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1 Introduction 
Electrical resistance of an electrical conductor is a 

measure of the difficulty to pass a steady current 

through the conductor body. In this paper1, the 

concept of electrical resistance and its inverse of 

electrical conductance are discussed. Some 

bounding formulae will be proven for the electric 

conductance. The well-known elementary form of 

Ohm’s law states that when the conductor carries 

current 𝐼 from a point 𝑃1 at potential 𝑈1 to point 𝑃2 

at potential 𝑈2 then 𝑈2 − 𝑈1 = 𝑅𝐼, where 𝑅 is the 

resistance of the conductor between points 𝑃1 and 

𝑃2. It depends only on the shape and temperature 

and the material of the conductor. The inverse of 

electric resistance is the electric conductance 𝐺 =
1/𝑅. This paper deals with the electric resistance of 

a two-dimensional isotropic non-homogeneous 

conductor body. 

Examination of non-homogeneous structural 

elements is a very important task. The non-

homogeneous isotropic hollow two-dimensional 

conductor is bounded by two closed curves 𝜕𝐴1 and 

𝜕𝐴2 which have no common point. The current flow 

inside the conductor from the inner boundary curve 

𝜕𝐴1 to the outer boundary curve 𝜕𝐴2. The potential 

on the inner boundary curve 𝜕𝐴1 is 𝑈1 and the 

potential on the outer boundary curve 𝜕𝐴2 is 𝑈2, 

                                                 

 

𝑈1 > 𝑈2. Two-side estimation will be proven for the 

electrical conductance of non-homogeneous 

isotropic two-dimensional conductor. The 

mathematical formalism follows the methods which 

are used in papers [1], [2], [3], [4]. In the Study of 

[1] upper and lower bounds are proven for electrical 

resistance of homogeneous isotropic ring-like 

axisymmetric conductor. The Study of [2] deals 

with the capacitance of two-dimensional cylindrical 

capacitor which consists of non-homogeneous 

dielectric materials. 

 
Fig. 1 Hollow two-dimensional conductor body. 

Examples illustrate the applications of the 

derived bounding formulae of capacitance, [2]. A 

mathematical model for the steady-state heat 

transfer problem is developed in paper, [3]. 

Considered body of rotation is homogeneous and 

isotropic, [3]. In the study [4], by the application of 

Cauchy-Schwarz inequality upper and lower bounds 
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are derived for the electrical resistance of a three-

dimensional hollow conductor body. 

Let us consider the steady-state motion of 

charges in a non-homogeneous hollow two-

dimensional conductor body shown in Figure 1. The 

conductor body occupies the plane domain 𝐴 and its 

boundary curves 𝜕𝐴1 and 𝜕𝐴2. The electric 

potential on the boundary curves 𝜕𝐴1 and 𝜕𝐴2 are 

prescribed, so that the following boundary 

conditions are valid, [5], [6], [7], [8]. 

 

𝑈(𝒓) = 𝑈1 𝒓 ∈ 𝜕𝐴1,   𝑈(𝒓) = 𝑈2 𝒓 ∈ 𝜕𝐴2. 

(1) 

In equation (1) 𝒓 is the position vector of an 

arbitrary point 𝑃 ∈ 𝐴 ∪ 𝜕𝐴. 𝒓 = 𝑥𝒆𝑥 + 𝑦𝒆𝑦 (see 

Figure 1), 𝑥, 𝑦 are Cartesian coordinates and 𝒆𝑥 and 

𝒆𝑦 are the unit vectors of the coordinate system 

𝑂𝑥𝑦. According to Maxwell’s theory [5], [6], [7], 

[8] the steady motion of the charges is described by 

the next equations 

𝒋 = 𝜎𝑬,  𝛻 ⋅ 𝒋 = 0,  𝑬 = −𝛻𝑈. (2) 

Differential form of Ohm’s law formulates that 

at constant temperature in isotropic conductor the 

current density vector 𝒋 is proportional to the 

electric field vector 𝑬. Here, 𝜎 = 𝜎(𝑥, 𝑦) = 𝜎(𝒓) is 

the electric conductivity of the non-homogeneous 

hollow conductor body. In equation (2) 𝛻 is the del 

operator its representation on Cartesian coordinate 

system 𝑂𝑥𝑦 is 

𝛻 =
𝜕

𝜕𝑥
𝒆𝑥 +

𝜕

𝜕𝑦
𝒆𝑦 (3) 

and the dot between two vectors denotes the 

scalar product, [9]. From equation (2) it follows that 

𝜎(𝒓) △ 𝑈 + 𝛻𝜎 ⋅ 𝛻𝑈 = 0  𝒓 ∈ 𝐴, (4) 

△= 𝛻 ⋅ 𝛻 =
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2. (5) 

The function 𝑢 = 𝑢(𝒓) is defined by equation (6) 

𝑈(𝒓) = (𝑈1 − 𝑈2)𝑢(𝒓) + 𝑈2,  𝑈1 ≠ 𝑈2. (6) 

It is evident that 𝑢 = 𝑢(𝒓) satisfies the following 

boundary value problem 

𝜎(𝒓) △ 𝑢 + 𝛻𝜎 ⋅ 𝛻𝑢 = 0  𝒓 ∈ 𝐴, (7) 

𝑢(𝒓) = 1 𝒓 ∈ 𝜕𝐴1,  𝑢(𝒓) = 0 𝒓 ∈ 𝜕𝐴2. (8) 

The function 𝑢 = 𝑢(𝒓) plays a crucial role in the 

expressions of electrical resistance and electrical 

conductance. An electric current in the two-

dimensional conductor is the continuous passage of 

the current along the conductor. The constant 

potential difference between the closed curves 𝜕𝐴1 

and 𝜕𝐴2 maintains the steady flow of electric 

current. The amount of charge following through 

curve 𝜕𝐴1 per unit time is 𝐼. The determination of 𝐼 

is based on the following equation 

𝐼 = ∫ 𝒋

∂𝐴

⋅ 𝒏 d𝑠 = (𝑈1 − 𝑈2) ∫ σ(𝒓)𝒏

∂𝐴1

⋅ ∇𝑢 d𝑠 = 

               (𝑈1 − 𝑈2) ∫ σ(𝒓)
∂𝑢

∂𝒏∂𝐴1
 d𝑠. (9) 

In equation (9) the unit of 𝐼 is [A/m] and 𝒏 is the 

outer unit normal vector of the inner boundary curve 

𝜕𝐴1 and ds is the arc element on 𝜕𝐴1. The electrical 

resistance 𝑅 and the conductance 𝐺 = 1/𝑅 of the 

hollow two-dimensional conductor is defined, [6], 

[10] 

𝑅 =
𝑈1−𝑈2

𝐼
=

1

∫ 𝜎(𝒓)
𝜕𝑢

𝜕𝒏𝜕𝐴1
 d𝑠

 (10) 

𝐺 =
𝐼

𝑈1−𝑈2
= ∫ 𝜎(𝒓)

𝜕𝑢

𝜕𝒏𝜕𝐴1
 d𝑠. (11) 

It is evident that 

𝛻 ⋅ (𝜎(𝒓)𝛻𝑢) = 𝜎(𝒓) △ 𝑢 + 𝛻𝜎 ⋅ 𝛻𝑢 = 0. (12) 

From equation (5) it follows that 

∫ 𝑢∇ ⋅ (𝜎(𝒓)∇𝑢)d𝐴

𝐴

= ∫ 𝑢

∂𝐴

σ(𝒓)𝒏 ⋅ ∇𝑢 d𝑠 

                     −  ∫ σ(𝒓)|∇𝑢|2d𝐴   =  0,
𝐴

 (13) 

that is 

∫ 𝜎(𝒓)
𝜕𝑢

𝜕𝒏𝜕𝐴1
 d𝑠 = ∫ 𝜎(𝒓)|𝛻𝑢|2

𝐴
d𝐴. (14) 

Combination of equations (10) and (11) with 

equation (14) gives 

𝑅 =
1

∫ 𝜎(𝒓)|𝛻𝑢|2
𝐴

 d𝐴
, 𝐺 = ∫ 𝜎(𝒓)|𝛻𝑢|2

𝐴
d𝐴. (15) 

It should be mentioned that the units of 𝑅 is 

[V/Am] = [Ω/m] and if 

𝛻𝜎 ⋅ 𝛻𝑢 = 0  𝒓 ∈ 𝐴 (16) 

then 𝑢(𝐫) = 𝑢0(𝐫) where 𝑢0(𝐫) is a unique 

solution of the following Dirichlet type boundary 

value problem 

△ 𝑢0 = 0 𝒓 ∈ 𝐴, 𝑢0(𝒓) = 1 𝒓 ∈ 𝜕𝐴1

𝑢0(𝒓) = 0 𝒓 ∈ 𝜕𝐴2.
 (17) 

In this case 

𝐺 = ∫ 𝜎(𝒓)|𝛻𝑢0|2
𝐴

d𝐴. (18) 
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There are several approximation methods to get 

the solution of the boundary value problem 

formulated in equations (8) and (9), most of which 

use the results of variational calculus, for example 

as Ritz method, finite element method, [10], [11], 

[12], [13], [14], [15]. Other numerical methods are 

also known and used, for example finite difference 

methods, method of weighted residuals, boundary 

element method, [16]. It is not the aim of this paper 

to give a detailed list of different analytical and 

numerical methods, which are used widespread in 

electric engineering calculation. 

 

 

2 Upper bound for 𝑮 and lower 

bound for 𝑹 
Theorem 1 If the function of 𝐹 = 𝐹(𝒓) which is 

continuously differentiable in 𝐴 ∪ 𝜕𝐴 satisfies the 

boundary conditions 

𝐹(𝒓) = 1 𝒓 ∈ 𝜕𝐴1,  𝐹(𝒓) = 0 𝒓 ∈ 𝜕𝐴2 (19) 

then the inequality relation for 𝐺 

𝐺 ≤ 𝐺𝑈 = ∫ 𝜎(𝒓)|𝛻𝐹|2
𝐴

d𝐴 (20) 

is valid and the sign of equality in bounding 

formula (20) is valid only if 𝐹(𝒓) ≡ 𝑢(𝒓). 

Proof. The proof of inequality (20) is based on 

the Cauchy-Schwarz inequality 

(∫ 𝜎(𝒓)𝛻𝐹
𝐴

⋅ 𝛻𝑢 d𝐴)
2

≤

                ∫ 𝜎(𝒓)|𝛻𝐹|2
𝐴

d𝐴 ∫ 𝜎(r)|𝛻𝑢|2
𝐴

d𝐴. (21) 

A simple computation leads to the result 

∫ 𝜎(𝒓)𝛻𝐹
𝐴

⋅ 𝛻𝑢 d𝐴 = ∫ 𝛻
𝐴

⋅ (𝐹𝜎(𝒓)𝛻𝑢)d𝐴 −

          ∫ 𝐹
𝐴

𝛻 ⋅ (𝜎(𝒓)𝛻𝑢)d𝐴 = ∫ 𝜎(𝒓)
𝜕𝑢

𝜕𝒏𝜕𝐴1
d𝑠. (22) 

The combination of the inequality relation (21) 

with equation (22) and using the formulae of 𝐺 

gives the upper bound formula (20) for the electrical 

conductance. From the boundary condition (19) and 

that the equality in (21) is valid only if 𝐹(𝒓) =
𝜆𝑢(𝒓) where 𝜆 is an arbitrary constant. 

 

 

3 Lower bound for 𝑮 and upper 

bound for 𝑹 
Theorem 2 Let 𝒒 = 𝒒(𝒓) be a two-dimensional 

vector field defined in the hollow domain 𝐴 ∪ 𝜕𝐴 

which satisfies the following equation 

𝛻 ⋅ (𝜎(𝒓)𝒒) = 0 𝒓 ∈ 𝐴, (23) 

in this case 

𝐺 ≥ 𝐺𝐿 =
(∫ 𝜎(𝒓)𝒏

𝜕𝐴1
⋅𝒒 d𝑠)

2

∫ 𝜎(𝒓)𝒒2
𝐴

 d𝐴
,  ∫ 𝒒2

𝐴
 d𝐴 ≠ 0. (24) 

In lower bound formula (24) equality is reached 

only if 𝒒 = 𝜆𝛻𝑢, where 𝜆 is an arbitrary constant 

which is differentiating from zero. 

Proof. The proof of lower bound formula (24) is 

based on the following Cauchy-Schwarz inequality 

relation 

(∫ 𝜎(𝒓)𝛻𝑢
𝐴

⋅ 𝒒 d𝐴)
2

≤

                   ∫ 𝜎(𝒓)|𝛻𝑢|2
𝐴

 d𝐴  ∫ 𝜎(𝒓)𝒒2
𝐴

 d𝐴. (25) 

A simple computation gives 

∫ 𝜎(𝒓)𝛻𝑢
𝐴

⋅ 𝒒 d𝐴 = ∫ 𝛻
𝐴

⋅ (𝑢𝜎(𝒓)𝒒) d𝐴 −

          ∫ 𝑢
𝐴

𝛻 ⋅ (𝜎(𝒓)𝒒) d𝐴 = ∫ 𝜎(𝒓)𝒏
𝜕𝐴1

⋅ 𝒒 d𝑠. (26) 

Substitution of equation (26) into inequality (25) 

gives 

(∫ 𝜎(𝒓)𝒏
𝜕𝐴1

⋅ 𝒒 d𝑠)
2

≤ 𝐺 ∫ 𝜎(𝒓)𝒒2
𝐴

d𝐴 (27) 

that is 

𝐺 ≥
(∫ 𝜎(𝒓)𝒏

𝜕𝐴1
⋅𝒒 d𝑠)

2

∫ 𝜎(𝑟)𝑞2
𝐴

 d𝐴.
 (28) 

Theorem 3 Let 𝑓 = 𝑓(𝒓) be a non-identically 

constant function in 𝐴 ∪ 𝜕𝐴, which satisfies the 

Laplace equation in 𝐴 

𝛻 ⋅ 𝛻𝑓 =△ 𝑓 = 0  𝒓 ∈ 𝐴. (29) 

The following lower bound formula is valid for 𝐺 

𝐺 ≥ 𝐺𝐿 =
(∫

𝜕𝑓

𝜕𝒏𝜕𝐴1
d𝑠)

2

∫
|𝛻𝑓|2

𝜎(𝒓)𝐴
d𝐴.

 (30) 

The proof of lower bound (29) can be obtained from 

inequality (28) with the under mentioned 𝒒 = 𝒒(𝒓) 

𝒒(𝒓) =
𝛻𝑓

𝜎(𝐫)
  𝒓 ∈ 𝐴 ∪ 𝜕𝐴. (31) 

 

 

4 Numerical Example 
In the numerical examples the 𝑂𝑟𝜑 plane polar 

coordinate system is used. The definition of the 

polar coordinates 𝑟 and 𝜑 in terms of Cartesian 

coordinate is as follows 

𝑥 = 𝑟cos𝜑,   𝑦 = 𝑟sin𝜑, (32) 

𝑟 = √𝑥2 + 𝑦2,   𝜑 = arctan
𝑦

𝑥
. (33) 
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4.1. Example 1 

The boundary curves of the two-dimensional hollow 

conductor are an ellipse and a circle whose 

equations are (see Figure 2) 

𝑥2

𝑎2 +
𝑦2

𝑏2 − 1 = 0  (𝑥, 𝑦) ∈ 𝜕𝐴2, (34) 

𝑥2 + 𝑦2 − 𝑐2 = 0  (𝑥, 𝑦) ∈ 𝜕𝐴1. (35) 

 
Fig. 2 Conductor body bounded by a circle and an 

ellipse. 

The equation of the boundary curves in polar 

coordinates 𝑟,  𝜑 can be represented as 

𝑅2(𝜑) =
𝑎𝑏

√𝑎2sin
2𝜑+𝑏2cos2𝜑

  0 ≤ 𝜑 ≤ 2𝜋 (36) 

𝑅1(𝜑) = 𝑐 = constant  0 ≤ 𝜑 ≤ 2𝜋. (37) 

At first a homogeneous conductor is considered. 

The following numerical data are used 

𝑎 = 0.075 m,  𝑏 = 0.065 m,  𝑐 = 0.035 m 

𝜎 = 𝜎0 = 7.69 × 106  
1

Ωm
. (38) 

The bounding formulae (20) and (29) will be used. 

Let 𝐹 = 𝐹(𝑟, 𝜑) be 

𝐹(𝑟, 𝜑) =
ln

𝑅2(𝜑)

𝑟

ln
𝑅2(𝜑)

𝑐

. (39) 

in (20). Using function defined by equation (38) 

gives 

𝐺𝑈 = 7.084 521 374 × 107  
1

Ωm
. (40) 

The substitution of the function 

𝑓(𝑟, 𝜑) = ln𝑟. (41) 

into the lower bound expression (29) the following 

result can be derived 

𝐺𝐿 = 7.022 593 443 × 107  
1

Ωm
. (42) 

 

4.2 Example 2 

In this example all data are the same as in Example 

1 expecting the specific conductance 𝜎 which 

depends on the radial coordinate 𝑟 

𝜎(𝒓) = 𝜎0
𝑟

𝑔
,   𝑔 = 1.5 m. (43) 

The same functions 𝐹 = 𝐹(𝒓) and 𝑓 = 𝑓(𝒓) are 

used to obtain upper and lower bounds for the non-

homogeneous conductor body as in Example 1. The 

following results can be derived 

𝐺𝑈 = 2.375 784 710 × 106  
1

Ωm
, (44) 

𝐺𝐿 = 2.269 373 966 × 106  
1

Ωm
. (45) 

 

4.3 Example 3 

The boundary curves of the non-homogeneous 

hollow conductor body are two circles whose center 

points are different points as shown in Figure 3. The 

following numerical data are used 

𝑎 = 0.3 m, 𝑏 = 0.4 m, 𝑐 = 0.03 m, 𝑅1(𝜑) = 𝑎, 

𝑅2(𝜑) = 𝑐 sin𝜑 + √𝑏2 − 𝑐2cos2𝜑 0 ≤ 𝜑 ≤ 2𝜋 

𝜎0 = 7.69 × 106  
1

Ω𝑚
,  𝜎(𝑟, 𝛼) = 𝜎0exp(𝛼𝑟) 

 (46) 

 
Fig. 3 The hollow plane domain bounded by the two 

circles whose have different centers. 

In this example to obtain lower and upper bounds it 

is assumed that 

𝐹(𝑟, 𝜑) =
ln

𝑅2(𝜑)

𝑟

ln
𝑅2(𝜑)

𝑎

 𝑎 < 𝑟 ≤ 𝑅2(𝜑)  0 ≤ 𝜑 ≤ 2𝜋, 

(47) 

𝑓(𝑟, 𝜑) = ln𝑟  𝑎 ≤ 𝑟 ≤ 𝑅2(𝜑) 0 ≤ 𝜑 ≤ 2𝜋. 
(48) 

The unit of parameter 𝛼 is [1/m]. A detailed 

computation gives the upper and lower bounds as a 

function of parameter 𝛼, 𝐺𝑈 = 𝐺𝑈(𝛼) and 𝐺𝐿 =
𝐺𝐿(𝛼). The plots of function 𝐺𝑈 = 𝐺𝑈(𝛼) and 𝐺𝐿 =
𝐺𝐿(𝛼) are shown in Figure 4. 
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Fig. 4 The graphs of functions 𝐺𝑈(𝛼) and 𝐺𝐿(𝛼) for 

−4 ≤ 𝛼 ≤ 4. 

The following numerical results can be obtained by 

the application bounding formulae for 𝛼1 = 2 [
1

m
], 

𝛼2 = −2 [
1

m
] 

𝐺𝑈(2) = 3.515 266 × 108  
1

Ωm
. (49) 

𝐺𝐿(2) = 3.402 427 × 108 1

Ωm
. (50) 

𝐺𝑈(−2) = 8.827 959 × 107  
1

Ωm
. (51) 

𝐺𝐿(−2) = 8.421 377 × 107  
1

Ωm
. (52) 

Figure 5 illustrates the graph of function 𝑔(𝛼) =
𝐺𝑈(𝛼)/𝐺𝐿(𝛼) for −4 ≤ 𝛼 ≤ 4. 

 
Fig. 5 The plot of 𝑔(𝛼) as a function of 𝛼 

for −4 ≤ 𝛼 ≤ 4. 

 

4.4 Example 4 

In this example a two-dimensional hollow conductor 

is considered whose inner and outer boundary 

curves are confocal ellipses (see Figure 6). 

The common focus of boundary curves 𝜕𝐴1 and 

𝜕𝐴2 is denoted by 𝐹1 and 𝐹2 and 𝑂𝐹1 = 𝑂𝐹2 = 𝑐. 

To develop the estimation formulae, it is necessary 

to introduce an orthogonal curvilinear coordinate 

system. The definition of the curvilinear coordinates 

𝜌, 𝜗 is given by the following equations 

 
Fig. 6 Conductor bounded by two confocal ellipses. 

𝑥 = (𝜌 +
𝑐2

4𝜌
) cos𝜗  𝑦 = (𝜌 −

𝑐2

4𝜌
) sin𝜗 

                𝜌1 ≤ 𝜌 ≤ 𝜌2,  0 ≤ 𝜗 ≤ 2𝜋. (53) 

The semi axes of the boundary ellipses are 

𝑎𝑖 = 𝜌𝑖 +
𝑐2

4𝜌𝑖
, 𝑏𝑖 = 𝜌𝑖 −

𝑐2

4𝜌𝑖
 (𝑖 = 1,2). (54) 

Simple computations show that 

𝑎1
2 − 𝑏1

2 = 𝑎2
2 − 𝑏2

2 = 𝑐2. (55) 

It is assumed that the specific conductance 𝜎 

depends on only the curvilinear coordinate 𝜌, that is 

𝜎 = 𝜎(𝜌). To obtain the upper bound for the 

conductance we use 𝐹 = 𝐹(𝜌) in the formula (20) 

where 

𝐹(𝜌1) = 1,      𝐹(𝜌2) = 0  0 ≤ 𝜗 ≤ 2𝜋. (56) 

The area element in curvilinear coordinate system 

(𝜌,  𝜗) is 

d𝐴 = 𝐻𝜌𝐻𝜗d𝜌d𝜗, (57) 

where 

𝐻𝜌
2 = (

𝜕𝑥

𝜕𝜌
)

2
+ (

𝜕𝑦

𝜕𝜌
)

2
,  𝐻𝜗

2 = 𝜌2𝐻𝜌
2. (58) 

The expression of the gradient of a function 𝑄 =
𝑄(𝜌,  𝜗) in terms of curvilinear coordinates 𝜌 and 𝜗 

is 

𝛻𝑄 =
1

𝐻𝜌

𝜕𝑄

𝜕𝜌
𝒆𝜌 +

1

𝐻𝜗

𝜕𝑄

𝜕𝜗
𝒆𝜗. (59) 

where the unit vectors 𝒆𝜌 and 𝒆𝜗 are defined as 

𝒆𝜌 =
1

𝐻𝜌
(

𝜕𝑥

𝜕𝜌
𝒆𝑥 +

𝜕𝑦

𝜕𝜌
𝒆𝑦), (60) 

𝒆𝜗 =
1

𝐻𝜗
(

𝜕𝑥

𝜕𝜗
𝒆𝑥 +

𝜕𝑦

𝜕𝜗
𝒆𝜗). (61) 

It is evident that 

𝜎(𝜌)|𝛻𝐹|2d𝐴 = 𝜌𝜎(𝜌) (
d𝐹

d𝜌
)

2
 d𝜌d𝜗. (62) 

Application of upper bound formula (20) gives 
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𝐺 ≤ 𝐺𝑈 = 2𝜋 ∫ 𝜌𝜎(𝜌) (
d𝐹

d𝜌
)

2𝜌

𝜌1
d𝜌. (63) 

By the application of the known results of 

variational calculus, [17],[18] it can be pointed out 

that the upper bound (62) is the sharpest if 

𝐹(𝜌) = 1 −
∫

d𝜆

𝜆𝜎(𝜆)

𝜌

𝜌1

∫
d𝜌

𝜌𝜎(𝜌)

𝜌2
𝜌1

    𝜌1 ≤ 𝜌 ≤ 𝜌2. (64) 

Substitution of equation (63) into upper bound 

formula (62) gives 

𝐺 ≤ 𝐺𝑈 =
2𝜋

∫
d𝜌

𝜌𝜎(𝜌)

𝜌2
𝜌1

.
 (65) 

To get the lower bound for 𝐺 a solution of the 

Laplace equation 

△ 𝑓 =
1

𝜌𝐻𝜌
2 [

𝜕

𝜕𝜌
(𝜌

𝜕𝑓

𝜕𝜌
) +

𝜕

𝜕𝜗
(

1

𝜌

𝜕𝑓

𝜕𝜗
)] = 0. (66) 

must be computed. It is assumed that 𝑓 = 𝑓(𝜌), that 

is, 𝑓 does not depend on the curvilinear coordinate 

𝜗. It can be proven that 

𝑓(𝜌) = ln𝜌 𝜌1 ≤ 𝜌 ≤ 𝜌2 0 ≤ 𝜗 ≤ 2𝜋 (67) 

is a regular harmonic function in the double 

connected plane domain 𝐴. Substitution of function 

given by equation (66) in the lower bound formula 

(29) yields the result 

𝐺 ≥ 𝐺𝐿 =
2𝜋

∫
d𝜌

𝜌𝜎(𝜌)

𝜌2
𝜌1

. (68) 

Comparison the expressions of upper and lower 

bound gives 

𝐺𝑈 = 𝐺𝐿 = 𝐺 =
2𝜋

∫
d𝜌

𝜌𝜎(𝜌)

𝜌2
𝜌1

, (69) 

that is, the formula (68) is the exact value of the 

conductance. 

 
Fig. 7 The plots of the specific conductance  

for 𝑛 = 1,2,3,4. 

Let the material of the conductor body be 

functionally graded which specific conductance 

obeys the following equation 

𝜎(𝜌,  𝑛) = 𝜎1 (
𝜌2−𝜌

𝜌2−𝜌1
)

𝑛
+ 𝜎2 (

𝜌−𝜌1

𝜌2−𝜌1
)

𝑛
. (70) 

The plots of the function 𝜎(𝜌,  𝑛) for some different 

values of material parameter 𝑛 are shown in Figure 

7. 

The following data was used for computing the 

results in Figure 7. 

𝜌1 = 0.015 m, 𝜌2 = 0.035 m 

𝜎1 = 7.69 × 106  
1

Ω𝑚
, 𝜎2 = 1.1535 × 107  

1

Ωm
. 

(71) 

 
Fig. 8 The graphs of function 𝑢(𝜌,  𝑛) as a function of 𝜌 

for 𝑛 = 1,2,3,4. 

In Figure 8 the plots of the solution of the boundary 

value problem are presented for four different 

values of the material parameter. 

The dependence of the conductance from the 

material parameter is shown in Figure 9 for 1 ≤ 𝑛 ≤
5. 

 
Fig. 9 The plot of the function 𝐺 = 𝐺(𝑛)  

for 1 ≤ 𝑛 ≤ 5. 

 

5 Conclusion 
Upper and lower bounds are proven a two-

dimensional hollow non-homogeneous isotropic 

conductor body by the application of Cauchy-

Schwarz inequality. Several examples illustrate the 

applications of the derived bounding formulae. 

The obtained numerical results can be used to check 

the numerical solutions obtained by finite element 
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method, boundary element method, finite difference 

method and by other numerical methods. 
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