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Abstract: - For several decades, the importance and weight-age of prediction of nonlinear self-sustained 
oscillations or Limit Cycles (LC) and their quenching by signal stabilization have been discussed, which is 
confined to Single Input and Single Output (SISO) systems. However, for the last five to six decades, the 
analysis of 2x2 Multi Input and Multi Output (MIMO) Nonlinear Systems gained importance in which a lot of 
literature available. In recent days’ people have started discussing suppression of LC which limits the 
performance of most of the physical systems in the world. It is a formidable task to suppress the limit cycles for 
2x2 systems with memory type nonlinearity in particular. Backlash is one of the nonlinearities commonly 
occurring in physical systems that limit the performance of speed and position control in robotics, automation 
industry and other occasions like Load Frequency Control (LFC) in multi area power systems. The feasibility 
of suppression of such nonlinear self-oscillations has been explored in case of the memory type nonlinearities. 
Backlash is a common memory type nonlinearity which is an inherent Characteristic of a Governor, used for 
usual load frequency control of an inter-connected power system and elsewhere. Suppression LC using pole 
placement technique through arbitrary selection and optimal selection of feedback Gain Matrix K with 
complete state controllability condition and Riccati Equation respectively and is done through state feedback. 
The Governing equation is d/dt [X(t)] =(A-BK) X:  which facilitates the determination of feedback gain matrix 
K for close loop Poles / Eigen values placement where the limit cycles are suppressed/eliminated in the general 
multi variable systems. The complexity involved in implicit non-memory type or memory type nonlinearities, it 
is extremely difficult to formulate the problem for 2x2 systems. Under this circumstance, the harmonic 
linearization/harmonic balance reduces the complexity considerably. Still the analytical expressions are so 
complex which loses the insight into the problem particularly for memory type nonlinearity in 2x2 system and 
the method is made further simpler assuming a 2x2 system exhibits the LC predominately at a single frequency. 
Hence in the proposed work an alternative attempt has been made to develop a graphical method for the 
prediction of Limit Cycling Oscillations in 2x2 memory type Nonlinear systems which not only reduces the 
complexity of formulations but also facilitates clear insight into the problem and its solution.  
The present techniques are well illustrated with an example and validated / substantiated by digital simulation 
(developed program using MATLAB codes) and use of SIMULINK Tool Box of MATLAB software. 
The present work has the brighter future scope of:  
 Adapting the Techniques like Signal Stabilization and Suppression LC for 3x3 or higher dimensional 
nonlinear systems through an exhaustive analysis.  
 Analytical/Mathematical methods may also be developed for signal stabilization using both 
deterministic and random signals based on Dual Input Describing function (DIDF) and Random Input 
Describing Function (RIDF) respectively.  
The phenomena of Synchronization and De-synchronization can be observed/identified analytically using 
Incremental Input Describing Function (IDF), which can also be validated by digital simulations. 
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1 Introduction 
The exhibition of limit cycle in two dimensional 
multi-variable non-linear systems in interconnected 
power systems [1] which can fit the structure [2] of 
a general two dimensional nonlinear systems has 
been addressed in the present work [3].  
 For the last five decades, analysis of 2 x 2 
nonlinear multivariable systems gained importance 
specifically for the investigation of limit cycles and 
a good number of literature available addressing this 
area of research, [1], [2], [3], [4], [5], [6], [9], 
[10], [11], [12], [13], [14], [15], [16], [17], [18], 
[19], [20], [21], [22], [23], [24], [25], [26], [27], 
[28], [29], [30], [31], [32], [33], [34], [35], [36], 
[37], [38], [39], [40], [41], [42], [43], [44], [45], 
[46].  

Existing practice of power system, 
interconnected with various areas through tie-lines, 
sometimes suffers from mismatches in frequency 
because of area load change and also some other 
abnormal conditions. The popular, simple, easy 
realization, low cost, robust and decentralized nature 
of the control strategy, the load frequency control 
(LFC) is used immensely. The LFC also shows poor 
performance for backlash nonlinearities present in 
the governors [4]. It has been stressed on the LFC 
scheme in the zone of operation avoiding the 
existence of limit cycle or reducing the amplitude of 
sustaining oscillations. It may not be always 
possible to have such safer zone of operation, i.e., 
either absence of limit cycle or reduction in 
amplitude of self-sustained oscillations 

In the literature [5], the limit cycle induced by 
backlash nonlinearity is discussed and cited about 
the suppression of limit cycle using state feedback, 
but detailed analysis, well established conclusions 
and straight forward techniques are still lacking [6] 
and also confined to a single input and single output 
systems. 

The recent literature depicts some instances of 
multidisciplinary applications where limit cycle 
oscillations have been discussed. The researchers, 
[47], discussed three possible scenarios, namely, 
stable, limit cycles and chaos arise naturally in the 
flow and thermal dynamics of the device. The 
authors, [48], formulated/initialized the cell model 
to the limit cycle, running one-dimensional (OD) 
simulations of 500 stimuli at a BCL of 300ms.In 
[49], the dynamic behaviour of the nonlinear system 
switches between a stable equilibrium point and a 
stable limit cycle has been discussed. In [50], the 
stable limit cycle has been observed in autocatalytic 
systems through the characteristics of the Hopf 

bifurcation. In [51], the exhibition of limit cycling 
oscillations has been observed in Biological 
Oscillators having both positive and negative 
feedbacks. The authors, [52], have observed in 
natural systems a closed loop as in a stable limit 
cycle through reviewing empirical dynamic 
modelling. 

 
Therefore, it is suggested to adopt a novel 

method of suppression / elimination of limit cycles 
using pole placement technique through state 
feedback.  The pole placement is done (a) by 
arbitrary selection of poles satisfying the state 
controllability conditions [7], (b) by optimal 
selection of feedback gain matrix K using Riccati 
equation [8]. The problem and the solution may be 
addressed in the following sequels. 
 

2 Dynamic model of the 

interconnected power system: 
The dynamics of general 2x2 nonlinear systems 

representing a interconnected power system shown 
in Fig.1, Fig.2 & Fig.3. 

The proposed paper presents the dynamics of 
general 2 X 2 nonlinear systems shown in Fig.1, 
Fig.2, Fig.3 [2], [9], [10] which uses the state 
variables. 

The governing equation under limit cycling 
condition (autonomous system i.e. u = 0) in 
frequency response form is X = - HC and C = GN 
(X) X: leading to X = - HGN(X) X = AX, where A 
= - HGN (X) X [2], [9] which facilitates the 
determination of Eigen values of the multivariable 
systems (illustrated in 4.1).   

Where,  , , ,   

 
N(X,  

X1, X2 and C1, C2 are Amplitudes of respective 
Sinusoids.  G1, G2 are magnitudes of respective 
transfer functions.  For memory type nonlinearities 
N (X) is replaced by their describing functions N 
(X, ω) [11]. 

It may be noted that for frequency response: 
input is sinusoidal and output is steady state 
considered, so that s (Laplace Operator) is replaced 
by jω. 
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Fig. 2: Block diagram representation of a most 
general nonlinear multivariable system 

 
 
 
 
 
 
 
 

 
Fig. 3: Equivalent of the system of Fig. 2 with input 

U= 0 
 
 

2.1 The system dynamics of general 2 X 2 by 

nonlinear system with state feedback 
The system dynamics with state feedback is 
presented in Fig.4.  

Fig. 4: A system with state feedback 
The governing equation with state feedback is 
d/dt[x(t)] = (A-BK) X: which facilitates the 

determination of feedback gain matrix K for closed 
loop poles / Eigen values placement where the limit 
cycles are suppressed / eliminated (illustrated in 
4.1.1 and 4.1.2): 

where, ,  

B =   

For memory type nonlinearity, N(X) is replaced by 
N(X, ω) [11].  
The procedure for suppression of limit cycles in the 
system has been illustrated lucidly through an 
example. In section 3 the existence of limit cycle in 
systems are predicted using graphical method and 
substantiated by developing a digital simulation and 
also that with the use of SIMULINK tool box. 
Investigation of suppression of limit cycle in such 
systems has been presented in subsequent sections. 
3 Prediction of limit cycles for 2x2 

backlash type nonlinear system based 

on harmonic balance in graphical 

method 
In general, when a closed loop system exhibits self-
sustained oscillations (limit cycles), the signal at any 
point of the loop is transmitted around the loop to 
that point with no change in amplitude and phase. In 
other words, a system exhibits a limit cycle when 
the loop gain is unity and the loop phase shift is 
±2nπ [12], where n is an integer.  
For the memory type nonlinearity, there is a phase 
difference between input and output of the nonlinear 
element. This phase difference is a function of 
frequency of the input. The nonlinearity present in 
the system adds additional phase angle to the system 
phase angle. While predicting limit cycles exhibited 
by the system through graphical method, the 
additional phase angle contributed by the nonlinear 
element is to be accounted for [11]. 
3.1 Graphical method 

The graphical method based on normalized phase 
diagram [11], is used for prediction of limit cycle in 
the system which has been lustrated through the 
example.  
The whole system is assumed to exhibit self-
oscillations predominately at a single frequency. 
 
 
 
 
 
 

 

Fig. 1:  A class of 2x2 nonlinear system 
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Fig. 5: Linearized equivalent for the system of Fig.1 
Consider a system as shown in Fig.1 where N1 and 
N2 are two nonlinear elements with backlash type 
input-output characteristics. G1 and G2 are the 
transfer functions of the linear elements. Backlash 
nonlinearities contribute additional phase angle to 
the loop phase angles of G1 (j ω) and G2 (j ω) of the 
subsystems (s1) and (s2). 
Replacing the nonlinear elements by their respective 
Describing Functions, the system of Fig. 1 can be 
represented as shown in Fig. 5.  
“The describing function method allows us to apply 
familiar frequency domain techniques, used in the 
linear system analysis to the analysis of a class of 
nonlinear dynamical systems.  The method can be 
used to predict limit cycles in nonlinear systems.  
The describing function method can be viewed as a 
“harmonic linearization” of a nonlinear element.  
The method provides “linear approximation” to the 
nonlinear element based on the assumption that the 
input to the nonlinear element is a sinusoid of 
known, constant amplitude.  The fundament 
harmonics of the element’s output is compared with 
the input sinusoid to determine the steady-state 
amplitude and phase relation.  This relation is the 
describing function for the nonlinear clement. 
The nonlinear element is then approximately modelled by 
the describing function 

 =  

Where Y1 =   Amplitude of Fundamental 
Component of Output and X = Amplitude of the 
input sinusoid [14] 
The system considered in the present work contain low 
pass plant transfer function and since low pass filtering of 
any periodic signal tends to make it sinusoidal, periodic 
signals within the system might be expected to be 
approximately sinusoidal at the nonlinearity input [15].  
For the system possessing low-pass loop characteristics, 
the describing function (D F) analysis provides results of 
acceptable accuracies [10]. 

For the proposed work the complexity involved in the 
structure having the memory type nonlinearities, it would 
be extremely difficult to formulate and simplify the 
expressions in the harmonic balance method [10]. 

It is felt necessary to develop a graphical technique using 
harmonic balance method and discussed in the following 
lines [11]. 

The describing function for backless nonlinearities, 

shown in Fig.5, is expressed as: N (X m, ω) =   

or 

N(Xm,ω)=  

When the system exhibits limit cycle the phase diagram 
can be drawn as in Fig. 6(a) and subsequently the 
normalized phase diagram with respect to R1 is shown as 
in Fig. 6(b).  The determination of different quantities 
through graphical procedure is illustrated through 
example [11]. 

Example : where the Linear elements G1(s) =  and 

G2(s) =  and the two nonlinear elements having 

backlash characteristics with b1 = b2 = 1.0 as shown in 
Fig. 5. 

Fig. 6: (a) Input-output characteristics of non-linear 
element N1 and (b) Input-output characteristics of non-
linear element N2 

Solution: Describing function of the above Backlash 
Nonlinearities is expressed as 

     (1) 
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(2) 
and 

(3) 

Again,  

 

For subsystem ( ): 

 = +      (5) 
 

 

where,     

Similarly, for subsystem ( ): 

= +   (7) 

 
Where,    

 

However in graphical method [11], while  traces a 

circle,  traces a straight line. 
The limit cycle conditions of the system can be 
represented by the phase diagram shown in Fig. 7(a) and 
subsequently the normalised phase diagram in Fig. 7(b). 
Radius of the above mentioned circle is  

r =              (9) 

And centre of the circle is at:  

(  , )                         (10) 

The point of intersection of the circle and the straight line 
is at (ui, vi), which can be obtained as follows: 

 =  – 1             (11)   and,   

v i =  ±       (12) 

The phase diagram of the system can be obtained by 
using the following relationship (c f .13) shown in Fig. 
7(a) and the normalised one in Fig. 7(b). 

From the phase diagram Fig.7 (a), 

R1 = X1 + C1, R2 = X2 + C2, R2 = C1, R1 = -C2                                       
(13) 

                            (14) 

Or             (15) 

Or               (16) 

 

 Fig. 7: (a) Phase diagram for a 2 × 2 nonlinear systems, 
(b) normalised phase diagram for a simplified generalised 
2×2 nonlinear systems, (c) solution of the system, (d) 
normalised phase diagram for Example 1 (backlash) with 
ω= 0.6955 radian/sec 
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Where, Y1, Y2, N1, N2, G1 and G2 are magnitude or 
absolute values. 

From Fig. 6,  , since,  

 

 

Eq. (16) can be written as: 

               

(17)    

Several normalised phase diagrams are drawn to scale (c 
f. Table 2) utilizing the data from Table 1. The values of 

  for different values of ω are calculated using Eq. (17) 

as well as from the graphical plots (c f. Fig. 7(d)).          

Fig. 7(c) shows the variation of  from the phase 

diagram (curve A) and from Eq. (17) (curve B) for different 
values of frequency ω (c f. Table I).  

The Table 2 shows the phase diagrams for the graphical 
method of backlash type nonlinearity for the Example. 

The point of the intersection of curve (A) and curve (B) 
(c f Fig. 7.c) provides the value of limit cycle frequency 
ω= 0.6955 radian/sec. Other values of interest are 
determined from the Fig.7. (d), and also (cf. serial 
number 7 of Table 2) as: 

 ;  And   ;  

Thus ; 

 

  ; , where  and  are 
amplitudes of sinusoids for sub system S1 & S2 
respectably, mentioned in Table 1.  

The values of X1, X2, C1 & C2 for  = 0.6955 are shown 

in Table.3 (c f 3.4: comparison of results). 

Table-1: Values of different quantities for Example (Backlash) 

ω 
  

R (Radius) 
 Plot           (c f Table 2)   Eq.(17) 

0.600 -166.3730 -121.8119 0.508 0.8554,4.2227 9.8200 
0.625 -168.6673 -122.1618 0.505 0.8616,4.9186 9.6127 
0.650 -170.5142 -122.5110 0.503 0.8720,5.8676 9.4065 
0.675 -172.5052 -122.8596 0.501 0.8869,7.2609 9.2017 
0.700 -174.4505 -123.2074 0.500 0.9064,9.5447 8.9988 

0.6961 -174.1500 -123.1532 0.500 0.9031,9.0955 9.0303 
0.6955 -174.1037 -123.1448 0.551 0.9025,9.0302 9.0351 (LC) 

0.72 -177.5066 -125.816 0.638 0.9084,11.500 11.87 

 

Table-2: Phase diagrams for various values of  and its subsequent values of r for the example 
using graphical method (backlash type nonlinearity)

Sl. No 

 

R- Radius Phase diagrams C1 / R1 from plot (cf 

Table 2) from eqn. 17 

1 0.600 0.508 

 
0.8554, 

4.2227 
-4 -2 0 2 4

-7

-6

-5

-4

-3

-2

-1

0
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2 0.625 0.505 

 
0.8616, 

 4.9186 
 

3 0.650 0.503 

 

0.8720,  

5.8676 
 

4 0.675 0.501 

 

0.8869,  

7.2609 

5 0.700 0.5003 

 

0.9064,  

9.5447 
 

6 0.6961 0.5004 

 

0.9031,  

9.0955 

7 0.6955 0.5005 

 

0.9025, 
 9.0302 

9.0351 

X1 =4. 4220 
X2 = 4.8965 
C1 =4.6384 
C2 = 0.5136 

8 0.7200 0.6380 

 

0.9084,  

11.500 

-4 -2 0 2 4
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-4

-3

-2

-1

0

-4 -2 0 2 4 6
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-5 0 5 10
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3.2 Digital simulation for prediction of limit 

cycles in a 2x2 backlash type nonlinear 

system 

In this section, following the procedure as depicted in 
[11], the algorithm of digital simulation has been 
developed to obtain the values of X1, X2, C1 and C2 for 
Backlash type nonlinearity which are then compared with those 
of graphical method. 

For very small value of the sampling period (T):  

Fig.8. represents the digital simulation diagram for the 
example: (a) Canonical representation of the system, (b) 
Equivalent sample data system, (c) Digital representation 
in Z-domain. 

Fig. 8: Digital simulation of the nonlinear system: (a) 
Canonical representation of the system, (b) Equivalent 
sample data system, (c) Digital representation in Z-
domain. 

The Example is revisited: G1(s) =  and G2(s) = 

 and the nonlinear elements having backlash 

characteristics with  and  are shown in Fig. 6(a) and 
6(b). 

Considering Fig-8(c),  

 ;  

 ;  

 ;  

As  =  , taking z-transform, 

 =      or     

 

Taking inverse z-transform, we get, 

   

Again,  

 =      or  

  

Taking inverse z-transform, we get, 

 

Since,  

Hence,    

Applying inverse z-transform, we get,   

 

Again,  
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Taking inverse z-transform,  

 

A relevant computer programme in MATLAB code using 
the above algorithm yields the results. The 
Results/Images of digital simulation along with that of 
using SIMULINK are shown in Fig.10 and the numerical 
values obtained there from are shown in Table.3 for the 
Example 

3.3 Use of SIMULINK toolbox in MATLAB 

for prediction of limit cycles in 2x2 backlash 

type nonlinear system 
In this section, the SIMULINK toolbox of MATLAB is 
used and accordingly the values of X1, X2, C1 and C2 for 
backlash type nonlinearities are obtained and compared 
with those of graphical method, and digital simulation. 
The Example is re visited: 

Fig.9 shows the SIMULINK representation for prediction 
of Limit Cycles and Fig. 10 shows the Results /Images of 
the Example (Back lash), obtained from Digital 
Simulation, developed here and also that with use of 
SIMULINK Tool Box. 

 

Fig. 9: SIMULINK representation for prediction of limit 
cycle of the Example  

 

Fig. 10: Comparison of Results/Images by Digital 
Simulation and also that with use of SIMULINK tool box 
for the Example (backlash): (a) Input X1 for S1, (b) Input 
X2 for S2, (c) Output C1 for S1, (d) Output C2 for S2 

3.4 Comparison of Results 

In this section, the numerical results obtained from 
graphical, digital simulation methods and use of 
SIMULINK are compared as shown in Table 3. 

Table-3: Comparison of results obtained through the 
different methods for example (backlash). 

Methods of 

Computation 
ω 

    

Graphical 0.6955 4.42 4.89 4.630 0.510 

Digital 
simulation 0.7550 4.44 4.62 4.40 0.600 

SIMULINK 0.7391 4.42 4.60 4.40 0.600 

 

4 Suppression of limit cycle in 2x2 

nonlinear system using pole placement 

technique 
Limit cycles or self-sustained oscillations of a two 
input two output systems can be suppressed by pole 
placement technique. The problem of placing the 
closed loop poles or Eigen values of the closed loop 
systems at the desired location using state feedback 
through an appropriate state feedback gain matrix is 
dealt here. Necessary and sufficient condition for 
arbitrary pole placement is that the system be 
completely state controllable [7]. This can be 
achieved by classical as well as optimal pole 
placement techniques [8] and explained 
subsequently. The optimal pole placement has been 
illustrated through backlash type nonlinearity using 
state feedback. 
 

4.1 Determination of Eigen values (poles) for 

existence of limit cycles in 2x2 nonlinear 

system 
The most general multivariable nonlinear system [2] is 
shown in Fig. 2. The limit cycles may exhibit in an 
autonomous system (input U=0) where Fig. 2 can be 
represented in simplified form as shown in Fig. 3. 
Making use of the first harmonic linearization of the 
nonlinear elements, the matrix equation for the system of 
Fig.3 can be expressed as  

X = -HC, where C = GN(x) X.  Hence, 
X = -HGN(x) X = AX, (18)  
 Where, A = -HGN(x) 

Realizing Eq. (18) as a transformation of the vector X 
onto itself, it is noted that for a limit cycle to exist the 
following two conditions should be satisfied [9] 
(i)   For every non-trivial solution of X, the matrix A 
must have an Eigen value λ equal to unity, and 
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(ii) The Eigen vector of “A” corresponding to this unity 
Eigen value must be coincident with X. 

 

The Example  is re visited: Where the linear elements: 

G1(s) =  and G2(s) =  and the two nonlinear 

elements having backlash characteristics with b1 = b2 = 
1.0 as shown in Fig. 6. 

Solution: G =   ; N(x) =  ; H = 

  ;             X =   and C =  

Therefore,   A = -HGN =  

    

       

 

or     A =  

The Eigen values of matrix A can be determined from the 

characteristic equation = 0  

Whence,         

  Or,       

Or,           (19) 

From Table 2 (Graphical analysis), frequency of 
oscillations ω= 0.6955 radian/sec, X1= 4.42, X2= 4.89 and   

 &   are calculated at this value of  using Eq. (3) 
and Eq. (4) respectively.  

Where,   and    

                                                         

As mentioned in Table 1, the values of Xm1 and Xm2 are 

2.3 and 1.4 respectively and  = =1,  

 Or   

Or   

Or  

Similarly,  or  

  

Or  

From Fig. 3,   and  

Substituting the values of  and  in Eq. (3), we get, 

 

Or  = 1.04               
(20) 

Substituting the values of  and  in Eq. (4), we get, 

 

Or  =1.0359.                        
(21) 

Calculating the values of and  for ω = 0.6955   

 (c f Table 1 and 2) 
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G1(s) =   or G1 (j ω) =   or  = 

 

 =  =   = 

1.938(22)    

Similarly, G2(s) =   or G2 (j ω) =   or 

 =  

 =   

=  = 0.354. (23)        

Substituting the values of N1, N2, G1, G2 in Eq. (19), we 
get 

                                                                                                      

Whence,            (24) 

At these values of Eigen values, the images of limit cycle 

oscillations for   , ,  and  are shown in Fig. 9 

(digital simulation and SIMULINK). 
 
4.1.1 Pole placement for suppression of limit 

cycles of the Example. (backlash) 

Arbitrary pole placements may be possible if the 
system is completely state controllable [7].  

The controllability matrix   

  ≠ 0              (25) 

Where, A =   and  

From Table 2 for Example 1(Graphical analysis), 

  X1= 4.42, X2= 4.89. 

The values of  and  are shown in Eq. (20) and Eq. 
(21) as 1.041 and 1.035 respectively. 

And ,  at 0.6955 are shown in Eq. (22) 
and Eq. (23) as 1.938 and 0.354 respectively. 

On substitution of these values we obtain,   

 

Hence, the controllability matrix comes out to be,  

  

Taking its determinant, we obtain, 

  

Therefore, the system is completely state controllable and 
arbitrary pole placement is possible. 

From state space equations, we know that: 

=               (26) 

The system under autonomous state is represented as 
shown in Fig.10 

From Fig. 10, the control law                (27) 

Where K= [ ] is the feedback matrix. 

 Replacing u in Eq. (26) by Eq. (27), we get, 

= (A-BK) X              (28) 

Where, , B =   

Taking = 0,   
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 = 0                     (29)                         

On substitution of the values of N1, N2 (from Eq. 20 and 
Eq. 21 as N1=1.041 & N2=1.035 respectively), G1 and G2 
are calculated as G1=1.938, G2=0.354 for 

 (c f Table 2) in Eq. (29), we 
get, 

 

 

Or 

                   (30)                       

Where k1 and k2 can be selected arbitrarily.  
 
4.1.2 Optimal selection of feedback matrix K 

using Riccati Equation for the Example 

The Riccati equation is,  

 and  

Assuming R=1, B=  and Q =   we calculate the 

matrix “P”. 

Let P =   therefore, 

A'P= =

      (31a) 

PA= =

          

(31b) 

PBR-1B'P=   

=                          (31c)                                       

Q =            (31d)                                                                                                 

Adding Eqn. (31a), (31b), (31d) and subtracting Eq. (31c) 
and substituting the values of N1, G1, N2 and G2 we get, 

 

Whence,  

         (32a)                                                                         

 

 

      (32b) 

 Substituting Eq. (32a) in Eq. (32b), we get, 

 
(32c) 

Solving 
the above 
polynomi
al from 
Eq. (32c) 
we will 
get four 
roots, 
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Roots of the above polynomial, 

( = 
0.1378 (real) 

= 1.375  

= 3.379  

( = 3.379  

Considering only the first real root (  as P4, we will 
find out the other elements of matrix “P”. 

 

 

 

                                             

 Hence, P =  

Feedback matrix K=  = 

= = 

         (32d)       

Substituting values of k1 and  in Eq. (30), yields, 

          (33) 

The roots of Eq. (33) are: 

 
 
The comparison of Eigen values/poles, feedback 
constants with system conditions are shown in Table. 4. 
 

Table-4: Poles/Eigen values of the system in the 
presence and absence of limit cycles for the example. 
 
System 

Conditi

on 

Roots State feedback 

constants 

Limit 
cycle 
exhibits 

  

Limit 
cycle 
does not 
exist 
(Optimal 
selection 
of gain 
K) 

  

 
Fig.11 Shows the Results/Images for pole placement of 
the Example (backlash) by optimal selection of state 
feedback gain K. 
 
Fig. 11:  Results/images for Pole placement of (a)input 
X1 for S1, (b) input X2 for S2, (c) output C1 for S1 and 
(d)output C2 for S2 from Example 1  (backlash) for poles 

placed at  

(  =   using Riccati 
Equation) 
 

 

4.1 Determination of Eigen values (poles) for 

existence of limit cycles in 2x2 nonlinear 

system 

From Fig.3 and Eq. (18) 

 Where  , 
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Or  

=  

Or  and 

  

With state feedback gain matrix ,  

 

From Fig. 9,    

Hence  

Hence  

Hence  

 

    

 

Hence  

  

From above two equations: 

         (34a) 

 

         (34b) 
Eq. (34a) and Eq. (34b) are additionally used for digital 
simulation with state feedback in conjunction with the 
digital simulation used in section 3.2. 
 
4 Conclusion 

The governing equation under limit cycling condition 
(autonomous system i.e. u = 0) in frequency response 
form is X = - HC and C = GN (X) X; leading to X = - 
HGN (X) X = AX, where A = - H G N (x): which 
facilitates the determination of Eigen values of the 
general multivariable systems. 

The governing equation with state feedback is = 
(A-BK) X: which facilitates the determination of 
feedback gain matrix K for closed loop poles / Eigen 
values placement where the limit cycles are suppressed / 
eliminated in the general multivariable systems. 

The present work claims the novelty in the following 
respects. The Poles / Eigen values are determined for 
Limit Cycling Systems with Memory type nonlinearities 
or the nonlinearities whose describing functions 
(harmonic linearization) are complex functions of X and 

. It would be extremely difficult to formulate and 
simplify the expressions in the harmonic balance method 
[10]. It is felt necessary to develop a graphical technique 
using harmonic balance method as discussed in the 
reference [11]. The poles of such systems are shifted or 
placed suitably by state feedback so that the systems do 
not exhibit limit cycles. The pole placement is done either 
arbitrary selection satisfying the state controllability 
condition or by optimal selection of feedback gains 
Matrix K using Riccati Equation.  The optimal selection 
of feedback gain matrix K has not been address 
elsewhere. 

There is an ample scope of extension of the present work 
for prediction of limit cycles and it suppression in 3 X 3 
memory type nonlinear systems, which may subsequently 
have extended for n X n memory type nonlinear 
multivariable systems.  This work may be taken up in 
future in conjunction with the procedure stated in 
reference [9] for prediction of limit cycles in 3 X 3 non-
memory type nonlinear systems [3], [9]. 
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