-D factorization
(1.5n2 + 1.5n)m (1.5n2 + 5.5n)m nm

Px = UDUT

Triangular Cov.
(1.5n2 + 3.5n)m (2n2 + 5n)m 2nm

Square Root

Kalman Stable
(4.5n2 + 5.5n)m (4n2 + 5.5n)m m

Joseph

4 Simulation
4.1 Dynamic model

In this simulation has been performed the tracking of
an aircraft from a fixed sensor in a Cartesian space.
Assuming a constant acceleration dynamics, the dis-
crete time state space equation is described by the fol-
lowing linear relation

xn = Fn−1xn−1 + vn−1 (18)

where the state space vector is the following

x = [x, ẋ, ẍ, y, ẏ, ÿ, z, ż, z̈]T

where with ẋ and ẍ are indicated respectively the first
and second time derivatives and the state transition
matrix Fn−1 is defined as

F =

F1 0 0
0 F1 0
0 0 F1


with

F1 =

1 ∆t ∆t2

2
0 1 ∆t
0 0 1
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and ∆t is the time step. The noise is as-
sumed to be independent zero-mean and Gaussian
vn−1 v N (0,Q) with

Q =

qxQ1 0 0
0 qyQ1 0
0 0 qzQ1


and

Q1 =

∆t5

20
∆t4

8
∆t3

6
∆t4

8
∆t3

6
∆t2

2
∆t3

6
∆t2

2 ∆t


where qx, qy and qz , are the noise Power Spectral Den-
sities (PSD) along each Cartesian direction.

4.2 Sensor Model

The sensor provides range, azimuth and elevation
measurements,

z = [R, θ, φ]T

this is while the function h(x) relating these measure-
ments with the state vector is non-linear

z = h(x) + wn (19)

where

h(x) =


√
x2 + y2 + z2

arctan
(
x
y

)
arctan

(
z√
x2+y2

)
 . (20)

The observation noise wn is considered to be indepen-
dent zero-mean and Gaussian wn v N (0,R) with

R =

σ2
R 0 0
0 σ2

θ 0
0 0 σ2

φ


where σR, σθ and σφ are the sensor errors standard
deviation. In this case the Jacobian matrix HJ is given
by

HJ =


∂h(1)
∂x 0 0 ∂h(1)

∂y 0 0 ∂h(1)
∂z 0 0

∂h(2)
∂x 0 0 ∂h(2)

∂y 0 0 0 0 0
∂h(3)
∂x 0 0 ∂h(3)

∂y 0 0 ∂h(3)
∂z 0 0


(21)

where

∂h(1)

∂x
=

x√
x2 + y2 + z2

∂h(1)

∂y
=

y√
x2 + y2 + z2

∂h(1)

∂z
=

z√
x2 + y2 + z2

∂h(2)

∂x
=

y

x2 + y2

∂h(2)

∂y
= − x

x2 + y2

∂h(3)

∂x
= − xz√

x2 + y2(x2 + y2 + z2)

∂h(3)

∂y
= − yz√

x2 + y2(x2 + y2 + z2)

∂h(3)

∂z
=

√
x2 + y2

x2 + y2 + z2

4.3 Numerical results

In this section are presented the results obtained from
the simulation. For the case under study we have con-
sidered a sensor sampling frequency of 10 Hz and the
three standard deviations respectively of 20 m in range
and 1.45 deg in azimuth and elevation. The trajectory,
measurements and filtered solution are shown in Fig-
ure 1.

−10
0

10 0

10

0

2

x [km]

y [km]

z
[k

m
] Trajectory

Measurements
UKF

Figure 1: Real aircraft motion Trajectory

In order to get statistically consistent results, we have
performed 500 Monte Carlo (MC) simulations. As
can be seen from the estimated position Root Mean
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Figure 2: RMSE of the x coordinate from 500 Monte Carlo
runs for the EKF and UKF
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Figure 3: RMSE of the y coordinate from 500 Monte Carlo
runs for the EKF and UKF

Square Error (RMSE) in Figure 2, 3 and 4, the UKF
exhibits better performances than the EKF version as
expected. It is also possible to see in Figure 5 that
the proposed method have a good impact on the state
estimation, being the mean value obtained subtract-
ing the position RMSE of the classical formulation
from that using the Joseph one, greater than zero. A
key result that validates the power of our approach
is shown in Figure 6 and 7. In the case of the EKF,
using the classical formulation, after 75 sec an ill-
conditioning of the covariance matrix make the con-
dition number to diverge with direct effects on the ac-
curacy of the filtered solution. This can be confirmed

0 50 100 150 200 250

0

50

100

150

t [sec]

z
-R

M
SE

[m
]

EKF
UKF

Figure 4: RMSE of the z coordinate from 500 Monte Carlo
runs for the EKF and UKF
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SE
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a
ss
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a
l
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M

SE
J
o
se
p
h
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] x-UKF

y-UKF
z-UKF

Figure 5: Difference between the positions RMSE from
500 Monte Carlo runs obtained using the classical and
Joseph covariance formulation for the UKF

by a rule of thumb stating that if the condition num-
ber κ(P ) = 10k, it could be expected a lost of at
least k digits of precision. [7]. Better outcomes are
guaranteed by the UKF. Using the Joseph formula-
tion, it is possible to get much better performances
with both the EKF and UKF. This important result
enables the use of this technique to manage situa-
tions where strong function non-linearities make the
EKF inapplicable and ill-conditioned problems could
lead to filter instabilities if the classical formulation
is used. Figure 8 shows an exponential grow of the
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Figure 6: Condition Number of the state covariance matrix
Pxx

n|n for the EKF using classical and Joseph formulation
from 500 Monte Carlo runs

0 50 100 150 200 250

1,000

2,000

3,000

4,000

5,000

t [sec]

κ
(P

x
x
n
|n

)

UKF Classical
UKF Joseph

Figure 7: Condition Number of the state covariance matrix
Pxx

n|n for the UKF using classical and Joseph formulation
from 500 Monte Carlo runs

computational time if the sensor sampling frequency
is increased from 1 Hz to 10 Hz, even if the use of the
proposed technique has a relatively low impact on the
simulation time with respect to the classical one.

5 Conclusions

In this paper, we present an alternative approach for
improving filter numerical stability for non-linear es-
timation and sensor fusion. This technique is based

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

Sampling interval [sec]

C
om

pu
ta

tio
na

lT
im

e
[s

ec
]

EKF Classical
EKF Joseph

UKF Classical
UKF Joseph

Figure 8: Average of the machine computational time to
simulate a complete trajectory from 50 Monte Carlo runs
using the EKF and UKF as a function of the measurements
time step ∆t

on the Joseph formulation of the state covariance ma-
trix. It guarantees better numerical properties, such
as improved numerical stability and preservation of
symmetry as well as a higher order accuracy in state
estimation. A further positive aspect is to overcome
divergences common in the EKF when equations are
strongly non-linear. The experimental results show
how estimated values are in line with those provided
by the classical formulation, while the matrix condi-
tioning number is strongly improved as expected.

The future work will be to reduce the numeri-
cal burdens associated with this approach updating a
factorised form of the covariance matrix. Moreover,
the idea is to apply this technique to the square-root
sigma-point filters (SRSPKF) which might lose the
positive-definiteness because of the negative Cholesky
update process.
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