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Abstract: - This paper discusses four different approaches that can be followed to derive the equations of 
motion for a fixed and symmetrical spinning top. Starting from the usual Euler equations in the body-fixed 
system, after manipulation it is shown that identical equations are derived for the space-fixe system as well. All 
the three Cartesian components of the angular momentum vector are calculated for both the body- and the 
space-systems and they are formulated so that they can be used for further numerical analysis. In addition to the 
classical set, the Euler equations are also easily derived using a rotating system originated at the pivot but not 
spinning. Moreover, Lagrange equations are derived and the latter are proven to be equivalent with the Euler 
equations. The best way among these four methods for teaching students is probably the instructor’s preference. 
Moreover, using commercial software, an adequately accurate numerical solution is derived. Not only the 
position of the spinning top is calculated but also the support forces at the pivot are predicted. 
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1. Introduction 
The spinning top is the basis for illustrating 
gyroscopic effects involved in many industrial 
applications such as inertial sensors for navigation 
[1], spacecraft attitude control [2], gyroscopic wave 
energy harvesting [3], and others [4]. 

First acquaintance with a spinning top occurs in 
early childhood, when the child watches the unusual 
behavior of this widely known toy, which seems to 
be able to defy gravity. In general, the spinning top 
performs three rotations, which involves precession, 
nutation and spin.  

The mechanics of the spinning top was studied 
for the first time by Lagrange [5], and after a 
century by Klein and Sommerfeld [6,7]. In 1897 
Klein separately published a shorter monograph [8]. 
One of the oldest journal papers is probably due to 
Appel’rot [9]. Relevant books of general interest are 
[10,11], and Gould [12] includes an extended list of 
367 references. Explicit time integration of 
equations of motion, to give the nutation in terms of 
elliptic integrals, is cited in the aforementioned 
books [6,7] as well as in Whittaker [13]. Some 
useful explanations were given by Zaroodny [14]. 

Analytical formulas for nutation are reported in 
some older books [15-18], whereas recent textbooks 
in physics deal mostly reduce to the regular 
precession [19,20]. A remarkable internet link is 
[21].  

Between several findings regarding spinning 
tops, in 1889, the Russian mathematician 
Kovalevskaya showed that the rigid body motion 
was integrable under certain conditions concerning 
the ratio (1:2) of the principal momenta between 
other parameters; her work was so remarkable that it 
won her the Bordin prize (1888) [22-25]. Particular 
reference may be found in the introduction of a 
book by the French mathematician Michèle Audin 
[26], who used the term “mysterious (?)” when 
referring to the Kowalevski case. 

The integrability of Euler’s equations describing 
the motion of a spinning top, i.e. the numerical 
calculation of Euler angles as functions on the 
elapsed time, has become a matter of intensive 
research within the last fifteen years. In brief, the 
numerical solution may sometimes not fulfill the 
law of energy conservation or may suffer from 
“gimbal lock” singularities concerning the Euler 
angles [26-28]. Regarding numerical analysis on the 
spinning top, an early paper on the numerical 
integration of the differential equations is probably 
due to Gorn [29, p.79]. Later, McGill and Long [30] 

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION 
DOI: 10.37394/232010.2021.18.9 Christopher G. Provatidis

E-ISSN: 2224-3410 80 Volume 18, 2021



studied the case of an unsymmetrical rigid body. 
Also, Simo and associates have developed 
numerical schemes to preserve energy and 
momentum [31,32] and papers therein. Ratiu and 
Moerbeke [33] have discussed the same matter with 
main emphasis put on the symplectic structure of the 
motion. Historical references have been given by 
Romano [34], whereas some more recent 
publications are [35-43].  

To better understand the necessity of 
complicated numerical schemes, nine years ago, 
several simple numerical schemes, such as Runge-
Kutta and Crank-Nicolson, were successfully 
implemented for two benchmark test cases using in-
house software as well as built-in MATLAB® 
functions [44]. Therefore, elementary knowledge of 
Numerical Analysis is sufficient. 

During the last decade the research on the 
spinning top has continued in several directions. For 
example, particular shapes of spinning tops –for 
example– one with a spherical bottom end [45], 
nonlinear phenomena such as the friction at the 
fixed point [46,47], elastic effects [48], and several 
types of forced precession effects [49-51] have been 
reported.  

The basic purpose of this paper is to derive the 
complete nonlinear equations which govern the 
complex motion of the spinning top consisting of 
precession, nutation and spin. This is implemented 
following four alternative formulations with 
different levels of difficulty in their introduction to 
students of physics and engineering studies. The 
equivalency among these formulations is thoroughly 
commented. Having reported these four approaches 
and their interrelations in a systematic way, the 
instructor may be further inspired for specific 
discussions in the classroom. At the end of the 
presentation, a benchmark test case is numerically 
solved in an efficient way. The numerical solution 
includes the kinematical simulation of the fixed 
spinning top (i.e., Euler angles) as well as the 
support forces. 
 

2. Basic theory 
In general, the position of the spinning top -as a 
rigid body rotating about a fixed point O- is 
determined through three rotational degrees of 
freedom. The analysis is performed in either the 
space-fixed 

s s s
Ox y z  or the body-fixed Cartesian 

system 
b b b

Ox y z , with unit vectors ( , , )i j k  and 

( , , )i j k   , respectively.  

 

Figure 1: Euler angles of a spinning top. 
 

Let C be the center of mass of the symmetric 
spinning top, which will be along its long body axis 

b
Oz .  

The normal projection of the aforementioned 
point C on the horizontal space-fixed plane 

s s
Ox y  is 

denoted by Cʹ, as shown in Fig. 1. 
Also, the so-called “line of nodes ON” is defined 

as the line perpendicular to OCʹ and lying on the 
horizontal space-fixed plane 

s s
Ox y . 

The formulation of the celebrated Euler 
equations is based on the following three Euler 
angles (see, Fig. 1): 

 Azimuthal angle   with angular velocity 

  , due to rotation about the vertical 

space sz -axis. 

 Inclination (lean) angle   with angular 
velocity 

  , about the line of nodes ON. 

 Spin angle   with angular velocity 
  , 

about the body-fixed long axis bz . 

The above details, which are adopted in this paper, 
were given because different authors may use 
different sets of angles to describe these 
orientations, or different names for the same angles, 
leading to different conventions (see, for example, 
[52] or [53]). 

The instantaneous vector of the angular velocity 
ω  along the inclined line OΩ (not shown for 
avoiding confusion) can be expressed as follows: 

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION 
DOI: 10.37394/232010.2021.18.9 Christopher G. Provatidis

E-ISSN: 2224-3410 81 Volume 18, 2021



0k n k       ω    (1) 

where k , 0n  and k   are the unit vectors along the 

space sz -axis, the line of nodes ON, and the body 

bz -axis, respectively. In terms of the space unit 

vectors, the aforementioned unit vector 0n  will be  

0 cos sinn i j       (2) 

while the unit vector along the body-fixed long zb-
axis  

sin cos sin sin cosP Pk i j k        .    (3a) 

Since the usual spherical azimuthal angle 
( , )

P s
Ox OC   (Fig. 1) is related to the Euler 

angle   through the expression  

2P


   ,    (3b) 

we have ( cos sin
P
   and sin cos

P
   ) thus 

Eq. (3a) becomes: 

sin sin sin cos cosk i j k        .      (3c) 

Therefore, for the space-fixed system we obtain: 

( cos sin sin )

( sin cos sin )

( cos )

i

j

k

 

 

 

    

    

  

 

 

 

ω

     (4) 

Replacing the vector x y zi j k    ω  with its 

associated column-vector 
T

x y z     ω , 

the above expression may be also written in matrix 
form as follows: 

0 cos sin sin
0 sin sin cos
1 0 cos

x

y

z

  

   

      

 

       
       

   
       
              

ω
.     (5) 

Between several options, the final position 
( , , )    of the spinning top is accomplished by 
rotating the initial space-fixed system in three 
successive rotations, as follows [15]. 

First, the coordinate system is rotated about the 
space sz -axis by the azimuthal angle   and this 

rotation induces a rotation matrix D, i.e. sξ Dx , 

given by 

cos sin 0
sin cos 0
0 0 1

 

 

 
 

 
 
  

D    (6) 

In the abovementioned first rotation, the initial 
space xs- and ys-axes take the position   (line of 
nodes) and  , respectively, both lying on the 
horizontal space plane Oxsys. The third axis,  , 
coincides with the space zs-axis. By definition, the 
 -axis (line of nodes) is perpendicular to the space 
zs-axis. 

Second, the previous system O  is rotated 
about the abovementioned  -axis (line of nodes) by 
the lean angle  . In this rotation, the 
abovementioned z   axis takes the new position 
  . Obviously, the  -axis (line of nodes) is 
perpendicular to the body-fixed zs-axis. This 
rotation,  ξ Dξ , is defined by the rotation matrix: 

1 0 0
0 cos sin
0 sin cos

 

 

 
 


 
  

C    (7) 

Third, the system O    undertakes its last 
rotation about the   axis. In this rotation, x Dξ , 
the system of the rectangular axes    and   is 
rotated by the spin angle  , thus the rotation matrix 
is: 

cos sin 0
sin cos 0
0 0 1

 

 

 
 

 
 
  

B    (8) 

The entire rotation is given by the product of all 
the abovementioned three rotations, in reverse 
sequence, 

body spacex Ax , as follows: 
cos cos sin cos sin sin cos cos cos sin sin sin
cos sin sin cos cos sin sin cos cos cos sin cos

sin sin cos sin cos

           

           

    

 

   



 
 

 
 
 
 

Α BCD

 

 (9) 

Note that since the line of nodes ON is 
perpendicular to both 

s
Oz  and 

b
Oz  axes, we have 
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0 ( )n k k k k     , and it lies on the horizontal 

plane 
s s

Ox y . 

Based on the above transformation matrices, we 
can derive the body components of each component 
( , , )      in a different way. In more details, the 

quantities 
 ,   and 

  are not rotated in the 

same manner, but each of them utilizes one among 
the three abovementioned matrices, as follows: 

( ) ,

( ) ,

( ) 0 0

body

body

T

body

 

 

 











   

ω A

ω B

ω

   (10) 

Therefore, the three Cartesian components of the 
body-fixed angular velocity are: 

1

2

3

0 0
0 0 0

0
body



 

 



  

      
      

         
            

ω A B        (11) 

Substituting (8) and (9) into (11), one obtains the 
well-known formulas, in which the subscripts 
(1,2,3) refer to principal body axes: 

1

2

3

sin sin cos ,

sin cos sin ,

cos .

     

     

   

 

 

 

  (12) 

Although we have previously derived the expression 
of the space angular velocity 

spaceω ω  (see, Eqs. 

(4) and (5)), here we can see an alternative way 
based on matrix transformation. Actually, inverting 
the relation 

body spaceω Aω , and considering that 
1 T A A , we receive T

space bodyω A ω , which is 

eventually written as: 

0 cos
0 sin
1 0

sin sin
sin cos

cos

x

space y

z

 



 

   



 

  



     
     

  
     
          

 
 

 
 
  

ω

       (13) 

Obviously, the two procedures are equivalent, thus 
Eq. (5) and (13) are identical, as anticipated. 
 
 

3. Equations in the body-fixed system 
The first approach of this paper is to apply the full 
Euler equations. These equations implement 
Newton’s second law in rotation. From classical 
textbooks such as [16], it is well known that Euler 
equations can be written (in the body-fixed system) 
in the form of three equations: 

 1 1 2 3 2 3 1 ,I I I M       (14a) 
 2 2 3 1 3 1 2 ,I I I M       (14b) 
 3 3 1 2 1 2 3 .I I I M       (14c) 

Although vector analysis is applicable as done in 
[16], we provide an alternative proof in Appendix 

A, which is based on matrix transformation along 
with tensors. 

In case that the moments 1 2 3( , , )M M M  vanish 

or they are given functions of 1 2 3( , , )  , we can 

put the system of Eqs. (14) in the classical form 
[41,42]: 

2 3 1
1 2 3

1 1

( )I I M

I I
  


     (15a) 

3 1 2
2 3 1

2 2

( )I I M

I I
  


     (15b) 

31 2
3 1 2

3 3

( ) MI I

I I
 


     (15c) 

to which a Runge-Kutta method is applicable. 
Otherwise, we have to follow a different way, 
dealing with the original quantities ( , , )   . And 
this is the beginning of our central discussion of this 
paper, which will be reduced to a symmetrical top 
for which I1 = I2, Note that since the support is 
frictionless, we have M3 = 0. 

Since I1 = I2 and M3 = 0, Eq. (15c) yields 3 0  , 

that is 3 .const   Moreover, if the spinning top 

operates only due to its weight thus leading to the 

space torque  sin cos sin 0 T

space
mgl   M  

(for explanations, see Appendix B), after 
manipulations the transformation 

body space
M AM  

yields the body moments 1 sin cosM mgl    and 
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also 2 sin sinM mgl    , thus the entire body-

fixed moment vector becomes: 

1

2

3

cos
sin sin

0

M

M mgl

M



 

   
   

   
   
   

  (16) 

Substituting Eq.(12) into Eq.(14abc), after 
manipulation it will be found that Eqs. (14a) and 
(14b) can be written together in the following matrix 
form: 

0 1 sin 0
sin

1 0 cos 0
d e

mgl
e d






        
                   

  (17) 

where  

1 1 3 3sin 2 cosd I I I              (18a) 

and 
2

1 1 3 3sin cos sine I I I              (19a) 

Dropping out the factor  sin cos T
   in 

Eq.(17), we have 0d   and sine mgl  . 
Therefore, the two governing equations will be: 

1 1 3 3sin 2 cos 0I I I                  (18b) 

and 
2

1 1 3 3sin cos sin sinI I I mgl            (19b) 

Later we shall see that the first Euler equation [i.e. 
Eq. (18b)], also written in the form 

2
1 3 3( sin cos ) 0I I     , dictates that the 

component of the angular momentum in the space 
zs-axis is a constant (first invariant). Therefore, Eq. 
(18b) is practically an ODE of the first order in  , 
whereas the second Euler equation [i.e. Eq. (19b)] 
is an ODE of the second order in  . 

Remark: In the body-fixed system, the 
components of the derivatives of the angular 
momentum are 1 1 2 32 3( ,, )I I I   , while the 

external moments are 1 2 3( , , )M M M . One may 

observe in Eqs. (14abc) that there is a difference 
between these two quantities. In other words, the 
Newton’s second law is not applicable to the body-
fixed system ‘as is’.  

 

 

4. Equations in the space-fixed system 
Let us now move to the second approach of this 
paper. This section has been slightly influenced by 
a recent work [54], which however was concerned 
with the free fall and not the fixed spinning top of 
this paper. 

In the body fixed system, the vector of the 
angular momentum is 

1 1

2 2

3 3

body

I

I

I







 
 


 
  

L    (20) 

Based on the well known transformation of first 
order tensors, the same vector in the space system 
will be 

1 1

2 2

3 3

cos cos sin cos sin cos sin sin cos cos sin sin
sin cos cos cos sin sin sin cos cos cos cos sin

sin sin sin cos cos

T

space body

I

I

I

            

            

     

     
   

        
      

L A L

(21) 

For the symmetrical spinning top (i.e. with 

1 2 ),I I  substituting Eq. (12) into Eq. (21), after 

manipulation the latter yields the components of the 
vector of the space momentum as follows: 

T

space x y zL L L   L        (22) 

with: 

1 3 3( cos cos sin sin ) sin sinxL I I          

   (23a) 

1 3 3( sin cos sin cos ) cos sinyL I I          

   (23b) 
2

1 3 3sin coszL I I                           (23c) 

Taking the first derivatives of the above 
expressions (angular momentum components) with 
respect to the time t , and equating them with the 
external torques 

space
M  due to the weight of the 

spinning top (Newton’s second law in rotation), i.e. 

 sin cos sin 0 T

space
mgl   M , we have: 

2 2
1

3 3

( cos sin cos sin sin cos cos 2 sin cos )

( sin cos sin cos )
sin cos

xL I

I

mgl

            

      

 

   

 



 

 

(24a) 
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2 2
1

3 3

( sin sin cos cos sin cos sin 2 cos cos )

( sin sin cos cos )
sin sin

yL I

I

mgl

            

      

 

   

  



 

(24b) 

2
1 3 3( sin cos ) 0zL I I       (24c) 

In order to simplify the above expressions, we first 
start with the last of them, i.e. with Eq. (24c), the 
easiest. Actually, performing the derivative of the 
term 2

1 3 3( sin cos )I I     and equating to zero, 

we obtain 
 1 1 3 3( sin 2 cos )sin 0zL I I I          , 

thus dropping out the sin , we eventually obtain: 

1 3 3( sin 2 cos ) 0I I             (25) 

One may observe that Eq. (25) is identical with Eq. 
(18b), which was previously derived from the body 
system considerations. 

Now we continue with the term 
xL  (Eq. (24a)], 

which is written as follows: 

1 3 3

2
1 3 3

[ ( sin 2 cos ) ]sin cos

( cos sin cos cos ) ( sin cos )
sin cos

xL I I

I I

mgl

       

         

 

   

  



    (26) 

By virtue of Eq. (25), the term into the bracket […] 
of Eq. (26) vanishes, and after dropping out the 
common factor cos , the final ODE becomes: 

2
1 3 3( sin cos ) sin sinI I mgl           

(27) 

One may observe that Eq. (27) is identical with Eq. 
(19b), which was previously derived from the body 
system considerations. 

It is easy to see that both the x- and y-
components, (

xL  in Eq. (24a), and yL  in Eq. 

(24b)), include the second derivatives,   and  . 
They also have identical terms in  , whereas 
regarding the  -variable the cos  of the first is 
replaced by sin  of the second, and sin  of the 
first is replaced by ( cos )  of the second one. 
This remark implies that the x-component is merely 
rotated by 90 degrees, thus these two equations are 
linearly dependent and it is anticipated to give the 
same result. 

Actually, by arranging the terms of yL  we 

obtain: 

1 3 3

2
1 3 3

[ ( sin 2 cos ) ]cos cos

( sin sin cos sin ) ( sin sin )
sin sin

yL I I

I I

mgl

       

         

 

  

  



   (28) 

As previously happened for 
xL , the term in the 

brackets of Eq. (28) vanishes, and after dropping out 
the common factor sin , we derive again Eq. (27). 

In other words, the three constitutive equations 
of motion, i.e. sin cosxL mgl   , 

sin sinyL mgl    and 0zL   give a second 

order system of only two ODEs in   and  . We 
recall that, as discussed at the end of section 3, the 
first of them is practically of the first order. The 
solution of this system fully determines the visual 
position of the flywheel in spherical coordinates but 
does not include the spin angle  , if it is desired. 
The latter can be easily calculated from the 
condition 3 cos .const      , first by 

calculating to derivative   and then by integration. 
Again, if we need to calculate the function ( )t , 
then we have to include the equation 

3 cos      into the equations system for the 

Runge-Kutta or any relevant time integration 
method. 

 
5. A third approach 
Both of the two abovementioned approaches, i.e. the 
body-fixed and particularly the space fixed systems, 
impose significant complexity and may terrify the 
student. This approach is inspired by the fact that, in 
both the previous formulations (i.e. in the body and 
space systems), the spin term was eventually 
suppressed. In simple cases such as the regular 
precession, classical books on tensor analysis [53], 
have followed this way.  

In more details, we consider a particular body 
fixed system of which the zb-axis (with unit vector 

3i  along OC, where O is pivot and C is the center of 

mass) always coincide with the long axis of the 
spinning top but does not rotate in the spin direction. 
While Hay [53] chooses the unit vector i1 so as to be 
directed upwards, for reasons of plurality, and in 
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order to be consistent with previous literature [49], 
we consider it in the opposite direction, as shown in 
Fig. 2.  

 
 

Figure 2: Definition of the rotating system

1 2( , , )
3

i i i  at the pivot O. 
 

Both the (i1, and i3) lie on the plane (PCC'), where 
C' is the projection of C on the horizontal plane 

s s
Ox y .  

In the case of the fixed top, the center of 
moments is taken at the pivot O (axis origin), so as 
the moments of the reaction forces vanish. 
Alternatively, one could take the moments with 
respect to the center of mass but then one has to 
write the equations of motion for the translational 
motion as well. The latter approach is more general 
and has been previously used for the forced 
precession [49], but not for the fixed top.  

Dealing with the vector of the angular 
momentum L in an analogous way as the position 
vector r  (where the total velocity equals to the sum 
of the relative velocity plus the cross product 

)Ω r , the Newton’s second law for the rotational 
motion becomes (see, [16]): 

total
ext

rel

d d

dt dt

 
    

 

L L
τ Ω L

 
(29) 

Concerning (29), Fig. 2 depicts that the vector of the 
angular velocity is given by: 

sin cos
T

       Ω ,  (30) 

while the angular momentum is given in terms of 
the momenta of inertia ( 1 2 3, ,I I I ) with respect to the 
fixed pivot O as follows: 

1 2 3sin ( cos )
T

I I I         L     (31) 

In (30) and (31), it holds that: 

2P


      (32) 

Substituting (29) and (30) into (28), and since the 
symmetry dictates that 1 2I I , one obtains: 

1 3
2

1 3

3

( sin 2 cos ) ( cos )
( sin cos ) sin ( cos )

( cos )

x

total
y

z

L I I
d

L I I
dt

L I

       

        

  

      
  

        
      

L
    (33) 

Setting 3cos     , and considering that the 

external moment in the space-fixed system is given 
by (see, Appendix B): 

cos
sin sin

0
ext mgl



 

 
 


 
  

τ ,
  

(34) 

the first Euler equation in Eq. (33) is identical with 
the Eq. (25) and (18b), the second Euler equation is 
identical with Eq. (27) and (19b), whereas the third 
one depicts that 3  is a constant (invariant). 

 

6. Lagrangian approach 
This section is the fourth approach of this paper. 

The implementation of Lagrange’s equations is a 
standard procedure which is preferred in 
complicated cases because it avoids the free-body 
diagrams and the associated application of Newton’s 
second law to each of them. In our case of the fixed 
spinning top, the Lagrangian is given by (see, 
[16,17]): 

2 2 21
1 1 2 2 3 32 ( ) cosL T V I I I mgl           (35) 

Substituting (12) into (35) and considering again a 

symmetrical top, i.e. 1 2I I , the latter takes the 

form: 

 2 2 2 231
3sin cos

2 2
II

L mgl             (36) 

The Lagrange’s equations are written as follows: 

q

d L L
M

dt q q

 
 

 

 
 
 

  (37) 

Substituting (36) into (37) and assuming that the 
only load is due to the weight W=mg of the spinning 
top, the right-hand sides ( M

 , M
 , M

 ) of Eq. 

(37) correspond to the moments 0
szM  , 
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sin
ON

M mgl   (ON = line of nodes) and 0
bz

M  , 
respectively. As a result, Eq. (37) becomes: 

 2
1 3 3sin cos 0

d
I I

dt
      ,          (38a) 

2
1 1 3 3sin cos sin sinI I I mgl            (38b) 

3
3 0

d
I

dt


              (38c) 

One may observe that Eq. (38a) and Eq. (38b) do 
not include the Euler angle  . Again, the first Euler 
equation (38a) is identical with Eq. (25) and (18b), 
whereas the second one is identical with either of 
(27) and (19b).  

In this procedure, again Eq. (38a) dictates that 
the value of the component of the angular 
momentum towards the space zs-axis is a constant 
(first invariant of the system), i.e. 

2
1 3 3 1sin cosp L I I c


          ,    (39a) 

where the constant value c1 in (39a) is directly 
determined in terms of three initial conditions 

0 0 0( , , )   , as follows: 

2
1 1 0 0 3 00 0 0sin cos( cos )c I I       .     (39b) 

Equation (38c) depicts that 3  is a constant, which 

can be calculated in terms of three initial conditions 

0 0 0( , , )    by 

3 0 0 0cos        (40) 

Since 3  is a constant, the second invariant of the 

system (angular momentum towards the body zb 
axis) is: 

3 3

L
p I






 


   (41) 

Usually, a criterion to test the accuracy of the 
numerical integration is the energy conservation, 
which is given by the form (E = T + V) as follows: 

2

1 3 3 2

2 2 21 1
2 2 cos( sin )E I I mgl c        (42) 

As previously, the value c2 in (42) is directly 
determined in terms of the initial conditions and 
particularly it requires four of them, i.e. 

0 0 0 0( , , , )    . 

 
7. Decoupled equation for the lean 

angle 
This idea was presented in previous works of forced 
precession [49,51] or free-fall [54], but is also 
applicable to the fixed top [44] which is studied in 
this paper. In more detail, Eq. (24c) (i.e. the first of 
Euler equations) dictates that the quantity 

2
1 3 3sin cosI I     is the constant 1c , which is 

easily calculated in terms of the initial conditions 

0 0( , )  , i.e., 2
1 1 0 0 3 3 0sin cosc I I     , as 

previously was found in Eq. (39b) and Eq. (40).  
Solving Eq. (39a) in   we receive: 

1 3 3
2

1

( cos )
sin

c I

I

 





   (43) 

Then, substituting Eq. (43) into Eq. (27), one 
eventually obtains the following single nonlinear 
ODE: 

1

3 3 1 1 3 3
2 3

1

sin

( cos )( cos )
sin

mgl

I

I c c I

I




   





 


      (44) 

In other words, the lean angle ( )t  fulfils an 
ordinary differential equation of second order, 
which is quite independent. 

Having said this, we should make clear that the 
first of the initial conditions 0 0( , )   depends on all 

the three Euler angles, i.e. particularly on the 
quantities 00 0( ), ,   which form the constant 1c  

[see, Eq. (39b)], while the second one ( 0 ) is an 

independent quantity which affects the motion of 
the spinning top.  
 
8. Support forces 

8.1 Cartesian system 

As the spinning top moves, in addition to the weight 
W mg , an inclined reaction force R  with 
Cartesian components ( , , )x y zR R R  is exerted from 
the ground to the spinning top at the support point 
O. Based on Newton’s second law for translation,  
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Figure 3: Cartesian and polar force components. 

 
 

,

x c

y c

z c

F mx

F my

F mz













   (45) 

the aforementioned support forces are calculated in 
terms of the acceleration ( , , )c c cx y z  at the center of 
mass C, as follows: 

( ).

x c

y c

z c

R mx

R my

R m z g





 

  (46) 

Moreover, the Cartesian coordinates of the center of 
mass C are given in terms of the radial distance   
(= OCʹ = sinl  ) on the horizontal plane Oxy, the 
polar angle p  and the radial distance l  of the 
center of mass C from the fixed point O, by 

cos , sin , cosc p c p cx y z l        (Fig. 1).  
However, due to Eq. (3b), we have: 

cos sinp       and sin cosp    .     (47) 

Therefore, eventually we have: 

sin sin ,
cos sin ,

cos

c

c

c

x l

y l

z l

 

 





 



                     (48) 

Taking the second derivatives of Eqs. (48), and then 
substituting into Eq. (46), the latter becomes: 

2 2

[ cos sin sin cos

( )sin sin 2 cos cos ]
xR ml      

      

 

  
 (49a) 

2 2

[ sin sin cos cos

( )cos sin 2 sin cos ]
yR ml      

      

 

  
 (49b) 

2[ ( sin cos )]zR m g l                   (49c) 

8.2 Polar system 

When the reference system Oxy rotates by the angle 
p  the transformation matrix is given by: 

cos sin
sin cos

p p

p p

 

 

 
  

 
T  ,  (50a) 

which due to Eq. (43) becomes: 

sin cos
cos sin

 

 

 
  
 

T  ,   (50b) 

If now the subscript r denotes the direction of the 
radius   measured from the axis origin O to the 
projection Cʹ (i.e. by rotating the axis Ox from its 
original space position to the final position OCʹ, we 
have: 

xr

y

RR

RR

  
   

   
T    (51) 

Substituting Eq. (50b) into Eq. (51) we receive: 

sin cos

cos sin
r x y

x y

R R R

R R R

 

 

 

 
  (52) 

Substituting Eqs. (49a,b) into Eq. (52), we obtain: 
2 2[ cos ( )sin ]rR ml         (53a) 

[ sin 2 cos ]R ml        (53b) 

Therefore, the vertical support force is given by Eq. 
(49c), while the horizontal force components are 
given either in Cartesian form [Eqs. (49a,b)] or in 
polar form [Eqs. (53a,b)]. One may observe that the 
component R  is directed towards the line of points 
ON. 
 
9. Numerical solution and application 

example 
There are several ways to obtain the numerical 
solution, of which detailed discussion is out the 
scope of this paper. Some of them have been 
previously discussed in [44] in which Runge-Kutta 
and Crank-Nicolson methods were applied. Other 
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selective methodologies are [41,42] as well as 
[42,43]. 

9.1 General procedure 

Generally, if we bring the equations in the form 
( , )f ty y , then have to apply a method known 

from numerical analysis such as the Runge-Kutta of 
fourth order with variable time step [57]. Among 
others, an ideal function is ode45 built-in in 
MATLAB®. 

9.2 Totality of dynamic Euler’s equations 

The differential equations (15a) and (15b) for a 
system in which the body-fixed components M1 and 
M2 are expressed in terms of the Euler angles 
( , )  , according to Eq. (16). 

If the body-fixed angular velocity components 

1 2( , )   could be found (note that 3  is of given 

value), then Eq. (12) could be solved in ( , , )   , 
say applying Cramer’s rule, resulting in: 

1 2

1 2

3

sin cos
sin

cos sin

cos

   




    

   




 

 

   (54) 

Therefore, setting the five variables:  

1 1 2 2 3 4 5, , , ,y y y y y         ,      (55) 

the first-order system to be solved comprises the 
following five differential equations: 

2 3 3 4 5
1 2

1 1

( ) sin cosI I mgl y y
y y

I I


         (56a) 

3 1 3 4 5
2 1

2 2

( ) sin sinI I mgl y y
y y

I I


        (56b) 

1 5 2 5
3

4

sin cos
sin

y y y y
y

y


                         (56c) 

4 1 5 2 5cos siny y y y y           (56d) 

5 3 3 4cosy y y             (56e) 

9.3 Based on space-fixed formulation 

Regarding the first Euler Equation, although it 
seems to be of the second order in  , it is finally of 
the first order [see, Eq. (38a)], thus we can set the 
first variable as 1y  . Setting also 2y   and 

then solving in   Eq. (39b), which is equivalent to 
Eq. (39a), we receive the following ODE: 
  

1 3 3 1 3 3
2 2

1 1

2
1

2

( cos ) ( cos )
sin sin

c I c I y
y

I I y

  




 
        (57a) 

In contrast, the second Euler equation is of the 
second order [see, Eq. (38b)] thus we need two 
variables, i.e. 2y   and 3y  . Practically, since 

3  is a constant, we do not need a new equation, 

thus the minimum necessary vector of unknowns to 
be involved in time integration (say Runge-Kutta) is 

 1 2 3

TT
y y y       y . The rest two 

ODEs will be: 

2 3y y               (57b) 

and 
2

1 3 3
1

3 2 1 2 2 1 2( sin sin cos sin
1 )mgl I y I y
I

y y y y y     

(57c) 
Even if we wish to calculate the variation of the spin 
 , after we have finished with the computation of 
the above-mentioned vector y  in the desired time 
span, it is quite trivial to use the formula 

3 cos     and compute it. But if someone 

wishes anyway to compute the spin angle   itself, 
then one may include in the system the additional 
variable 4y  . If these procedures are followed, 

an easy way to evaluate the accuracy of the 
numerical solution is to test the conservation of 
energy. On this issue, it was found that the default 
settings in the ‘ode45’ MATLAB function (i.e. 
default tolerance of 10-6) lead to a numerical 
solution in which a minor decrease of the total 
energy is observed. This shortcoming is easily 
resolved by reducing the settings in active tolerance 
up to 10-14 at which the smoothest and most accurate 
numerical solution appears. In the latter case the 
number of time steps highly increases but the 
elapsed time is a few seconds only. 

9.4 Decoupled equation for the lean angle 

If we perform operations in Eq. (57c) we eventually 
obtain Eq. (44), which is computer programmed as 
follows. The primary variable is now chosen as 
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1y   with 2y  , so we could reduce our 

analysis to the system of two ODEs: 

1 2y y          (58a) 

1
2

1

3 3 1 1 1 3 3 1
2 3

1 1

sin

( cos )( cos )
sin

mgl y
y

I

I c y c I y

I y

 



 


        (58b) 

The system of Eq. (58a,b) can be easily solved to 
numerically derive the functions ( )t  and ( )t .  

Moreover, one may proceed as follows. After the 
numerical solution of the lean angle ( )t  is 

completed, one may use Eq. (43) to determine   
and then by integration in time t to determine the 
Euler angle ( )t . Then, the third Euler equation:  

3 cos         (59) 

can be optionally used only if we wish to determine 
the spin angle ( )t . 

Of course, one may include all three equations, 
i.e. Eqs. (43), (44) and (59), in the same system of 
the form ( , )f ty y . 

9.5 Based on energy conservation 

Theoretically, one equation in the system that 
describes the motion of the spinning top could be 
replaced by the energy conservation [15,16]. Within 
this context, substituting Eq. (43) into Eq. (42), and 
then solving in  , one obtains: 

 
1 22

2 1 3 31
2 3 32

1 1

( cos )2 cos
sin

c I
c I mgl

I I

 
  



   
      

   

 

 (60) 
While a lot of work has been devoted to implement 
elliptic integrals in Eq. (60) [4-7], under certain 
circumstances Eq. (60) can be also integrated in a 
numerical way. One difficulty is that the sign 
preserves its value only between two successive 
‘turning’ points of the nutation provided the initial 
derivative is different than zero, In particular, when 
the initial condition is 0 0  , neither of the Runge-

Kutta or the Crank-Nicolson procedures is possible. 
But even if 0 0   Eq. (60) is valid only until the 

next turning point at which 0turn   

10. Application example 
As an application, we study a slow top previously 
used in literature [33,37]. In more detail, the 
geometric data were: 7 1

1 2 38 4,I I I    and 
3

2l m , while the initial data where chosen to be 

0 00, 0   , 0 016, 0    , and 

0 016, 1    . The mass of the top was taken m 

= 1 kg.  
Using the ode45 MATLAB solution in 

conjunction with four variables (see above), after 
248 steps of variable size, the results are shown in 
Fig. 4.  

 
Figure 4: Euler angles (in radians) and distance (in 

meters) of the center of mass from the horizontal level. 

 
The support forces are shown in Fig. 5. 
 
 

 
Figure 5: Calculated support forces 
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Figure 6: Calculated horizontal support force 

components 
 
One may observe that the vertical support force Fz 
may become up to 4.4 times larger than the dead 
weight (red line) and may also vanish or even take a 
small negative value (-0.13 times the dead weight). 
 Finally, regarding the horizontal support forces, 
the maximum Fx is about 84 percent of the dead 
weight, whereas maximum Fy reaches about 2.6 
times the dead weight, as shown in Fig. 6. 
 
11. Discussion 
It was shown that all the four formulations we 
presented are equivalent each other and lead to the 
same set of ordinary differential equations (ODE), 
which are called Euler dynamic equations. Although 
older researchers devoted many years to implement 
closed-form analytical expressions such as elliptic 
integrals, it was found that simple numerical 
analysis schemes (such as Runge-Kutta) are 
applicable and easily lead to nice graphs of the 
Euler angles versus time. 

In all these approaches, the simplest ODE is of 
the first order with respect to the azimuthal angle   
and ensures the conservation of the angular 
momentum in the vertical space z-axis ( 0)

z
L   .  

It is also remarkable that the second (Euler) ODE 
is of the second order with respect to the lean angle 
 , and is nothing else but Newton’s second law in 
rotation with respect to either of the horizontal 
Cartesian axes Ox and Oy. Clearly, the 
interchangeability of these two axes occurs because 
the space moment vector 

 sin cos sin 0 T

space
mgl   M  always lies onto 

the horizontal plane Oxy and rotates according to the 
azimuthal angle ( )t . In more detail, the angular 
momentum is not preserved in the x- and y-
directions [see, Eq. (23a) and Eq. (23b)] but, closely 
related, their derivatives over time differ from zero 
according to Eqs. (24a) and (24b), being equal to the 

corresponding components of the external torque 

space
M . 

In all the four formulations, the third Euler 
equation, i.e. (14c) of the symmetric spinning top 
(i.e., 1 2I I ) leads to the condition that the quantity 

3 cos      is a constant (of course if it never 

reaches the ground). This means that not only it is 
possible that the spin   varies, but –under certain 
conditions- its direction may also be reversed [58]. 

Despite the complexity and the coupling between 
the three Euler angles ( , , )   , it was made 
possible to decouple them and reveal an ordinary 
differential equation [Eq. (44)] which includes only 
the lean angle ( )t . Again, we recall that the lean 
(or inclination) angle is by definition related to the 
nutation.  

As a check of the theory, we shall validate that 
Eq. (44) covers the so-called “regular” or “steady” 
or “smooth” precession as well, in which 

( ) 2t   and no nutation appears. Actually, 

setting 0( ) 2t     in Eq. (43), we receive 

1 1 0c I   and then substituting in Eq. (44) with 

0  , one obtains 0 3 3( ) ( )mgl I  , which is 

the standard expression for the regular precession, 
which may be found in all elementary textbooks of 
physics [15,19,20], mechanics [16,17] and 
mathematics [53]. 

Of course, there are more other ways to obtain 
the Euler equations. For example, in the third 
formulation (section 5) the external moment was 
taken with respect to the fixed point O. But it is well 
known that, in the most general case in which the 
point O is not fixed (see, for example [49] when it 
rotates along a specified circular path), the moments 
should be taken with respect to the center of mass C, 
instead. Within this context, the student may derive 
the same Euler equations, this time considering a 
different rotating system originated at the center of 
mass C. 

 
12. Conclusions 
Among the four ways which were presented with 
the aim to derive the governing ODEs for the 
symmetrical fixed spinning top, the one related to a 
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non-spinning rotating system is probably the most 
convenient, but also the Lagrangian approach is 
straight forward. It was found that all of them lead 
to the same set of two governing equations, which in 
any case include the azimuthal and the inclination 
angles, while the spin is a secondary quantity.  

The findings may be summarized as follows: 
- Generally, the Euler equations cannot be 

integrated as they are, because the external 
moments are not known functions of the body-
fixed angular velocity components ( 1 2 3, ,   ). 

- However, if the external moments equal to 
zero, of if they are known functions of the 
body-fixed angular velocity, the time 
integration in terms of 1 2,   and 3  is 
possible. 

- The well known Newton’s second law in 
rotation, according to which the external 
moment equals to the derivative of the angular 
momentum in time, is not applicable to the 
body-fixed system as is. 

- Of course, the Newton’s second law in rotation 
is applicable to the space-fixed system. 

- The two components (Lx, Ly) of the angular 
momentum on the horizontal plane Oxsys lead 
to the same ODE. 

- The space zs-component Lz of the angular 
momentum is an invariant quantity thus its 
derivative vanishes. The latter formulation is 
the second (Euler’s) governing equation.  

- The two abovementioned discrete ODEs are of 
the first and second order, respectively, 
expressed in only the variables   and  , that 
is eventually they do not include the spin angle 
 . 

- For each time t, the spin is easily determined by 
the relation in terms of the calculated azimuthal 
and lean angles. Usually, there is no practical 
need to calculate separately all the three 
components ( 1 2 3, ,   ), not even the spin. The 
latter can be calculated afterwards. 

- Similarly, when implementing the Lagrange 
equations, the spin does not appear at all.  

 

Appendix A 
 

Derivation of Euler equations of motion using 
transformation matrices 

 

In general, the relation between the co-ordinates of a 
vector v (tensor of rank one) in the body- (Oxbybzb) and 
the space- (Oxsyszs) system, is: 

T

space body v A v ,   (A-1) 

In our case of interest, A is the transformation matrix 
given by Eq. (9).  

Considering the angular velocity in matrix form 
(which is the same as the matrix ε  that is cited on a 
classical textbook [16, p. 170], eq. (4.69')): 

3 2

3 1

2 1

0
0

0
body

 

 

 

 
 

  
  

Ω ,   (A-2) 

it can be easily proved that T

body A Ω A , or 

equivalently 

( )T T

body A A Ω    (A-3) 

It is worth-mentioning that the definition of Ω  in (A-2) 
is so as it fulfills the identity:   Ω v ω v  (matrix 
product equals to the cross product).  

The second Newton’s law for rotation holds in only 
the space system and can be written as follows: 

space

space space

d

dt
 

L
L M   (A-4) 

Setting 
spacev L  in (A-1) yields T

space body L A L  
thus the product rule on the latter function is  

( ) ( )T T T

space body body body

     L A L A L A L  (A-5) 

Substituting (A-3) into (A-5) we obtain: 
T T

space body body body   L A L A Ω L   (A-6) 

Now, setting 
spacev M  in (A-1) yields: 

T

space body M A M ,   (A-7) 

Substituting (A-6) and (A-7) into (A-4), and then clearing 
the common factor T

A  (otherwise left-multiplying by 
the matrix A  which fulfils the relation T AA I = 
identity matrix), we obtain 

body body body body  L Ω L M    (A-8) 

Considering that 

 1 1 2 2 3 3
T

body I I I  L  (A-9) 

and 

 1 2 3
T

body M M MM ,    (A-10) 

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION 
DOI: 10.37394/232010.2021.18.9 Christopher G. Provatidis

E-ISSN: 2224-3410 92 Volume 18, 2021



Equation (A-8) becomes 

1 1 3 2 1 1 1

2 2 3 1 2 2 2

3 3 2 1 3 3 3

0
0

0

I I M

I I M

I I M

   

   

   

       
      

         
               

(A-11) 

One may observe that Eq. (A-11) is identical with Eq. 
(14a,b,c), and this completes the proof.           ■ 

 

Appendix B 
 

Moment induced by the weight 
 

Consider the situation shown in Fig. 1, which is 
repeated in Fig. 7. The moment vector extτ  induced 

by the weight m W g  with respect to the fixed 
point O is given by: 

( )ext m  τ r g ,  (B-1) 

Since the position vector r  is OC , the moment 
vector will lie along the line of nodes ON, directed 
from O to N. The magnitude of the moment will be 
equal to sinmg mgl  . Also, the vector extτ  
splits in two Cartesian components: 

( sin )sin
( sin )cos

x P

y P

M mgl

M mgl

 

 

 

 
   (B-2) 

Due to Eq. (43), Eq. (B-2) becomes: 

( sin )cos
( sin )sin

x

y

M mgl

M mgl

 

 




   (B-3) 

In vector form, Eq. (B-3) is rewritten as 

cos
sin

sin
x

y

M
mgl

M






   
   

  
,   (B-4) 

where   is the classical Euler angle 
( , )

s
Ox ON  , and not the polar angle 

( , )
P s

Ox OC  . Obviously, 0
z

M  .                    ■ 

 

 

Figure 7: External moment 
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