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Abstract: - This study investigates energy losses in crude oil pipelines to optimize design, improve efficiency, 
and enhance safety. Pipelines made of AISI1020 steel were modeled as three equal-length sections with varying 
diameters to replicate real-world conditions. COMSOL Multiphysics simulations were conducted to analyze 
pipeline behavior under different heat and flow scenarios. Temperature-related challenges were a primary focus 
due to their impact on energy dissipation. A quantile loss prediction approach identified the best-performing 
models. Based on machine learning model metrics and quantile loss, the best prediction models were analyzed 
for each output. For instance, for the average Head Loss (HL_Avg), the Random forest-tuned model emerged 
as the best and most balanced model, excelling across all metrics and quantiles while offering high accuracy 
and minimizing overfitting risks. Further, the analysis of SHAP  values to assess the influence of key 
parameters such as fluid velocity, temperature gradients, and pipeline geometry is a novel approach that 
enhances the interpretability of model predictions. The findings emphasize the significance of model selection 
in energy loss prediction, demonstrating how effective forecasting enhances pipeline efficiency, reduces costs, 
and supports environmental sustainability. 
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1    Introduction 
Rapid urbanization has led to increasingly intricate 
domestic and industrial pipeline networks, 
accommodating the rising demand for efficient 
transport of fluids. This complexity presents 
challenges in maintaining system performance and 
sustainability. Thus, thoroughly evaluating energy 
losses becomes indispensable for operators striving 
to ensure product integrity, optimize transportation 
processes, and address environmental concerns. 
Such assessments help identify inefficiencies, 
predict potential failures, and devise strategies to 
minimize operational costs and energy consumption, 
and the petroleum transport industry is no exception.  
The efficient transport of crude oil through pipeline 
networks remains a critical challenge in the 
petroleum industry, where energy losses and system 
optimization play crucial roles in operational 
efficiency and cost-effectiveness. Pipeline systems 
must be carefully designed to manage various 
factors, including pressure drops, temperature 

variations, and fluid properties, significantly 
impacting the transport process. Understanding and 
predicting these parameters is essential for 
designing and operating sustainable crude oil 
transportation systems.  

This research employs a multifaceted approach, 
incorporating numerical modeling, data simulation, 
and machine learning algorithms to analyze and 
predict various aspects of crude oil transport, 
including energy losses such as head loss, power 
loss, and heat transfer characteristics. The study 
presents a comprehensive fluid (crude oil) flow 
analysis in a simulated three-component crude oil 
pipeline system using COMSOL Multiphysics 
software. Our investigation focuses on an AISI 1020 
steel pipeline network with varying diameters, 
specifically designed to examine the complex 
interplay between different operational parameters 
and their effects on system efficiency. Using the 
finite element method (FEM) in COMSOL 
Multiphysics, it investigates fluid flow and heat 
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transfer under laminar, non-isothermal conditions. 
The research develops predictive models for system 
optimization, applying machine learning algorithms, 
quantile loss  and SHAP (Shapley Additive 
Explanations) to identify key factors influencing 
performance. The study provides valuable insights 
into optimizing crude oil transport by analyzing 
energy losses and exploring relationships between 
operational parameters, such as fluid velocity, input 
pressure, and temperature. 
 

 

2   Literature Review  
Several key mechanisms govern thermal energy 
transfer away from a system through conduction, 
convection, and radiation, [1]. In a study conducted 
by [2],  the authors developed an intrusion detection 
system for the gas pipeline industry using machine 
learning techniques. The limitations of this study 
highlighted the challenges faced in developing a 
robust and reliable intrusion detection system for the 
gas pipeline industry. However,  implementing an 
automated system for configuring trend data would 
eliminate the need for manual setup, thus reducing 
human error and saving time. 

Using ten years of monthly price data for 
Oman's crude oil, [3] employed the Box-Jenkins 
ARIMA statistical method to analyze price patterns 
and trends. The study showed that this modeling 
technique could reliably predict future oil prices, 
offering valuable insights for industry leaders and 
government officials in Oman to guide their 
planning and policies. In their research analyzing oil 
market connections, [4] studied price relationships 
between three major crude oil benchmarks - WTI, 
Brent, and Oman. While they identified long-term 
pricing patterns between these different regional 
markets, their study had two key limitations: it used 
data only from August 28, 2002, up to May 27, 
2014, missing recent market changes, and focused 
solely on these three specific oil benchmarks rather 
than examining a broader range of global crude oil 
prices. Authors in [5] did a comprehensive study on 
measuring the densities and viscosities of the 
samples at various temperatures. They measured 
how temperature affects the oils' density and 
viscosity and analyzed how these oils flow through 
both vertical ring-shaped spaces and cylindrical 
pipes. They studied the oil's movement under 
natural gravity and external pressure at different 
temperatures. Their findings enhanced our 
understanding of how temperature changes impact 
Omani crude oils' physical properties, the behavior 
of these oils when flowing through different pipe 
configurations, and the dynamic characteristics of 

specific oil samples, confirming the follow-up of  
Newtonian fluid behavior. 

In a study conducted by [6], the authors 
developed an improved viscosity prediction model 
for extra heavy oil under high temperature and high-
pressure conditions. Their approach was based on 
the Barus, Chung, and filtration experiments. It was 
designed to accurately predict the viscosity of extra 
heavy oil, making it a valuable tool for industries 
dealing with heavy oils in challenging 
environments. However, it didn't fully account for 
factors such as impurities, additives, or variations in 
oil composition on the model's predictive accuracy. 
In a study conducted by [7], to investigate the 
impact of heating-induced viscosity reduction on the 
flow of heavy crude oil in pipelines, the researchers 
investigated how heating affects crude oil's flow 
behavior by reducing its thickness. While their study 
demonstrated how heat improves oil movement 
through pipelines, there were limitations, like the 
research relying on simplified models and 
assumptions that might affect result accuracy. Also, 
to strengthen their findings, they should have 
considered running sensitivity tests to determine 
which factors most significantly impact how heat 
reduces oil viscosity and evaluate how these key 
factors influence overall results. In [8] researchers 
examined methods to reduce the viscosity of heavy 
crude oil, aiming to enhance its transportability 
through pipelines. The researchers investigated 
various techniques to improve the flow of thick, 
heavy crude oil—an essential factor for cost-
effective pipeline transportation. Although specific 
details are not provided, their study highlighted the 
importance of lowering viscosity for efficient oil 
transport within pipeline systems. [9] examined key 
factors that affect how well machine learning 
predicts energy usage. The research reviewed 
existing machine learning approaches in this field, 
outlined their proposed method, presented their 
findings, and analyzed crucial factors. It also 
evaluated ways to improve prediction accuracy by 
exploring performance trade-offs, developing new 
approaches, and refining data processing techniques. 
The work aimed to enhance our understanding of 
what drives accurate energy consumption forecasts 
using machine learning models. 

In a study by  [10] on building energy modeling 
using clustering algorithms and semi-supervised 
machine learning approaches, the authors focused 
on developing new and robust data-mining 
techniques to explore large and complex data 
generated by sensing and tracking technologies. The 
research methodology involves utilizing data from a 
research university in Arizona with multiple 
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campuses and buildings to implement these 
techniques and frameworks. However, the paper 
aims to fill the gap in accurately identifying 
technical and non-technical losses in building 
energy systems, which are crucial for optimizing 
energy efficiency and reducing financial losses. [11] 
narrated the state-of-art research works related to 
applying Machine Learning and AI techniques in the 
upstream oil and gas industry. Representative cases 
using machine learning in exploration, reservoir, 
drilling, and production are presented in this paper. 
However, many such solutions utilizing Artificial 
Neural Networks (ANN), supervised learning, fuzzy 
logic, linear regression, and PCA could be enforced 
to counteract various difficulties found in oil and 
gas industries and help in maturing for profitable 
strategies. [12] investigated pressure loss prediction 
in water-assisted unconventional crude oil 
transportation using machine learning techniques. 
Their study employed multiple conventional 
machine learning algorithms, analyzed a 
comprehensive dataset of 225 data points, and 
examined seven key input parameters viz. Pipe 
diameter, Average fluid velocity, oil density, water 
density, oil viscosity, water viscosity, and water 
content percentage. The research aimed to develop 
more accurate predictive models for understanding 
pressure dynamics in complex crude oil flow 
scenarios. Among the algorithms tested, the 
artificial neural network showed the most promising 
performance with a coefficient of determination (R2) 
of 0.99 and mean squared error (MSE) of 0.009. 
[13] investigated carotid artery dynamics using 
advanced machine-learning techniques. Their 
research analyzed datasets from sophisticated artery 
models, simulated various anatomical and 
physiological scenarios, and focused on three key 
carotid artery segments: common carotid artery, 
internal carotid artery, and external carotid artery. 
By applying the quantile loss function, they aimed 
to improve wall shear stress prediction accuracy, 
enhance machine learning model reliability, and 
better detect potential atherosclerotic conditions 
through advanced blood flow parameter analysis. 

Our research advanced in the region of pipeline 
designs by leveraging machine learning to analyze 
crude oil transport systems. We propose to develop 
a comprehensive approach that utilizes simulated 
data to predict flow dynamics, seeks to identify the 
most reliable predictive model, proposes a pipeline 
configuration constructed from AISI 1020 steel, and 
incorporates three pipe sections with varying 
diameters and examined performance under multiple 
temperature scenarios. The goal is to create a robust 
predictive framework for understanding and 

optimizing crude oil transportation infrastructure. 
Material properties of the steel, dimensions of the 
component pipes, and crude oil properties are 
sourced from published literature [14] and [15].  

A Shapley additive explanation-based approach 
that describes an anomaly detection scheme and the 
extent of input variable contribution to the obtained 
outcome was examined in the study done by  [16]. 
Park found the importance of the differential 
pressure control valve in district heating systems by 
combining anomaly detection with explainability, 
which is crucial for practical applications in 
monitoring district heating systems. A more direct 
method of establishing a direct relationship between 
the Shapley values and prediction errors was used in 
another study by [17]; this method worked at a more 
local level to successfully discover the specific 
biases induced by each variable. Two real-world 
cases with idea shifts and synthetic scenarios that 
mimicked situations of rapid and incremental shifts 
were used to test the suggested methodology. [18] 
conducted research on a public library in 
northwestern Spain, comparing three machine 
learning techniques: XGBoost, SVR, and MLP 
neural networks. They evaluated the models' 
performance using two sets of metrics. For thermal 
demand predictions, they employed CV (RMSE) 
and NMBE, as recommended by ASHRAE. [19] 
explored Shapley value, a popular method for 
interpreting deep learning predictive models. They 
noted that accurately and efficiently calculating 
Shapley values is challenging due to the exponential 
increase in computational complexity as input 
features grow. Their study introduced EmSHAP (an 
energy-based model for Shapley value estimation), 
which estimated the expected Shapley contribution 
function for any feature subset. This model used an 
energy network to approximate unnormalized 
conditional density and a GRU network for the 
partition function.  

In a separate study by [20] pioneered nonlinear 
deep learning algorithms, specifically LSTM, to 
examine inventory information shock and its impact 
on crude oil price volatility. They then integrated 
these findings into forecasts using multivariate 
LSTM techniques. [21] aimed to improve 
productivity and oil recovery while reducing 
individual good development footprints. They 
analyzed a comprehensive dataset from the 
Duvernay reservoir, including geological, drilling, 
completion, production operations, and output data. 
Their approach used a customized stacked model, 
combining an extreme gradient-boosting regressor 
as the base model with a linear regressor as the 
meta-model. Research conducted by [22] proposes a 
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new robust modeling based on an adaptive network-
based fuzzy inference system, which mitigates 
ANFIS, weighted logistic regression, and a relevant 
vector machine. However, the model had sensitivity 
to outliers and was still influenced by the extreme 
datasets. However, it could be improved by the 
implementation of more ensemble learning 
approaches.  A predictive VISCOSITY model using 
Support Vector Machines(SVM) was proposed, 
which helped in modeling the fluid flow for precise 
viscosity predictions, conducted by [23]. They used 
viscosity as the target variable, which consisted of a 
dataset with 366 logs. However,  the SVM models 
could pose some limitations for large datasets. 
However, identifying relevant features from the data 
could improve the model's performance. In a study 
conducted by [24], the researchers focused on 
analyzing the energy losses in crude oil pipelines by 
calculating power loss, head loss, etc. They 
designed a system with AISI1020 steel by 
developing a three-component pipeline system 
which was later simulated under different 
temperatures, pressures, and materials. However,  

this paper could be improved by validating the 
Comsol simulation data with the real pipeline data 
from the benchmark paper. In a study conducted by 
[25],  the quantile loss prediction approach was 
utilized to identify the best-performing models for 
energy loss prediction. The study's findings indicate 
that the Random forest-tuned model emerged as the 
most balanced and accurate model for predicting 
average head loss (HL_Avg), excelling across 
various metrics and quantiles while minimizing 
overfitting risks. This aligns with the broader 
literature on machine learning applications in 
engineering, where model tuning and selection are 
critical for enhancing predictive performance. 

 
 

3   Research Questions  
We propose the following research objectives based 
on the literature survey. 

1. How do temperature variations across the 
three pipeline components influence the 
overall system efficiency and energy losses? 

2. How can COMSOL Multiphysics 
simulations be effectively integrated with 
machine learning approaches to enhance 
understanding of crude oil transport 
systems? 

3. Which machine learning algorithms provide 
the most accurate predictions for different 
target variables in crude oil pipeline 
systems? 

The paper's structure is further arranged as 
follows: Section 4 describes the methodology and 
manifests data analysis, including quantile loss 
functions. Section 5 throws light on the findings and 
their interpretations. The final section summarizes 
key points and suggests future scope. 
 
 
4   Methodology  
Crude oil is categorized into light, medium, heavy, 
and extra heavy based on its API gravity. Viscosity 
measures how resistant the oil is to flow.  

We developed a computational model for crude 
oil transport utilizing COMSOL Multiphysics, 
creating a three-component pipeline system made of 
AISI 1020 steel. The pipeline configuration, visually 
represented in Figure 1 and Figure 2, was designed 
with comprehensive material properties detailed in 
Table 1, enabling a precise simulation of oil 
transportation dynamics. 
 

Table 1. Material Properties of pipelines [14], [15] 

 
 
The pipeline consists of three 10-meter 

components with incrementally increasing radii of 4, 
6, and 8 inches. These components experience 
temperature variations from 298.15K to 358.15K, 
with corresponding temperature-dependent viscosity 
changes as documented in Table 3, with [14]. The 
system maintains inlet pressures, creating pressure 
drops between 294,299 and 588,599 Pa. The crude 
oil is modeled as a Newtonian fluid with a density 
of 935  𝑘𝑔/𝑚3. 

 

Material 

Properties 

Values 

          Units 

Density 7870 𝑘𝑔/𝑚3 
Coefficient of 
thermal expansion 

1.17
× 10−5 1/K 

Poisson Ratio 0.29  
Thermal 
Conductivity 51.9 W/(m. K) 

Young's modulus 2.05 ×
1011 

Pa 

Bulk modulus 1.4 × 1011 N/m2 
Shear Modulus 8 × 1010 N/m2 
Thickness of the 
pipe 0.01-0.05 m 

Heat Flux  0.1 - 1 W/m2 
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Fig. 1: Pipes 1 and 2 
 
4.1  Mesh Configuration 
Figure 1 and Figure 2  are Mesh Configuration for 
pipes 1, 2 and 3.              
                                         

 
Fig. 2: Pipes 2 and 3 
 

A user-controlled free triangular mesh with 
2171 triangular elements—or a total of 76758 
degrees of freedom—was employed to calculate the 
velocity, temperature, and pressure variables. Table 
2 provides the mesh parameters.  

 
Table 2. Parameters of The Mesh, [24] 

PARAMETERS SIZE 
Number of elements 2171 

Number of Vertex 12 
Number of edge 
elements 786 

Average element 
Quality 

 
0.8154 

 
Minimum element 
Quality 

 
0.6598 

 
The COMSOL simulation for the three different 

temperatures, T1, T2, and T3, for the three pipelines 
is given in the (Figure 3, Figure 4 and Figure 5).             

 
Fig. 3: T1 & T2 
 

 
Fig. 4: T2 & T3       
 

 
Fig. 5: T1 & T3 
 
 

5 Data Collection by Performing 

Simulations 
The system makes use of three connected pipe 
components, each extending 10 meters in length 
with different inner radii.  The three components are 
respectively 4,6,8 inches  These pipes operate under 
different temperature conditions of 298.15K and 
358.15K, with the fluid's viscosity changing 
according to temperature as detailed in Table 3,  
[14]. This entire system of pipelines however 
handles crude oil,  which exhibits Newtonian fluid 
behavior and has a density of 935 kg/m³. There are 
four different pressure drops applied between the 
inlet and outlet points: 294,299 Pa, 392,400 Pa, 
490,500 Pa, and 588,599 Pa. The system makes use 
of three connected pipe components, each extending 
10 meters in length with different inner radii.  The 
three components are respectively 4,6,8 inches. 
These pipes operate under different temperature 
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conditions of 298.15K and 358.15K, with the fluid's 
viscosity changing according to temperature as 
detailed in Table 3,  [14]. This entire system of 
pipelines however handles crude oil,  which exhibits 
Newtonian fluid behavior and has a density of 935 
kg/m³. There are four different pressure drops 
applied between the inlet and outlet points: 294,299 
Pa, 392,400 Pa, 490,500 Pa, and 588,599 Pa. 
 

Table 3. Table Representing Temperatures for 
Crude Oil, [14] 

Temperature 
(K) 298.15 313.15 328.15 343.15 358.15 

Viscosities 
(cP) 4.6 2.85 1.8 0.9 0.42 

 

5.1  Mathematical Modelling  
We used laminar and non-isothermal flow modeling 
to apply the stationary Navier-Stokes and Energy 
equations. The nonlinear flow problem was solved 
through a nonlinear solver with no-slip boundary 
conditions, suppressing backflow and normal flow. 
Utilizing the finite element method (FEM) in 
COMSOL software, the governing equations (1-
3)and boundary conditions were solved, thus 
enabling comprehensive numerical simulation of the 
complex fluid dynamics problem. A P1-P1 linear 
finite element discretization was employed to 
compute velocity, temperature, and pressure, with 
the nonlinear coupled system resolved using the 
PARDISO solver. 
 
The mathematical formulation of the problem is as 
follows: 
 
5.1.1  Continuity Equation  

The continuity equation is given by   
 . 0u                                                       (1)                                     

 
Equation (1) represents the conservation of mass 

for an incompressible fluid.  
The divergence of velocity must be zero, 

meaning the fluid has no accumulation or depletion 
of mass. This represents the conservation of mass 
for an incompressible fluid.  

The divergence of velocity u  must be zero, 
meaning the fluid has no accumulation or depletion 
of mass. 

 
5.1.2  Momentum Equation  

The Momentum equation is: 
  ( . ) . .u u pI K g                          (2)  

where,  
1 ( ( ) )
2

TK u u    ,u  is the fluid 

velocity, K is the stress vector. 
 
Equation (2) is Navier Stoke’s equation, governing 
fluid motion.  
 
The left-hand side ( . ) ,u u   represents the 
convective acceleration of the fluid. 
 
The right-hand side consists of  

.( ) :pI   pressure forces.  

. :K Viscous stress forces, where K is stress 
tensor. 

:g  External body forces, such as gravity. 
 
Key Assumption: This equation assumes Newtonian 
fluid behavior where viscosity is included in the 
stress tensor K.  
 
5.1.3  Energy Equation  

The energy equation is given by 
 0. .z pd c u T q q                                    (3)    

 
where heat flux is defined by   zq d k T      
    
Equation (3) governs heat transfer within the fluid. 
 
The first term .z pd c u T  , represents convective 
heat transfer (heat carried by the fluid motion). 
 
The second term .q . q accounts for heat 
conduction. 
 
The right-hand side 0q , represents an internal heat 
source (e.g. heating due to external factors ) 
 
The Fourier’s Law of Heat Conduction:  
                           zq d k T    
states that heat flows in the direction opposite to the 
temperature gradient, and k is the thermal 
conductivity. 
 
5.1.4   Boundary Conditions                              
 

Inlet pressure: 
^ ^

00 0[ ] , , . 0Tn pI K n p p p u t               (4) 
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Specifies the pressure at the inlet as 0p


.The velocity 
component along the boundary surface is   
 zero (u.t=0) meaning no slip condition.  
 
 Outlet pressure:  

0 0, . 0p ut                       (5) 
 
The outlet pressure is zero (relative to reference 
pressure). 
 
The velocity at the outlet satisfies the no-slip 
condition.  
 
Initial Temperature Condition: 

         𝑇 = 𝑇0                                                   (6) 
 
Specifies an initial uniform temperature 0T  
     

Thermal Insulation and Heat Flux . 0n q      

     , 0. zn q d q                                                (7) 
 

The first condition . 0n q  implies thermal 
insulation, meaning no heat flux at this boundary. 
The second condition 0. zn q d q  , defines a given 

heat flux 0q  entering or leaving the system. 
  
Inflow Condition:  

          . .zn q d Hu n                               (8)    
 
Describes heat inflow due to convection  
The enthalpy difference: 
                    ∆𝐻 =  ∫ 𝑐𝑝

𝑇

𝑇0
𝑑𝑇         

accounts for the total heat absorbed or released by 
the fluid.   
 

Outflow Condition:  
 −𝑛. 𝑞 = 0                                       (9) 

 
Specifies that no heat is lost at the outlet. 
 
5.2  Heat Transfer in Solids and Fluids 
Heat transfer is considered in the case of all three 
pipes and three fluids. In solids, the thermal 
conductivity, density, and heat capacity at constant 
pressure are from the material, whereas for fluids, 
the heat capacity at constant pressure is 1670 
J/(Kg.K). 
 
 

6   Data Collection  
This section outlines the methodology used for data 
analysis and the steps involved in gathering data. 
Table 4 and Table 5 in Appendix summarize the 
flow and heat conditions using different features and 
target variables under which we simulated the 
numerical model we built. To further explain, we 
established several situations that included 
variations in flow, pressure differentials, and 
combinations of temperature components. We 
carried out a performance analysis using the data 
forecasted by this model. 
 
6.1  Head Loss 
Fluid passing through a hydraulic system 
experiences an energy reduction, known as head 
loss. This loss comprises changes in elevation, 
velocity, and pressure. It also accounts for the 
energy expended to overcome friction from pipe 
walls and other components. All real fluid flows 
inevitably encounter head loss, which results from 
friction between adjacent fluid particles, particularly 
in turbulent conditions. 

The flow velocity, pipe diameter, pipe length, 
and a friction factor based on the roughness of the 
pipe and the flow's Reynolds number all affect the 
head loss that happens in pipes. The formula for 

calculating head loss is given by 
2

2f

LV
h f

Dg

 
  

 
 , 

where  L is the length of the pipe (m), V is the 
average velocity (m/s), D is the diameter of the pipe 
(m), and  g is the gravitational force given by 9.8067 

2/m s . The friction factor for laminar flow is 

computed using the following formula:
16

e

f
R

  , 

where eR  is the Reynolds number and is given 

e

DV
R






 
 

6.1.1  Power Loss 

Power loss is given by Power loss =
2

4
V D

P


  , 

where P  represents the pressure difference 
between two ends of the pipe.   
 
6.1.2  Pressure Loss 

Pressure losses in pipes are caused by internal 
friction of the fluid (viscosity) and friction between 
fluid and wall. Pressure loss is given by the formula 
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2.. .
2D

L V
p f

D


  , where p  is the pressure loss 

in 2/N m  , Df  is the darcy friction factor, L is the 
pipe length in m, D is the hydraulic diameter in m, 
V is the fluid flow average velocity in m/s and 𝜌is 
the fluid density 3/kg m .  
 
6.2  Heat Loss 
Heat loss in pipes refers to the loss of heat 
energy that occurs during the movement of a coolant 
from the source to the end user. This heat loss can 
be caused by factors such as insulation thickness, 
ambient temperature, and wind speed. Insulation is 
used to reduce heat loss. Heat Loss through a solid 

material is given by 
. .k A T

Q
d


   , where K is the 

thermal conductivity of the material through which 
heat conduction takes place, 𝑄 is the heat loss (in 
watts),  A is the cross-sectional area through which 
heat is being conducted, T is the temperature 
difference across the material, and d is the thickness 
of the material. 

The friction factor for laminar flow is computed 
using the following formula: 𝑓 =

16

𝑅𝑒
 , where 𝑅𝑒 is 

the Reynolds number and is given 𝑅𝑒 =
𝐷𝑉𝜌

𝜇
. 

 
6.3  Power Loss 
Power loss is given by Power loss = ∆𝑃 ×

VπD2

4
 , 

where P  represents the pressure difference 
between two ends of the pipe.   

The format and values of data collection and 
feature variables are shown in Appendix in Table 4, 
Table 5  and Table 6. 

 

 

7   Data Analysis 
The data was collected using COMSOL 
MULTIPHYSICS and then analyzed using ML 
models like linear regression, polynomials, decision 
trees, random forests, bagging, and boosting 
algorithms. In our study, new quantile methods were 
proposed that could clearly explain a balance 
between accuracy and originality. The entire work 
plan is proposed and shown in Figure 6 (Appendix), 
[24]. 

The values obtained from the experimental 
model and the simulated model were then 
benchmarked, and the results are shown in 
Appendix Table 7, Table 8 and Table 9. 

    
7.1  Key Insights and Implications 

From Table 7, Table 8 and Table 9 in Appendix, the 
higher velocity predictions in the proposed model 
suggest that it estimates slightly better flow 
conditions. 

Higher power losses at lower temperatures in 
the proposed model indicate possible increased 
turbulence or frictional effects. Higher absolute 
pressure at higher temperatures suggests the 
proposed model might better capture thermal 
expansion effects or other dynamic factors. 

The close alignment of viscosity values ensures 
that the fundamental fluid properties are well-
represented in both models. The first step involves 
examining the simulated data to detect relationships 
among the features. Subsequently, feature 
engineering techniques are applied to create a set of 
independent features for the target variables, with 
the results presented in Table 5 (Appendix). To 
achieve this, each target variable was subjected to 
machine learning models, and performance metrics 
for different variables are shown in Appendix in 
Table 10, Table 11, Table 12, Table 13, Table 14 
respectively. 

From Table 11 (Appendix), the following 
observations are made for V1 Avg. Based on the 

highest accuracy of the R² and Adj R² and the 
lowest Errors of RMSE and MAE, XGBoost, 
Random Forest Tuned, and Random Forest are the 
first three best models to predict V1Avg.  
 
Comparing the Models Based on Metrics  

Model 
Accuracy (R², RMSE, 

MAE) 
Overfitting Risk 

Generalization 

Ability 

XGBoost 
✅ Most Accurate (R² 
= 1.0, RMSE = 0.09, 
MAE = 0.06) 

⚠️ Possible 
Overfitting 

❌ Poor 
Generalization 

RF 

Tuned 

✅ High Accuracy (R² 
= 0.98, RMSE = 0.07, 
MAE = 0.03) 

⚠️ Slight 
Overfitting 

✅ Well-
Balanced 

Random 

Forest 

(RF) 

✅ Best Generalized 
(R² = 0.99, RMSE = 
0.07, MAE = 0.02) 

✅ Low 
Overfitting Risk 

✅ Great 
Generalization 

 

 

Comparing Models Based on Quantile Loss  

Model 
Low (0.1) 

Quantile Loss 

Median (0.5) 

Quantile Loss 

High (0.9) 

Quantile Loss 

XGBoost ❌ 1.1 (High) ❌ 0.6 (High) ✅ 0.55 (Best) 

RF Tuned ✅ 0.9 (Best) ✅ 0.5 (Best) ✅ 0.63 (Good) 

Random 

Forest (RF) ❌ 1.15 (High) 🔹 0.63 (Moderate) 🔹 0.65 (Slightly 
Worse) 
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Final Decision: RF Tuned is the Best Model to predict V1Avg 

Model Overall Decision 

RF Tuned ✅ Best model overall (Balanced across all metrics 
and quantiles) 

Random Forest 

(RF) 
🔵 Second best (Best generalization, slightly worse 
in high quantile loss) 

XGBoost ❌ Not recommended (Overfits, performs poorly in 
lower quantiles) 

 

 Based on the highest accuracy of the R² and Adj 
R² and the lowest Errors of RMSE and MAE it can 
be seen that XGBoost, Random Forest Tuned, and 
Random Forest are the first three best models to 
predict V2Avg.  

 
Comparing the Models Based on Metrics 

Model 
Accuracy (R², 

RMSE, MAE) 

Overfitting 

Risk 

Generalization 

Ability 

XGBoost 

❌ Overfits (R² = 
0.99, RMSE = 
0.079, MAE = 
0.05) 

⚠️ High 
Overfitting 

❌ Poor 
Generalization 

RF Tuned 

✅ High Accuracy 
(R² = 0.99, RMSE 
= 0.067, MAE = 
0.03) 

⚠️ Slight 
Overfitting 

✅ Well-
Balanced 

Random 

Forest 

(RF) 

✅ Best 
Generalized (R² = 
0.99, RMSE = 
0.06, MAE = 
0.02) 

✅ Low 
Overfitting 
Risk 

✅ Great 
Generalization 

 
Comparing Models Based on Quantile Loss 

Model 
Low (0.1) 

Quantile Loss 

Median (0.5) 

Quantile Loss 

High (0.9) 

Quantile Loss 

XGBoost ✅ 0.5 (Best) ✅ 0.3 (Best) ✅ 0.6 (Best) 

RF Tuned ✅ 0.5 (Best) 🔹 0.4 
(Moderate) 

❌ 0.75 
(Higher) 

Random 

Forest (RF) 
❌ 0.55 
(Higher) 

🔹 0.35 
(Moderate) 

❌ 0.7 
(Higher) 

 

Final Decision: RF Tuned is the Best Model to predict V2Avg 

Model Final Decision 

RF Tuned ✅ Best model overall (Balanced across all metrics 
and quantiles) 

Random Forest 

(RF) 
🔵 Second best (Best generalization, slightly worse 
in high quantile loss) 

XGBoost ❌ Not recommended (Overfits, performs poorly in 
generalization) 

 Based on the highest accuracy of the R² and 
Adj R² and lowest Errors of RMSE and MAE it 
can be seen that Random Forest Tuned, 
Polynomial Regressor, and Random Forest are 
the first three best models to predict V3Avg.  

 
 Comparing the Models Based on Metrics 

Model 
Accuracy (R², 

MSE, MAE) 

Overfitting 

Risk 

Generalization 

Ability 

Random 

Forest (RF) 

✅Best Generalized 
(R² = 0.999, MSE = 
0.001, MAE = 
0.0002) 

✅ Low 
Overfitting 
Risk 

✅ Great 
Generalization 

Polynomial 

Regressor 

⚠️ Slight 
Overfitting (R² = 
0.99, MSE = 0.001, 
MAE = 0.0002) 

✅ Good 
Generalization 

🔹 Moderate 
Stability 

RF Tuned 

✅ High Accuracy 
(R² = 0.999, MSE = 
0.002, MAE = 
0.0006) 

⚠️ Slight 
Overfitting 

✅ Well-
Balanced 

 
Comparing Models Based on Quantile Loss 

Model 
Low (0.1) 

Quantile Loss 

Median (0.5) 

Quantile Loss 

High (0.9) 

Quantile Loss 

Random 

Forest (RF) ❌ 0.7 (Higher) ❌ 1.1 (High) ✅ 0.6 (Best) 

RF Tuned ❌ 0.8 (Higher) ✅ 0.41 (Best) ✅ 0.55 (Best) 

Polynomial (5) ✅ 0.5 (Best) ❌ 0.6 (Moderate) ❌ 0.9 (Higher) 

 

Final Decision: RF Tuned is the Best Mode to predict V3Avg 

Model Overall Decision 

RF Tuned ✅ Best model overall (Balanced across all metrics 
and quantiles) 

Random Forest 

(RF) 
🔵 Second best (Best generalization, slightly worse 
in median quantile loss) 

Polynomial (5) ❌ Not recommended (Performs poorly in high 
quantiles) 

 
 From the Table 12 (Appendix) for HL_Avg , the 

following observations are done: 
 Based on the highest accuracy of the R² and Adj 

R² and the lowest Errors of RMSE and MAE it can 
be seen that Random Forest Tuned,  Random 
Forest, and XGBoost are the first three best 
models to predict HL1.  
 

Comparing the Models Based on Metrics 

Model 
Accuracy (R², RMSE, 

MAE) 

Overfitting 

Risk 

Generalization 

Ability 

Random 

Forest 

(RF) 

✅ Best Generalized 
(R² = 0.999, RMSE = 
0.0186, MAE = 
0.0048) 

✅ Low 
Overfitting 
Risk 

✅ Great 
Generalization 

RF Tuned ✅ High Accuracy (R² ⚠️ Slight ✅ Well-Balanced 
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Model 
Accuracy (R², RMSE, 

MAE) 

Overfitting 

Risk 

Generalization 

Ability 

= 0.995, RMSE = 
0.0207, MAE = 
0.0081) 

Overfitting 

XGBoost 

✅ High Accuracy (R² 
= 0.999, RMSE = 
0.0273, MAE = 
0.0161) 

⚠️ Overfits 
Slightly 

❌ Moderate 
Generalization 

 
Comparing Models Based on Quantile Loss 

Model 
Low (0.1) 

Quantile Loss 

Median (0.5) 

Quantile Loss 

High (0.9) 

Quantile Loss 

Random 

Forest (RF) ✅ 0.04 (Best) ✅ 0.21 (Best) 🔹 0.37 (Slightly 
Higher) 

RF Tuned ❌ 0.48 (Higher) 🔹 0.22 (Moderate) ✅ 0.15 (Best) 

XGBoost ❌ 0.42 (Higher) ✅ 0.21 (Best) ✅ 0.12 (Best) 
 

Final Decision: Random Forest (RF) is the Best Model to predict 

HL1 

Model Overall Decision 

Random Forest 

(RF) 
✅ Best model overall (Best balance of metrics and 
quantile loss) 

RF Tuned 🔵 Second best (Performs well in higher quantiles but 
struggles in low quantiles) 

XGBoost ❌ Not recommended (Overfits and has poor low-
quantile performance) 

 
 Based on the highest accuracy of the R² and Adj 

R² and the lowest Errors of RMSE and MAE it can 
be seen that Random Forest Tuned, Random 
Forest, and XGBoost are the first three best 
models to predict HL2.  

 
Comparing the Models Based on Metrics 

Model 
Accuracy (R², RMSE, 

MAE) 

Overfitting 

Risk 

Generalization 

Ability 

Random 

Forest 

(RF) 

✅ Best Generalized 
(R² = 0.999, RMSE = 
0.0168, MAE = 
0.0045) 

✅ Low 
Overfitting 
Risk 

✅ Great 
Generalization 

RF Tuned 

✅ High Accuracy (R² 
= 0.999, RMSE = 
0.0186, MAE = 
0.0074) 

⚠️ Slight 
Overfitting ✅ Well-Balanced 

XGBoost 

✅ High Accuracy (R² 
= 0.999, RMSE = 
0.0278, MAE = 
0.0162) 

⚠️ Overfits 
Slightly 

❌ Moderate 
Generalization 

 

Comparing Models Based on Quantile Loss 

Model 
Low (0.1) 

Quantile Loss 

Median (0.5) 

Quantile Loss 

High (0.9) 

Quantile Loss 

Random 

Forest (RF) ❌ 0.46 (Higher) 🔹 0.23 
(Moderate) ✅ 0.12 (Best) 

RF Tuned ✅ 0.35 (Best) ✅ 0.16 (Best) ✅ 0.15 (Best) 

XGBoost 🔹 0.36 
(Moderate) 🔹 0.2 (Moderate) ❌ 0.21 

(Higher) 

 

 

Final Decision: RF Tuned is the Best Model to predict HL2 

Model Overall Decision 

RF Tuned ✅ Best model overall (Balanced across all metrics 
and quantiles) 

Random Forest 

(RF) 
🔵 Second best (Best generalization, slightly worse 
in low quantile loss) 

XGBoost ❌ Not recommended (Overfits and has poor high 
quantile performance) 

 

 Based on the highest accuracy of the R² and 
Adj R² and the lowest Errors of RMSE and 
MAE, Random Forest Tuned, Random Forest, 
and XGBoost are the first three best models to 
predict HLAvg.  

 
Comparing the Models Based on Metrics 

Model 
Accuracy (R², RMSE, 

MAE) 

Overfitting 

Risk 

Generalization 

Ability 

Random 

Forest 

(RF) 

✅ Best Generalized 
(R² = 0.9995, RMSE = 
0.0201, MAE = 
0.0063) 

✅ Low 
Overfitting 
Risk 

✅ Great 
Generalization 

RF Tuned 
✅ High Accuracy (R² 
= 0.9994, RMSE = 
0.024, MAE = 0.0097) 

⚠️ Slight 
Overfitting ✅ Well-Balanced 

XGBoost 

✅ High Accuracy (R² 
= 0.9992, RMSE = 
0.0283, MAE = 
0.0168) 

⚠️ Overfits 
Slightly 

❌ Moderate 
Generalization 

 
Comparing Models Based on Quantile Loss 

Model 
Low (0.1) 

Quantile Loss 

Median (0.5) 

Quantile Loss 

High (0.9) 

Quantile Loss 

Random 

Forest (RF) 
🔹 0.04 
(Moderate) 

🔹 0.21 
(Moderate) 

❌ 0.37 
(Higher) 

RF Tuned ✅ 0.03 (Best) ✅ 0.16 (Best) ✅ 0.30 (Best) 

XGBoost 🔹 0.04 
(Moderate) 

🔹 0.21 
(Moderate) 

❌ 0.37 
(Higher) 

 

Final Decision: RF Tuned is the Best model to predict HLAvg 

Model Overall Decision 

RF Tuned ✅ Best model overall (Balanced across all metrics 
and quantiles) 

Random Forest 

(RF) 
🔵 Second best (Best generalization, slightly worse 
in high quantile loss) 

XGBoost ❌ Not recommended (Overfits and has poor high 
quantile performance) 

 
From the table for HTL _Avg(Table 14) in 
Appendix, the Random Forest model is the best 
because :  
Highest Accuracy :𝑅2 = 0.999 , which is a perfect 
prediction  
Lowest Error: RMSE = 0.009, MAE =0.002. 
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From the table for PL _Avg(Table15) in 
Appendix, the Random Forest model is the best 
because:  
Highest Accuracy :𝑅2 = 0.99989 , which is a 
perfect prediction  
Lowest Error: RMSE = 0.0101, MAE =0.003 
 

To improve the grasp of how each feature 
affects the target variables, SHAP (Shapley Additive 
explanations) values in our research utilizing the 
ML model, which is the Random Forest Regressor 
algorithm described for computing SHAP values in 
each segment, is used. The SHAP values for 
different parameters were taken and analyzed for 
better result 
 
7.2  SHAP Value was for Velocity1, V1 

 
Fig. 7: SHAP Value-V1 
 

 
Fig. 8: Mean SHAP Value 

 
Figure 7 and Figure 8 show the SHAP value and 

mean SHAP value impact on velocity V1. 
According to Figure 7 and Figure 8, InPr holds the 
maximum effect on the velocity for component 1. 
The relevance of the remaining parameters, which 
are dz, T2, T3, T1, and Cp, is listed in decreasing 
order after InPr. On the other hand, Velocity V1 is 
barely affected by HF and kk in any part of the pipe. 

 
7.2.1  SHAP Value for Velocity 2, V2 

 
Fig. 9: Mean SHAP Value -V2 

 
Fig. 10: SHAP Value 

 
Figure 9 and Figure 10 illustrate the Mean 

SHAP value and the SHAP value impact on velocity 
V2. 

Additionally, in the Figure 10, InPr holds the 
maximum influential effect on the velocity for 
component 2. The remaining parameters, which are 
dz, T2, T3, T1, and Cp, are listed in decreasing 
order after InPr. On the other hand, HF and kk don't 
show any effect on Velocity V2. 
 
7.2.2  SHAP Value for Velocity 3, V3                    

 
Fig. 11: Mean SHAP Value – V3 
 

 
Fig. 12: SHAP Value  

 
Figure 11 and Figure 12 provide information 

about the Mean SHAP value and the SHAP value 
impact on velocity V3. 

The SHAP values for velocity V3 are shown in 
Figure 12, which clearly state that T1 holds the most 
influential effect on the velocity for component 3.  

The remaining parameters, like InPr, T2, dz,  
T3, and Cp are listed in decreasing order after T1. 
On the other hand, HF and kk don't affect Velocity 
V3. 
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7.3  SHAP Value for Head Loss 1, HL1  

 
Fig. 13: Mean SHAP Value – HL1 
 

 
Fig. 14: SHAP Value  

 
Figure 13 and Figure 14 inform the Mean SHAP 

value and the SHAP value impact on Head Loss 1, 
HL1.  

The SHAP values for HL1 are shown in Figure 
14, which clearly states that InPr holds the most 
influential effect on the Head Loss (HL) for 
component 1. The remaining parameters, like dz, 
T2, T3, and Cp, are listed in decreasing order after 
InPr. On the other hand, HF and kk don't show any 
effect on HL1. 

 
7.3.1  SHAP Value for Head Loss 2, HL2 

 
Fig. 15: SHAP Value -HL2  

 
Fig. 16: Mean SHAP Value  

 

Figure 15 and Figure 16 explain the SHAP 
value and the mean SHAP value impact on Head 
Loss 2, HL2.  

The SHAP values for Head Loss 2, HL2, are 
shown in Figure 16, which clearly states that T2 
holds the maximum influential effect on the Head 
Loss for Component 2. The remaining parameters, 
like InPr, dz, T3, T1, and Cp, are listed in 
decreasing order after T2. On the other hand, HF 
and kk don't affect HL2. 

 
 

7.3.2  SHAP Value for Head Loss 3, HL3 

 
Fig. 17: Mean SHAP Value – HL3  
 

 
Fig. 18: SHAP Value  
 

Figure 17 and Figure 18 give information about 
the Mean SHAP value and the SHAP value impact 
on Head Loss 3, HL3.  

The SHAP values for Head Loss 3, HL3, are 
shown in Figure 18, clearly stating that T3 has the 
maximum influence on the Head Loss for 
Component 3. The remaining parameters, like InPr, 
dz, T2, T1, and Cp, are listed in decreasing order 
after T3. On the other hand, HF and kk don't have 
any effect on HL3. 
 
7.4  SHAP Value for Heat Loss1, HTL1  

 
Fig.19: SHAP Value – HTL1 
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Fig. 20: Mean SHAP Value  

 
Figure 19 and Figure 20 illustrate the SHAP 

value and the mean SHAP value impact on Heat 
Loss 1, HTL1.  

The SHAP values for Heat Loss 1 and mean 
HTL1 are shown in the Figure 20. This clearly states 
that T1 has the maximum influence on the heat loss 
for component 1. However, it's very clear from the 
figure that other parameters like T2, dz, T3, and 
InPr decrease heat loss. Also, parameters like cp, kk, 
and HF have no influence on HTL1. 

 
7.4.1  SHAP Value for Heat Loss 2, HTL2 

 
Fig. 21: SHAP  Value HTL2 
 

 
Fig. 22: Mean SHAP Value  
 

Figure 21 and Figure 22 provide information 
about the SHAP value and the mean SHAP value 
impact on Heat Loss 2, HTL2.  

The SHAP values for Heat Loss 2 and mean 
shape HTL2 are shown in the Figure 22. This 
clearly states that InPr has the maximum influence 
on the Heat Loss for component 2. However, it's 
very clear from the figure that other parameters like 
dz, T2, , T3, T1, and Cp decrease heat loss. Also, 
parameters like HF, and kk do not influence HTL2.  

 
 

7.5  SHAP Values for Power Loss 1, PL1 

 
Fig. 23: SHAP Value – PL1  
 

 
Fig. 24: Mean SHAP Value  
 

Figure 23 and Figure 24 show that the SHAP 
value and the mean SHAP value impact Power loss 
PL1 

The SHAP values for Power Loss 1, PL1, are 
shown in the Figure 24. This clearly states that InPr 
has the maximum influence on the power loss of 
component 1.  

However, it's very clear from the figure that 
other parameters like dz, T2, T3, T1, and cp have a 
decreasing effect on the heat loss. Also, parameters 
like HF and kk do not influence  PL1. 

 
7.5.1. SHAP Values for Power Loss 2, PL2 

 
Fig. 25: SHAP Value PL2  

 
Fig. 26: Mean SHAP Value  
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Figure 25 and Figure 26 illustrate that the SHAP 
value and the mean SHAP value impact on PL2 

The SHAP values for Power Loss 2, PL2, are 
shown in the Figure 26. This clearly states that InPr 
has the maximum influence on the power loss of 
component 1. However, it's very clear from the 
figure that other parameters like dz, T2, T3, T1, and 
cp have a decreasing effect on the heat loss. Also, 
parameters like HF and kk do not influence PL2. 

 
7.5.2 SHAP Values for the Thickness, dz 

 
Fig. 27: SHAP Value dz 
 

 
Fig. 28:Mean SHAP Value  
 

Figure 27 and Figure 28 describe the SHAP 
value and the mean SHAP value impact on the 
thickness dz.  

The SHAP values for the thickness, dz, are 
shown in the Figure 28. This clearly states that dz 
has maximum influence for all three components. 
However, it's very clear from the figure that other 
parameters like InPr, T2, T3, cp, T1, kk, and HF 
have no effect at all. 
 
 

8   Observations 
 It is clear from the analysis of the SHAP 

values shown in Figure 19 and Figure 20 that 
T1 and T2 have a major impact on Heat Loss 
1. The order in which the significance of 
other factors decreases is dz, T3, and InPr 
after T1 and T2. In contrast, there is no effect 
on Heat Loss 1 from Cp, HF, or kk. 

 It is evident from examining the SHAP values 
in Figure 21 that T2 has a considerable impact 
on Heat Loss 2. After T2, the other factors 
become less significant in the following 

order: T3, T1, InPr, kk, and dz. On the other 
hand, Cp and HF show no effect on Heat Loss 
2. 

 HF, kk doesn't affect velocities, head loss, 
power loss, or heat losses. 

 
 

9   Conclusion 
The study identified the most effective machine 
learning models for predicting various energy loss 
metrics in crude oil pipelines. For V1 Avg, V2 Avg, 
and V3 Avg, the top-performing models were 
XGBoost, Random Forest Tuned, and Random 
Forest, with RF Tuned emerging as the best overall 
due to its balance between accuracy and overfitting 
risk. XGBoost, despite high accuracy, exhibited 
overfitting and poor generalization, while Random 
Forest provided strong generalization with minimal 
overfitting.   
                                                                                                                                                                                                
9.1  Comparison with Benchmark Model 
From Table 7, Table 8 and Table 9 in Appendix, the 
proposed model data for key parameters across 
different temperature conditions was compared 
against the experimental benchmark model data, 
[14].  
 
Velocity: The proposed model consistently predicts 
slightly higher velocity values, indicating a tendency 
towards faster fluid movement. 
 
Viscosity: Both models maintain identical viscosity 
values, ensuring consistency in fluid properties. 
 

Power Loss: 
At 313.15K, the proposed model estimates a 3.8% 
higher power loss than the benchmark. 
 
At 328.15K, the power loss in the proposed model is 
slightly lower (0.09% reduction). 
 
At 358.15K, the proposed model estimates a 0.59% 
higher power loss. 
Absolute Pressure: 
At 313.15K, the proposed model predicts slightly 
lower absolute pressure. 
 
At 328.15K, it estimates slightly higher pressure 
than the benchmark. 
 
At 358.15K, the proposed model predicts 3.43% 
higher absolute pressure, suggesting better energy 
conservation mechanisms at high temperatures. 
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These results indicate that the proposed model 
better captures temperature effects and flow 
dynamics, making it a more robust predictive tool 
for pipeline energy losses. Further experimental 
validation is recommended to refine the power loss 
and absolute pressure estimations. This study gives 
a clear picture of the different SHAP values for 
energy losses and the importance of assessing 
energy losses in crude oil pipelines to ensure their 
safe, effective, and financially viable operation. 
Using COMSOL Multiphysics software, we 
conducted a comprehensive investigation of heat 
transfer phenomena of AISI1020 steel pipelines 
with different diameters. Using machine learning 
models, we effectively predicted energy losses, such 
as heat and power losses. Important insights into the 
main variables influencing energy losses in the steel 
pipelines were obtained from the SHAP research. 
The average energy losses highlight how crucial 
temperature control is to the effective architecture of 
the crude oil transportation pipeline network system. 
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APPNEDIX 

 
Table 4. Table representing the Data Collection for Feature Variables, [24] 

 
 

Table 5. Description of Entries of Table 4, [24] 

 

 
Table 6. Table representing the data collection of Target Variables, [24] 
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# dz kk cp HF INFLOW T1 𝝁𝟏 T2 𝝁𝟐 T3 𝝁𝟑 InPr 

1. 0.01000 0.12000 1670 0.10    313.15 313.15 0.00285 313.15 0.00285 313.150 0.00285 294299 
2 0.01000 0.12500 1750 1.00    328.15 328.15 0.00180 328.15 0.00180 328.150 0.00180 392400 
3 0.03000 0.12000 2000 0.50   358.15 358.15 0.00042 358.15 0.00042 328.150 0.00180 392400 

Variable Type  Name  Description Units  Data Points  

Input Variables 

dz Thickness of the pipe M 0.01,0.03,0.05 
kk Thermal Conductivity W/m.K 0.12,0.125,0.13 

 
Specific heat capacity (J/Kg.K) 1670,2250,2500 

HF Heat Flux 
(W/ 

2m ) 
0.10, 0.50, 1.00 

Inflow Inflow at a particular temperature K Shown in the table 2 

1T  Temperature in the first component K Shown in the table 2 

2T  Temperature in the second component K Shown in the table 2 

3T  Temperature in the third component K Shown in the table 2 

1  Viscosity in the first component Pa. S Shown in the table 2 

2  Viscosity in the second  component Pa. S Shown in the table 2 

3  Viscosity in the third component Pa. S Shown in the table 2 

InPr Input Pressure m.Pa 294299, 58599, 490500 
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Table 7. Performance metrics between existing and proposed(Diameter =4 in) 
 

 

 
Table 8. Performance comparison between the existing and proposed model (Diameter = 6 in ) 

 

 

 

 

 

 

 

 

 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

D=6 in Parameters                            Practical  data[14]                     Proposed model [simulated data] 

Temp= 

313.15K 

Velocity(m/s) 3.23 6.33 
Viscosity(Poise) 0.00285 poise 0.00285 poise 
Power loss (W) 22624.43 42970.58 
AbsolutePressure  384176.7212 380195.08 

Temp=  

328.15K 

Velocity (m/s) 3.3 1.5 
Viscosity (Poise) 1.8 1.8 
Power Loss (W) 22308.84 164904.31 
AbsolutePressure  378817.83 380195.08 

Temp=  

358.15 K  

Velocity (m/s) 3.4 2.54 
Viscosity (Poise) 0.00042 0.00042 
Power Loss (W) 21822.98 188902.29 
AbsolutePressure 378239.87 378307.70 

Parameter Observations from Table 7. 
Velocity Slightly higher in the proposed model across all temperatures. 
Viscosity Identical in both models. 
Power Loss Higher in the proposed model at 313.15K and 358.15K, slightly lower at 328.15K. 

Absolute Pressure 
Lower in the proposed model at 313.15K, but higher at 328.15K and significantly higher 
at 358.15K. 

D=8 in  Parameters                            Practical  data[14]                         Proposed model [simulated data] 

Temp=313.15K 

Velocity (m/s) 3.8 4.9 
Viscosity (Poise) 0.00285poise 0.00285 poise 
Power loss (W) 49547.2 42970 
Absolute Pressure  385233.863 380750.73 

Temp=328.15K 

Velocity (m/s) 4.09 8.2 
Viscosity (Poise) 0.0018 0.0018 
Power loss (W) 4.03 7.55 
Absolute Pressure  380588.06 130890.20 

Temp=358.15K 

Velocity (m/s) 4.09 8.2 
Viscosity (Poise) 0.0018 0.0018 
Power loss (W) 4.03 7.55 
Absolute Pressure  380588.06 130890.20 
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Table 9.  Performance comparison between the existing and proposed  model (Diameter = 8 in) 

 

Table 10. Prediction metrics for different ML Models on Temperature 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

D=6 in Parameters                            Practical  data[14]                     Proposed model [simulated data] 

Temp= 

313.15K 

Velocity(m/s) 3.23 6.33 
Viscosity(Poise) 0.00285 poise 0.00285 poise 
Power loss (W) 22624.43 42970.58 

AbsolutePressure  384176.7212 380195.08 

Temp=  

328.15K 

Velocity (m/s) 3.3 1.5 
Viscosity (Poise) 1.8 1.8 
Power Loss (W) 22308.84 164904.31 

AbsolutePressure  378817.83 380195.08 

Temp=  

358.15 K  

Velocity (m/s) 3.4 2.54 
Viscosity (Poise) 0.00042 0.00042 
Power Loss (W) 21822.98 188902.29 

AbsolutePressure 378239.87 378307.70 

  R2 Adj_R2 RMSE MAE 

Target 

Variable  

ML Model 
Train Test Train Test Train Test Train Test 

T1 Avg  

Linear 1 0.63 1 0.628 5.8E-2 0.606 4.7E-16 0.359 
Polynomial Regressor  1 0.987 1 0.928 6.3E-2 0.115 4.7E-16 0.077 
SVR 0.997 0.937 0.997 0.937 0.0568 0.249 0.049 0.128 
SVR Tuned 0.997 0.992 0.997 0.992 0.0531 0.087 0.046 0.069 
Random Forest 1 0.996 1 0.996 1.2E-2 0.063 3.4E-15 0.021 
Random Forest Tuned  1.0E+1 0.999 1.0E+1 0.999 2.4E-0 0.008 8.0E-6 0.0012 
Ada Boost  1 0.933 1 0.932 1.3E-1 0.259 1.1E-1 0.0902 
Gradient Boosting  1 0.955 1 0.955 0.003 0.211 0.002 0.0998 
XGBoost  1 1 1 1 0.001 0.0002 0.002 0.0001 

T2 Avg 

Linear 1 1 1 1 2.3E-1 2.26E-1 1.8E-1 1.8E-2 
Polynomial Regressor 1 1 1 1 1.1E-1 1.06E-1 8.6E-2 8.6E-2 
SVR 0.997 0.996 0.997 0.996 0.057 0.059 0.0492 0.049 
SVR Tuned 0.9971 0.997 0.997 0.997 0.053 0.053 0.046 0.046 
Random Forest 1 1 1 1 1.8E-1 1.86E-1 1.5E-2 1.5E-2 
Random Forest Tuned 1 1 1 1 1.5E-1 1.54E-1 1.2E-2 1.2E-2 
Ada Boost 1 1 1 1 1.3E-1 1.28E-1 1.1E-1 1.1E-2 
Gradient Boosting 1 1 1 1 0.0002 0.0003 0.0024 0.002 
XGBoost 1 1 1 1 0.0001 0.0001 0.0012 0.001 

T3 Avg  

Linear 1 1 1 1 1.5E-5 1.4E-1 1.2E-2 1.2E-2 
Polynomial Regressor  1 0.999 1 0.999 9.5E-1 0.007 9.0E-2 0.0002 
SVR 0.997 0.997  0.997 0.997 0.051 0.054 0.042  0.043 
SVR Tuned  0.9975   0.997      0.998 0.997   0.0495     0.051 0.041 0.041 

Random Forest 1 1 1 1   1.9E-2     6.2E-
1 1.5E-2 

5.9E-2 

Random Forest Tuned  1 1 1 1 
  1.5E-2 

    1.5E-
1 1.2E-2 1.2E-2 

Ada Boost  1 1 1 1   2.8E-2      2.7E-
2 2.2E-2 2.1E-2 

Gradient Boosting 1 1 1 1 0.0003    0.0003 0.0003 0.002 
XGBoost 1 1 1 1 0.0002    0.0001 0.0001 0.001 
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Table 11. Prediction metrics for different ML Models on Velocity 

 
Table 12. Prediction metrics for different ML Models on Head Loss 

 
 

  R2 Adj_R2 RMSE MAE 

Target 

Variable  

ML Model Train Test Train Test Train Test Train Test 

V1 Avg  

Linear 1 0.63 0.59 0.59 0.64 0.64 0.47 0.47 
Polynomial Regressor  1 0.99 0.96 4.5E+2 0.17 1.30 0.13 2.9E+1 
SVR 0.997 0.94 0.90 0.89 0.31 0.34 0.2 0.22 
SVR Tuned 0.997 0.99 0.99 0.98 0.09 0.15 0.08 0.11 
Random Forest 1 0.99 0.98 0.99 0.03 0.07 0.008 0.02 
Random Forest Tuned  1.00E+00 0.98 0.99 0.994 0.03 0.07 0.01 0.03 
Ada Boost  1 0.93 0.84 0.83 0.40 0.4 0.34 0.34 
Gradient Boosting  1 0.95 0.94 0.94 0.24 0.25 0.18 0.18 
XGBoost  1 1 0.99 0.99 0.06 0.09 0.036 0.06 

V2 Avg 

Linear 0.59 0.59 0.59 0.58 0.64 0.64 0.47 0.47 
Polynomial Regressor  0.97 1.5E+2 0.96 -3.9E+2 0.16 1.2E+1 0.12 2.7E+1 
SVR 0.91 0.89 0.91 0.89 0.3 0.33 0.19 0.22 
SVR Tuned 0.99 0.98 0.99 0.97 0.092 0.15 0.076 0.11 
Random Forest 0.99 0.99 0.93 0.99 0.025 0.06 0.0077 0.02 
Random Forest Tuned  0.92 0.99 0.99 0.99 0.027 0.067 0.011 0.03 
Ada Boost  0.85 0.84 0.85 0.84 0.393 0.397 0.332 0.33 
Gradient Boosting  0.94 0.93 0.94 0.93 0.244 0.25 0.184 0.19 
XGBoost  0.997 0.99 0.997 0.99 0.053 0.079 0.034 0.05 

V3 Avg  

Linear 1 1 1 1 6.9E-2 7.1E-2 5.6E-2 5.7E-2 
Polynomial Regressor  1 0.99 1 0.999 5.3E-2 0.001 4E-15 0.0002 
SVR 0.996 0.996 0.996 0.996 0.058 0.061 0.05 0.051 
SVR Tuned 0.998 0.998 0.998 0.998 0.041 0.042 0.033 0.034 
Random Forest 1 0.999 1 0.999 0.0002 0.001 0.0001 0.0002 
Random Forest Tuned  1 0.999 1 0.997 0.0006 0.002 0.0003 0.0006 
Ada Boost  0.994 0.993 0.993 0.993 0.079 0.081 0.066 0.067 
Gradient Boosting  0.996 0.999 0.999 0.995 0.006 0.007 0.004 0.005 
XGBoost  0.999 0.995 0.999 0.999 0.025 0.006 0.0016 0.0026 

  R2 Adj_R2 RMSE MAE 

Target 

Variable  
ML Model Train Test Train Test Train Test Train Test 

HL1 

Linear 0.95 0.95 0.945 0.945 0.231 0.234 0.184 0.187 
Polynomial Regressor  0.998 3.4E+2 0.997 9.1E+2 0.0444 5.9E+1 0.031 1.3E+1 
SVR 0.993 0.991 0.993 0.992 0.0816 0.0896 0.065 0.0700 
SVR Tuned 0.996 0.995 0.996 0.995 0.0647 0.0711 0.055 0.059 
Random Forest 0.999 0.999 0.999 0.9996 0.0051 0.0186 0.001 0.0048 
Random Forest Tuned  0.9999 0.995 0.9999 0.9995 0.0069 0.0207 0.002 0.0081 
Ada Boost  0.968 0.965 0.968 0.9654 0.1788 0.1857 0.127 0.1313 
Gradient Boosting  0.988 0.987 0.9884 0.9868 0.1071 0.1145 0.070 0.0740 
XGBoost  0.999 0.999 0.9996 0.9993 0.0193 0.0273 0.012 0.0161 

HL2 

Linear 0.950 0.945 0.950 0.9497 0.223 0.223 0.173 0.176 
Polynomial Regressor  0.998 3.4E+2 0.997 8.4E+2 0.0452 5.6E+1 0.032 1.2E+1 
SVR 0.993 0.992 0.993 0.992 0.0813 0.0890 0.065 0.069 
SVR Tuned 0.995 0.995 0.995 0.994 0.0683 0.0754 0.059 0.0633 
Random Forest 0.999 0.999 0.9999 0.9997 0.0052 0.0168 0.002 0.0045 
Random Forest Tuned  0.996 0.999 0.9999 0.9996 0.0063 0.0186 0.003 0.0074 
Ada Boost  0.967 0.966 0.9670 0.9664 0.1818 0.182 0.127 0.1274 
Gradient Boosting  0.988 0.987 0.9884 0.9877 0.1079 0.1103 0.069 0.0705 
XGBoost  0.9996 0.999 0.9996 0.9993 0.0186 0.0278 0.011 0.0162 

HL_Avg  

Linear 0.936 0.934 0.9364 0.9337 0.2521 0.256 0.186 0.1910 
Polynomial Regressor  0.998 0.996 0.9972 0.9823 0.0430 0.057 0.031 0.0409 
SVR 0.992 0.9903 0.9919 0.9903 0.0894 0.0978 0.069 0.0742 
SVR Tuned 0.995 0.9939 0.9956 0.9939 0.0666 0.0775 0.057 0.0627 
Random Forest 0.999 0.9995 0.9999 0.9995 0.0084 0.0201 0.002 0.0063 
Random Forest Tuned  0.9999 0.9994 0.9999 0.9994 0.0098 0.024 0.007 0.0097 
Ada Boost  0.9306 0.9282 0.9304 0.9279 0.2636 0.2671 0.209 0.2122 
Gradient Boosting  0.9928 0.9921 0.9928 0.9920 0.0849 0.0888 0.060 0.0631 
XGBoost  0.99964 0.9992 0.9996 0.9992 0.0188 0.0283 0.011 0.0168 
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Table 13. Prediction metrics for different ML models on Heat Loss 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  R2 Adj_R2 RMSE MAE 

Target 

Variable 
ML Model Train Test Train Test Train Test Train Test 

HTL1 

Linear 0.484 0.464 0.483 0.462 0.721 0.724 0.499 0.506 
PolynomialRegressor 0.99 7.89E+17 0.999 -2.09E+18 0.032 8.7E+1 0.023 1.93E+1 
SVR 0.994 0.993 0.994 0.993 0.079 0.085 0.065 0.067 
SVR Tuned 0.996 0.995 0.996 0.995 0.067 0.071 0.059 0.061 
Random Forest 1 0.999 1 0.999 0.0006 0.013 0.0001 0.001 
Random Forest Tuned 0.999 0.999 0.999 0.998 0.003 0.012 0.0005 0.009 
Ada Boost  0.864 0.856 0.864 0.855 0.371 0.376 0.313 0.314 
Gradient Boosting  0.989 0.988 0.989 0.987 0.104 0.109 0.065 0.068 
XGBoost  0.999 0.999 0.999 0.999 0.003 0.014 0.002 0.003 

HTL2 

Linear 0.557 0.548 0.556 0.547 0.668 0.666 0.499 0.506 
Polynomial Regressor  0.999 -7.4E+2 0.999 -1.9E+2 0.026 8.6E+8 0.023 1.9E+07 
SVR 0.994 0.993 0.994 0.994 0.077 0.080 0.065 0.067 
SVR Tuned 0.995 0.995 0.995 0.995 0.071 0.072 0.059 0.061 
Random Forest 1 0.999 1 0.999 0.0001 0.002 0.0001 0.001 
Random Forest Tuned  1 0.999 1 0.999 0.0005 0.003 0.001 0.002 
Ada Boost  0.959 0.958 0.959 0.957 0.202 0.205 0.313 0.314 
Gradient Boosting  0.994 0.994 0.994 0.994 0.077 0.079 0.065 0.067 
XGBoost  0.999 0.999 0.999 0.999 0.001 0.002 0.002 0.003 

HTL_Avg  

Linear 0.513 0.491 0.512 0.489 0.702 0.704 0.527 0.528 
Polynomial Regressor  0.999 -5.65E+15 0.998 -1.50E+16 0.029 7.4E+1 0.021 1.6E+06 
SVR 0.994 0.993 0.994 0.992 0.079 0.084 0.066 0.068 
SVR Tuned 0.996 0.995 0.995 0.995 0.069 0.072 0.062 0.063 
Random Forest 1 0.999 1 0.999 0.00008 0.009 0.003 0.002 
Random Forest Tuned  0.999 0.999 0.999 0.999 0.002 0.009 0.004 0.002 
Ada Boost  0.929 0.925 0.929 0.925 0.267 0.269 0.218 0.218 
Gradient Boosting  0.991 0.990 0.991 0.990 0.094 0.098 0.063 0.065 
XGBoost  0.999 0.999 0.999 0.999 0.0030 0.009 0.002 0.003 
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Table 14. Prediction metrics for different ML models on Power  Loss 
 

 
 
 

 
Fig. 6: Work flow Chart, [24] 

 
 
 
 
 
 
 
 
 

 
 
 

  R2 Adj_R2 RMSE MAE 

Target 

Variable 
ML Model Train Test Train Test Train Test Train Test 

PL1 

Linear 0.947 0.948 0.9471 0.9482 0.7213 0.724 0.170 0.169 
Polynomial Regressor  0.9955 -2.75E+2 0.9939 -7.29E+19 0.0316 8.8E+1 0.0497 1.2E+1` 
SVR 0.9906 0.9885 0.9906 0.9885 0.0793 0.0854 0.080 0.086 
SVR Tuned 0.9945 0.9926 0.9945 0.99252 0.0673 0.0707 0.064 0.072 
Random Forest 0.9999 0.9992 0.9999 0.99926 0.0006 0.0125 0.003 0.009 
RandomForest Tuned  0.9998 0.9990 0.9998 0.99903 0.0025 0.0123 0.005 0.014 
Ada Boost  0.9851 0.9578 0.9851 0.95760 0.3706 0.3758 0.091 0.164 
Gradient Boosting  0.9854 0.9852 0.9853 0.98514 0.1044 0.1092 0.089 0.092 
XGBoost  0.9991 0.9982 0.9991 0.99820 0.0032 0.0135 0.019 0.028 

PL2 

Linear 0.9458 0.9472 0.9458 0.94695 0.232 0.231 0.173 0.171 
Polynomial Regressor  0.9957 -2.48E+2 0.99423 -6.58E+19 0.065 5.00E+09 0.048 1.1E+1 
SVR 0.99077 0.98883 0.99076 0.988791 0.0959 0.106 0.079732 0.086 
SVR Tuned 0.99465 0.99284 0.9946 0.99281 0.07300 0.085 0.063748 0.071 
Random Forest 0.99992 0.99933 0.99993 0.999325 0.00864 0.026 0.002695 0.008 
Random Forest Tuned  0.99989 0.99917 0.99989 0.999165 0.01003 0.029 0.00463 0.012 
Ada Boost  0.95623 0.9577 0.95615 0.95753 0.20888 0.206 0.166318 0.164 
Gradient Boosting  0.98463 0.9846 0.98461 0.984501 0.12377 0.125 0.0947 0.095 
XGBoost  0.99924 0.99844 0.99924 0.998437 0.02744 0.0391 0.018043 0.026 

PL_Avg  

Linear 0.94682 0.94655 0.94671 0.946277 0.2309 0.2305 0.162262 0.159 
Polynomial Regressor  0.9972 0.99492 0.99570 0.972818 0.0529 0.0711 0.038813 0.051 
SVR 0.99161 0.99038 0.99168 0.990334 0.0917 0.0978 0.077336 0.079 
SVR Tuned 0.99481 0.99306 0.994794 0.993028 0.07216 0.0830 0.063967 0.069 
Random Forest 0.99989 0.99989 0.999898 0.999898 0.01009 0.0101 0.003091 0.003 
RandomForest Tuned  0.99987 0.99921 0.999873 0.999202 0.01127 0.0281 0.004633 0.012 
Ada Boost  0.97507 0.974931 0.975018 0.974804 0.15808 0.1578 0.128756 0.1289 
Gradient Boosting  0.99027 0.989376 0.990248 0.989322 0.09876 0.1028 0.072879 0.0762 
XGBoost  0.999516 0.998837 0.999515 0.998831 0.02201 0.0340 0.014106 0.0222 
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