
AMS subject classification: 65C20,68U20,65D25,
65M06,65M12.

An analysis of antibody penetration into a pre-
vascular tumor nodule embedded in normal tis-
sue is presented in [1]. According to the mathe-
matical model presented in a scoentific modeling
text in the French external agregation competition
(public 2008), a numerical method is proposed for
calculating antibody and antigen concentrations
when reaction speed is moderate. Although the
proposed mathematical model describes well the
transport-diffusion reaction of antibodies in a tu-
mor and their interactions with antigens, it has
a significant limitation. In fact, the system has
been shown to be unstable and requires modifi-
cation. An analysis of the stability and consis-
tency is proposed, and the theoretical results are
validated by numerical tests after increasing the
reaction factor. The proposed work provides a de-
tailed analysis of a modified scheme, the effects of
the reaction factor, and the behavior of the new
scheme at infinity. We seek solutions to the sys-
tem in the form of progressive waves of the ”front”
type.

We suppose :

The liquid carrying the antibodies occupies all
the inert spaces in the medium.

The antigens are fixed to the internal walls of the
inertial cells.

The porosity ratio w= volume liquid
total volume ∈]0.1[ is known.

The process takes place in a fairly thin tube, of
section A and the flow occurs through sec-
tion wA. (ie We can confuse the dimension
of the tube with a one-dimensional medium
in space.)

Notations :

The concentration of the antibody c(x, t) =
number o f antibodies

volume o f f luid .

The concentration of the antigen s(x, t) =
number o f antigen

volume total .

The flow of antibodies q(x, t) =
number o f antibodies passed in x

time × sur f ace which is a func-
tion of c and s.

The antibody-antigen reaction
function f [c(x, t),s(x, t)] =
number o f antibodies retained by antigens

time × volume .
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1. Introduction 

2. Mathematical Model of simultaneous of  
antibody-antigen reaction in a tumor  
2.1 Notations 
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For a time ∆t and in a volume A.∆x, as a result of
the principle of mass conservation, we have:

∆c(x, t).∆x.Aw=−∆q(x, t).∆t.A− f [c(x, t),s(x, t)].∆t.∆x.A

Thus, dividing by ∆t.∆x.A and passing on to par-
tial derivatives we obtain:

w
∂c(x, t)

∂ t
+

∂q(x, t)
∂x

=− f [c(x, t),s(x, t)] (1)

There are two components to the flow q = qa+qd :
A transport flow is defined as qa(x, t) = u.c(x, t)

where u represents the transportation speed
as assumed here to be constant.

The diffusion flux qd(x, t) = −v.∂c(x,t)
∂x where v is

the diffusion factor assumed to be constant.

As the antigens are fixed, only the time t, the
antibody-antigen reaction function f and the va-
lency p of the antibodies determine their number.

C+ pS → SpC (2)

A variation in the number of antigens equals −p×
(the number of antibodies) retained by the anti-
gens, we have:

∆s(x, t).∆x.A =−p f [c(x, t),s(x, t)].∆t.∆x.A

By dividing by ∆t.∆x.A and passing to partial
derivatives, we obtain:

∂ s(x, t)
∂ t

=−p. f [c(x, t),s(x, t)] (3)

We obtain ∂ s(x,t)
∂ t = −p.k.c(x, t).s(x, t) , with k as

the factor of reaction assumed to be constant and
f as the form: f = k.c.s (4)

Based on the framework previously defined, we
search for c and s that are defined on the [0,L]×
[0,T ], L,T ∈ R∗+. Then we give ourselves: w ∈
]0,1[, u,v,k,s0 ∈R∗+, p∈N∗ and a regular function
cd on [0,T ]. Therefore, the problem is as follows:{

w ∂c
∂ t +u ∂c

∂x − v ∂ 2c
∂x2 + k.c.s = 0 (5)

∂ s
∂ t + p.k.c.s = 0 (6)

With initial and boundary conditions:{
c(0, t) = cd(t) c(L, t) = 0 t ∈ [0,T ]
c(x,0) = 0 s(x,0) = s0 x ∈ [0,L] (7)

An explicit scheme:
Let M,N ∈ N∗ and the spatial and temporal dis-
cretization steps: ∆x = L/M and ∆t = T/N. We
consider the progressive scheme in time and cen-
tered in space :

∂c(x j,tn)
∂ t ≈

cn+1
j −cn

j
∆t

∂ s(x j,tn)
∂ t ≈

sn+1
j −sn

j
∆t

∂c(x j,tn)
∂x ≈

cn
j−cn

j−1
∆x

∂ 2c
∂x2 ≈

cn
j+1−2cn

j+cn
j−1

∆x2

Where (x j, tn) = ( j.∆x,n.∆t), cn
j = c(x j, tn) and

sn
j = s(x j, tn). Which give: w

cn+1
j −cn

j
∆t +u

cn
j−cn

j−1
∆x − v

cn
j+1−2cn

j+cn
j−1

∆x2 + k.cn
j .s

n
j = 0 (8)

sn+1
j −sn

j
∆t + p.k.cn

j .s
n
j = 0 (9)

With initial and boundary conditions:
c0

j = 0 j ∈ |[0,M]| (10)
cn

0 = cd(tn) n ∈ |[1,N]| (11)
s0

j = s0 j ∈ |[0,M]| (12)

* Numerical simulation of the explicit scheme :

with function cd(t) = 1 and values:

w u v s0 M dt T L k p
0.9 0.1 0.003 2 100 0.01 20 1 1e4 3

2.2 Basic Equation 

2.3 System setup 

2.3.1 The mass conservation of antigens 

2.3.2 The system of partial differential Equations 

3. Numerical resolution 
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The scheme (8−9) is consistent with the equation
(5−6) and it is order 1 accurate in time and space

According to Taylor’s developments we have:

cn+1
j − cn

j = ∆t ∂c(x j,tn)
∂ t +O(∆t2)

cn
j+1 − cn

j = ∆x ∂c(x j,tn)
∂x + ∆x2

2
∂ 2c(x j,tn)

∂x2 +O(∆x3)

cn
j−1 − cn

j =−∆x ∂c(x j,tn)
∂x + ∆x2

2
∂ 2c(x j,tn)

∂x2 +O(∆x3)

cn
j+1 −2cn

j + c j−1 = ∆x2 ∂ 2c(x j,tn)
∂x2 +O(∆x4)

sn+1
j − sn

j = ∆t ∂ s(x j,tn)
∂ t +O(∆t2)

And by replacing the obtained equations in the

3.1 Consistency analysis and stability 
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first members of (8−9) we obtain the errors :

Ec = w∂c(x j,tn)
∂ t +O(∆t)+u ∂c(x j,tn)

∂x

+∆x
2

∂ 2c(x j,tn)
∂x2 +O(∆x2)− v ∂ 2c(x j,tn)

∂x2

+O(∆x2)+ k.cn
j .s

n
j

= O(∆x,∆t)
Es =

∂ s(x j,tn)
∂ t

+O(∆t)+ p.k.cn
j .s

n
j

= O(∆x,∆t)

Scheme (8-9) is stable with equation (5-6) un-
der the condition:

∆t ≤min{ w
u

∆x +
2v

∆x2 + ks0
,

1
kpK

} Where K = max
1≤n≤N

cd(tn)

by induction :
We have 0 ≤ c0

j ≤ K et 0 ≤ s0
j ≤ s0

Suppose 0 ≤ cn
j ≤ K and 0 ≤ sn

j ≤ s0 for a n ∈ N∗.
From (8−9) we have:

cn+1
j = cn

j +
u∆t
w∆x(c

n
j−1 − cn

j)

+ v∆t
w∆x2 (cn

j+1 −2cn
j + cn

j−1)−
k∆t
w cn

js
n
j

= ( u
w∆x +

v
w∆x2 )∆tcn

j−1 +(1− ( u
w∆x

+ 2v
w∆x2 +

k
w sn

j)∆t)cn
j +

v
w∆x2 ∆tcn

j+1

sn+1
j = sn

j −
pk∆t

w cn
js

n
j

Finaly we obtain :
{

0 ≤ cn+1
j ≤ K

0 ≤ sn+1
j ≤ s0

We consider the scheme (15−16) by replacing the
terms cn

js
n
j by cn+1

j sn+1
j , which can be written again

in the form:{
X +A1XY +B1 = 0 (15′)
Y +A2XY +B2 = 0 (16′) where A1 = k∆t

w ,

A2 =
pk∆t

w and

{
B1 =−cn

j − u∆t
w∆x(c

n
j−1 − cn

j)− v∆t
w∆x2 (cn

j+1 −2cn
j + cn

j−1)

= ( u∆t
w∆x +

2v∆t
w∆x2 −1)cn

j − ( u∆t
w∆x +

v∆t
w∆x2 )cn

j−1 −
v∆t

w∆x2 cn
j+1

B2 =−sn
j , X = cn+1

j and Y = sn+1
j .

The system (15′−16′) is equivalent to:{
A2X2 +(1+A2B1 −A1B2)X +B1 = 0 (15′′)
Y +A2XY +B2 = 0 (16′)

With equation (5−6), the scheme (15−16) is:

i) consisting and it’s order 1 accurate in time and
space .

ii) stable under the condition:

∆t ≤ w
u

∆x +
2v

∆x2

and therefore in this case it’s stable indepen-
dently of k.

We proceed also by induction.
We should demonstrate that (cn+1

j ,sn+1
j ) exists and

0 ≤ cn+1
j ,0 ≤ sn+1

j ; (h).
The equation (15′′) is of 2nd degree, with discrim-
inant ∆= (1+A2B1−A1B2)

2−4B1A2 and admits a
unique positive solution because: u∆t

w∆x +
2v∆t
w∆x2 −1 ≤

0 so B1 ≤ 0 and ∆ ≥ 0. As
√

∆ ≥ |1+A2B1−A1B2|,
the equation (15′′) admits 2 solutions X1 ≥ 0 and
X2 ≤ 0 (not necessarily distinct. and the equation
(16′) shows that Y ≥ 0 as soon as X ≥ 0 (because
−B2 = sn

j ≥ 0).
Let us now show that cn+1

j ≤ K,sn+1
j ≤ s0 :

From (15 and 16) we have:

{
cn+1

j = ( u
w∆x +

v
w∆x2 )∆tcn

j−1 +(1− ( u
w∆x +

2v
w∆x2 )∆t)cn

j +
v

w∆x2 ∆tc n
j+1 −

k
w∆tcn+1

j sn+1
j

sn+1
j = sn

j −
pk∆t

w cn+1
j sn+1

j

And according to induction hypotheses we
have:

{
cn+1

j ≤ ( u
w∆x +

v
w∆x2 )∆tK +(1− ( u

w∆x +
2v

w∆x2 )∆t)K + v
w∆x2 ∆tK ≤ K

sn+1
j ≤ sn

j ≤ s0

Numerical simulation of the modified scheme :

with function cd(t) = 1 and values:

w u v s0 M dt T L k p
0.9 0.1 0.003 2 100 0.01 20 1 1e4 3

4. Behavior for large k 
4.1 Modified scheme of the method 
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To get an idea of the appearance of c and s for
large k, we consider the solution (ck,sk) of the
system (5−6) for a certain k and we make k→+∞:{

w ∂ck

∂ t +u ∂ck

∂x − v ∂ 2ck

∂x2 + kcksk = 0 (5)
1

−pk
∂ sk

∂ t = cksk (6)
⇔

{
∂ (wck−sk/p)

∂ t +u∂ck

∂x − v ∂ 2ck

∂x2 = 0
1

−pk
∂ sk

∂ t = cksk

we make k →+∞ we obtain :
∂ (wc∞ − s∞/p)

∂ t
+u

∂c∞

∂x
− v

∂ 2c∞

∂x2 = 0 (13)

If we assume that ∂ sk

∂ t is bounded with respect to
the values of k ∈ R∗+, then c∞s∞ = 0.
We concluded that :{ c∞ > 0 and s∞ = 0

Or
c∞ = 0 and s∞ = s0

(14)

4.2 Behavior when k → + ∞ 
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With a large reaction factor, we have at a position
x:

If there are antibodies (c∞ > 0) then all antigens
react (s∞ = 0).

If there are no antibodies (c∞ = 0) then there is
no reaction (s∞ = s0)

We shall now seek a solution of the following type:
c(x, t) =C(z) s(x, t) = S(z), z = x−σt and C,S are
functions that describe wave profiles propagating
at constant speed σ . In order to achieve a progres-
sive (non-stationary) framework, we may replace
the domain of study with R×R+ and the bound-
ary conditions with:

{
lim

z→−∞
C(z) = cd > 0 lim

z→+∞
C(z) = 0

lim
z→−∞

S(z) = 0 lim
z→+∞

S(z) = s0 > 0

The C and S profiles verify the ODE:

vC′′+(wσ −u)C′− σ
p

S′ = 0 (17)

where
σ =

u
w+ s0

pcd

(18)

We have:{ ∂c(x,t)
∂ t = ∂c(x,t)

∂ z
∂ z
∂ t

=−σC′(z)
and{ ∂c(x,t)

∂x = ∂c(x,t)
∂ z

∂ z
∂x

=C′(z)

we obtain ∂ 2c(x,t)
∂x2 = C′′(z) and

∂ s(x,t)
∂ t =−σS′(z) Accordingly, we concluded:{
−wσC′+uC′− vC′′ =−kCS
−σS′ =−kpCS and then

{
vC′′+(wσ −u)C′ −σ

p S′ = 0
σS′ = kpCS

We integrate in an interval [−z,z],z > 0:∫ z

−z
[vC′′+(wσ −u)C′− σ

p
S′]dz= 0⇒ v[C′]z−z+(wσ −u)[C]z−z−

σ
p
[S]z−z = 0

Taking into account the boundary conditions,
C admits 2 horizontal asymptotes: y = cd in
−∞ and y = 0 in +∞ we find by passing to the
limit z →+∞:

−(wσ −u)cd −
σ
p

s0 = 0

In the case of large k and in the context of (14),

C∞(z) = cd(1− e
u−wσ

v z) (19)

is solution of (17)
For large k and within the context of (14); the

solution (C∞,S∞) verify:
{

S∞ = 0 i f C∞ > 0
S∞ = s0 i f C∞ = 0

Such :{
S∞(x−σt) = 0 si x < σt the wave has exceeded x
S∞(x−σt) = s0 si x ≥ σt the wave has not yet passed x

So we can consider S∞ constant then{
vC′′

∞ +(wσ −u)C′
∞ = 0 on ]−∞,0] (17′)

C∞ = 0 on [0,+∞[ (17′′) .

And like u−wσ = u−w u
w+ s0

pcd

= u(1− 1
1+ s0

wpcd

)>

0 , the equation (17′) admits as solution: z → α +

βe
u−wσ

v z. And applying the conditions:{
C∞(0) = 0
C∞(z)
z→−∞

= cd ⇒
{

α +β = 0
α = cd

⇒
{

β =−cd
α = cd

From where:{
C∞(z) = cd(1− e

u−wσ
v z) z ∈]−∞,0]

C∞(z) = 0 z ∈ [0,+∞[

with function cd(t) = 1 and values:

w u v s0 cd Nx NT p
0.9 0.1 0.003 2 1 100 5 3

4.2.1 Interpretation 

5. Travelling waves 

5.1 Simulation 
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Initially, the analysis relied on a mathematical
model proposed in a scientificité modeling text in
the French external agregation competition (pub-
lic 2008), that calculates antibody and antigen
concentrations when reaction speed is moderate.
Despite this, the inherent instability of the sys-
tem presented a significant challenge that had to
be carefully considered.

We proposed modifications in our study that
transformed an unstable system into one that is
stable and consistent under certain conditions.
This paper provides detailed proofs of the stability
and consistency of the newly devised system, sup-
ported by both theoretical and numerical analyses.
As a robust method of evaluating the effectiveness
and reliability of the modified scheme, numerical
tests were included, particularly after augmenting
the reaction factor.
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