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Abstract: - For several decades, the importance and weight-age of prediction of nonlinear self-sustained 
oscillations or Limit Cycles (LC) and their quenching by signal stabilization have been discussed which is 
confined to Single Input and Single Output (SISO) system. However, for the last five to six decades, the analysis 
of 2x2 Multi Input and Multi Output (MIMO) Nonlinear Systems gained importance in which a lot of literature 
available. In recent days few literatures are available which addresses the exhibition of LC and their 
quenching/suppression in 3x3 MIMO Nonlinear systems. Poor performances in many cases like Load Frequency 
Control (LFC) in multi area power system, speed and position control in robotics, automation industry and other 
occasions have been observed which draws attention of Researchers. The complexity involved, in implicit non-
memory type and memory type nonlinearities, it is extremely difficult to formulate the problem in particular for 
3x3 systems. Under this circumstance, the harmonic linearization/ harmonic balance reduces the complexity 
considerably. Still the analytical expressions are so complex which loses the insight into the problem particularly 
for memory type nonlinearity in 3x3 system. Hence in the present work a novel graphical method has been 
developed for prediction of limit cycling oscillations in a 3x3 nonlinear system. The quenching of such LC using 
signal stabilization technique using deterministic (Sinusoidal) and random (Gaussian) signals has been explored. 
Suppression LC using pole placement technique through arbitrary selection and optimal selection of feedback 
Gain Matrix K with complete state controllability condition and Riccati Equation respectively. The method is 
made further simpler assuming a 3x3 system exhibits the LC predominantly at a single frequency, which 
facilitates clear insight into the problem and its solution.  
The proposed techniques are well illustrated with example and validated/substantiated by digital simulation (a 
developed program using MATLAB codes) and use of SIMULINK Tool Box of MATLAB software.  
The Signal stabilization with Random (Gaussian) Signals and Suppression LC with optimal selection of state 
feedback matrix K using Riccati Equation for 3x3 nonlinear systems have never been discussed elsewhere and 
hence it claims originality and novelty.  
The present work has the brighter future scope of:  
i. Adapting the Techniques like Signal Stabilization and Suppression LC for 3x3 or higher dimensional 
nonlinear systems through an exhaustive analysis.  
ii. Analytical/Mathematical method may also be developed for signal stabilization using both deterministic 
and random signals based on Dual Input Describing function (DIDF) and Random Input Describing Function 
(RIDF) respectively.  
iii. The phenomena of Synchronization and De-synchronization can be observed/identified analytically 
using Incremental Input Describing Function (IDF), which can also be validated by digital simulations. 
 
Key-Words: - Limit Cycles, Describing function, 3x3 non-linear systems, Pole placement technique, Suppression 
limit cycle, signal stabilization. 
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1 Introduction 

It has been observed for years long the importance 
and weightage on self-sustained oscillations or 
nonlinear oscillations or limit cycles (LC) [1], [2], 
[3], [4], [5]. 
 For last several decades, the analysis of 2x2 
multivariable nonlinear systems drawn attention of 
the researchers and good number of literature is 
available [6], [7], [8], [9], [10], [11], [12], [13], [14], 
[15], [16], [17], [18], [19], [20], [21], [22], [23], [24], 
[25], [26], [27], [28], [29], [30], [31], [32], [33], [33], 
[34], [35], [36], [37], [38], [39], [40], [41], [42], [43], 
[44], [45], [46], cover this area of research. The 
prediction of LC in 2 x 2 system, in means of 
increasing the reliability of the describing function 
(DF) are well established [4], [5], [10], [13], [16], 
[23], [47], [48] and others used harmonic 
linearization/ harmonic balance, [13], [27], [31], 
[49].  
 In the event of existence of limit cycling 
oscillations, the possibility, of quenching the 
sustained oscillations using the method of signal 
stabilization has been investigated, [5], [28], [29], 
[47], [48], in 2X2 nonlinear systems with non-
memory type nonlinear elements and in memory type 
nonlinear elements in [37] using deterministic signals 
whereas the same has been addressed with Gaussian 
signals [52].  
 Prediction and suppression of limit cycling 
oscillations in 2 x 2 memory type nonlinear systems 
using arbitrary pole placement has been discussed in 
[30], [41], [42], [50].  
 The present work follows the dynamics of general 
3X3 nonlinear systems shown in Fig. 2, Fig.3 [6], 
which is an equivalent representation of the general 
multivariable system of Fig.1[26]. 
 Having realized the importance of 
quenching/suppression of limit cycle oscillations the 
present work first establishes the exhibitions of limit 
cycles in 3X3 nonlinear systems following the 
similar procedure as depicted/illustrated [6]. 
 

2. Graphical Method of prediction of 

LC in a general 3x3 Nonlinear Systems 
In order to avoid complexity, involved in this 
structure a graphical method is developed for 
prediction of limit cycles in 3x3 nonlinear systems 
[6], [53].  
 
 

 

2.1 Graphical Method  
Consider a system of Fig.1, a class of 3x3 

nonlinear systems for simplicity it is assumed that the 
whole 3x3 system exhibits the LC predominantly of 
a single frequency sinusoid and harmonic 
linearization/harmonic balance leading to use of 
describing function methods have been opted.  

The normalized phase diagrams [44] are drawn 
for 3x3 systems with three combinations such as:  

Combination 1: For subsystems S1, S2 & S3: C1 
(+ve), C2 (-ve) and C3 (+ve)  

Combination 2: For subsystems S3, S2 & S1: C2 
(+ve), C3 (-ve) and C1 (+ve). 

Combination 3: For subsystems S1, S3 & S2: C3 
(+ve), C1 (-ve) and C2 (+ve). 

Example: Used for illustration of procedures of 
Normalized phase diagrams.  

The linear elements are represented by 
  ;   ;  = 

      and Nonlinear elements are taken, Ideal 

relays as shown in Fig.2. 

 
 
Fig. 1: A class of 3x3 multivariable nonlinear systems 
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Fig. 2: All Ideal Relays 
 
Assuming harmonic linearization these 
nonlinear elements can be equivalently 
represented by their describing functions which 
are real functions in these two examples and do 
not contribute any phase angles to the system. 
Hence the phase angles of the system are due to 
linear functions, G1(s), G2(s), G3(s) which are 
complex functions of complex variable s, the 
Laplace operator. It may be noted that for 

frequency response, input is sinusoidal and 

outputs are steady state values considered, so 

that s (Laplace Operator) is replaced by j[6].  
X1, X2 & X3 are the amplitudes of respective 
sinusoidal inputs to the nonlinear elements. C1, 
C2 & C3 are the amplitudes of sinusoidal output 
of subsystems S1, S2 & S3 respectively. G1, G2 & 
G3 are the magnitudes/absolute values of linear 
elements represented by their transfer functions 
of subsystems S1, S2 & S3 respectively and N1, 
N2 & N3 are the magnitudes/absolute values of 
linear elements represented by their describing 
functions of subsystems S1, S2 & S3 respectively. 

θL1 = Arg. (  (jω)) = -90 - (ω): 

θL2 = Arg. (  (jω)) = -90 - ( ): 

θL3 = Arg. (  (jω)) = -90 - ( ): 

 N2=(11-3 ) ± 

 

…..(1),  

N1= N2+     (2),    

=   (3),  

 

With reference to Fig. 3(a), 

 =  =                ….(4),  

For a fixed value of ω the combinations of 
subsystems 1, 2, and 3, Normalised Phase 
Diagrams are shown in Figure 3(a), (b), and (c) 
respectively. However, any one of these 
combinations can be used for the determination 
of limit cycling conditions and the related 
quantities of interest. 
 
FIG.3 (a): Normalised phase diagram with C1, C2 & C3 for 
the combination 1, where C1 (+ve), C2 (-ve) and C3 (+ve). 
 

FIG.3 (b): Normalised phase diagram with C1, C2 & C3 for 
the combination 2, where C2 (+ve), C3 (-ve) and C1 (+ve). 
 
FIG.3 (c): Normalised phase diagram with C1, C2 & C3 for 
the combination 3, C3 (+ve), C1 (-ve) and C2 (+ve). 
 
With reference to a normalized phase diagram [44], 
the phase representing X2 would lie along a straight 
line drawn at an angle θL2 with the phase C2 (C2 = - 
R1). The intersections of this straight line with the 
circle drawn with respect to θL1 would represent 
possible self-oscillations. The concept has been 
extended for 3 x 3 as: 
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(i) Consider Fig. 3(a) the phase representing X2 and 
X3 would lie along straight lines drawn at angles θL2 

and ϴL3 with the phase C2 (C2 = - R1) and C3 (C3=R1) 
respectively. The intersections of these straight lines 
with the circle drawn with respect to θL1 would 
represent possible self-oscillations.  
(ii) Consider Fig. 3(b), the phase representing X3 and 
X1 would lie along straight lines drawn at angles   θL3 

and θL1 with the phase C3 (C3= - R2) and C1 (C1=R2) 
respectively. The intersections of these straight lines 
with the circle drawn with respect to θL2 would 
represent possible self-oscillations.  
(iii) Consider Fig. 3(c) the phase X1 and X2 would lie 
along straight lines drawn at angles θL1 and θL2 with 
phase C1(C1=-R3) and C2(C2 = R3) respectively. The 
intersections of these straight lines with the circle 
drawn with respect to θL3 would represent possible 
self-oscillations. 
Table 1: Shows the θL1, θL2, θL3, r (radius), and the 
intersection points of the straight lines and circle for 
combination 1 corresponding to the example. It may 

be noted that Table 1: Contains  obtained from 

Eqn.3 and Eqn.4 are matched at a limit cycling 
frequency. 
2.2 Digital Simulation 

The Example is revisited:  
A program has been developed [6] with the use of 

MATLAB code for digital simulation.  
The equivalent canonical form of Fig. 1 for the 

example is shown in Fig. 4(a) and digital 
representation is shown in Fig. 4(b) respectively. 

Numerical results obtained from different 
methods are compared in Table 2 for the example.  

The results/images for the example obtained from 
digital simulation (using the developed program) and 
that of obtained using SIMULINK Toolbox of 
MATLAB software are shown in Fig. 5 for 
comparison. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 4(a): Equivalent Canonical form of Fig.1 for the 
Example 

 
 

Fig. 4(b): The Digital representation of Fig.1 for the 
Example 
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Table 1: Shows the θL1, θL2, θL3, r (radius), and the intersection points of the straight lines and circles for 

combination 1 corresponding to the Example (with reference to Fig. 3(a)). 

 

 θL1 θL2 θL3 r 

X1/X

2 
from 

eqn.  

3 

X1/X2 
from eqn. 4 

Normalized Phase 

Diagrams 
Remark 

0.600 -151.93 -98.531 -106.7 -0.55257 - - 

 

No intersection 
of straight lines 
and circle 

0.650 -156.05 -99.23 -108 0.58256 - - 
 

No intersection 
of straight lines 
and circle 

0.700 -159.98 -99.926 -109.29 -2.128 - - 

 

No intersection 
of straight lines 
and circle 

0.701 -160.06 -99.94 -109.32 -3.1323 1.0 

1.02 

(matched

) 

 

The intersection 
of st. lines & 
circle found: 
Confirms the 
occurrence of 
limit cycles 
=0.701, 
C1 = OD2 = 6 
C2 = 1 
C3 = 1 
X1=BD2=6.08 
X2=AD2=6.08 
X3=B’D2= 
6.32 

0.750 -163.74 -100.62 -110.56 -1.3583 - - 

 

No intersection 
of straight lines 
and circle 
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Fig. 5: Results/Images from digital simulation and 
SIMULINK for C1, C2, C3, X1, X2 and X3 of the Example 
(relay type nonlinearities). 
 
Table 2 Results obtained using different methods 

corresponding to Ideal Relay Example 
 
Sl. 

No 
Methods C1 C2 C3 X1 X2 X3  

1 Graphical 6.0 1.0 1.0 6.08 6.08 6.32 0.701 

2 

Digital 
Simulation  
(developed 
program) 

4.83 0.74 0.95 4.72 4.91 5.23 0.70 

3 

Using 
SIMULINK  
TOOL BOX 
OF MATLAB 

5.95 1.01 0.96 4.84 5.12 5.62 0.70 

3. Signal Stabilization in 3x3 

Nonlinear System 

The System exhibits limit cycles (LC) in the 
autonomous state, the possibility of quenching 
the LC by injecting a suitable high frequency 
signal, preferably, at least 10 times of the limit 
cycling frequency. 

3.1 Using Deterministic Signal 
The forced oscillations can be realised by 

feeding deterministic or random signals of high 
frequency, at least greater than 10 times the limit 
cycling frequency at any one /all input points of the 
subsystems S1, S2, S3. 
 If the amplitude B of the high frequency signal 
is gradually increased, the system would exhibit 
complex oscillations before the synchronization 
takes place. On the reverse operation, if the 
amplitude B is gradually reduced at certain value of 
B the self-oscillations i.e. the Limit cycle would 
reappear and the system would exhibit complex 
oscillations again which can be called the de-
synchronisation. The phenomena of synchronization 
and de-synchronization can be observed / identified 

analytically using Incremental Input Describing 
function (IDF) [44]. 

However, the forced oscillation can also be 
analysed using the Equivalent Gain/Dual input 
Describing Function (DIDF) [44] in case of a 
deterministic forcing signal in particular with a 
sinusoidal signal. Taking the second option i.e. all 
three inputs are same as B sinft at 3 input points U1, 
U2, & U3, shown in Fig.6. Amplitude B is gradually 
increased, the frequency of self-
oscillation, s would gradually change, the system 
will synchronize to forcing frequency i.e. the self-
oscillation would be quenched and the system would 

exhibit forced oscillations at frequency f. 
Fig 6: Equivalent System of Fig. 1 for forced oscillations 
(Signal Stabilization) with deterministic signal for the 
Example. 
The results/images from digital simulation for signal 
stabilization with deterministic (sinusoidal signal) 
for the Example shown in Fig.7. 

Fig. 7: Forced Oscillations by Signal Stabilization with 
deterministic signal for the Example Forcing Signal U = 
5sinf t (f = 7.5 rad / sec) 
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3.2 Using Gaussian signal:   
The forced oscillation is analysed with Equivalent 
Gain (similar to DIDF - Random Input Describing 
Function) (RIDF) in case of the Random Signals in 
particular with Gaussian Signals [52]. 

Consider the Example. The system is exhibiting 
LC under autonomous state, a Gaussian signal with 
specified mean and variance is injected at U1, U2 & 
U3 of subsystems for stabilizing the system / 
quenching the self-sustained oscillations. At a 
suitable value of mean () and variance (), the self-
sustained oscillations are vanished/the system is 
synchronised to high frequency forcing input. 

 The results/images are shown in Fig. 8, which is 
obtained from digital simulation by signal 
stabilization with Gaussian signals for the Example 
replacing B sin ft with a suitable random signals in 
Fig.7. 
 

Fig. 8: Forced Oscillations by signal stabilization with 
Gaussian Signal of mean 50 and variance 0.05 for the 
Example 
 

4. Suppression of limit cycle in 3x3 

nonlinear system using pole placement 

technique 
The System of the Example exhibits Limit Cycles 

which can be suppressed by pole placement 
technique [46]. The closed loop poles or Eigen values 
of the closed loop systems can be placed at the 
desired location through state feedback using an 
appropriate feedback gain matrix K [k1, k2, k3]. 
Necessary and sufficient condition for arbitrary pole 
placement is that the system be completely state 
controllable [46]. This can also be done by optimal 

selection of feedback gain matrix K using Riccati 
Equation [46]. 

4.1 Suppression of Limit Cycles in 3x3 

Nonlinear system using arbitrary Pole 

Placement by state feedback: 
Pole placement technique by state feedback is 

done by determining the Eigen values or poles of the 
system. These Eigen values cause the limit cycles in 
the system, and as the complete removal of these self-
oscillations may not be possible, the location of the 
poles must be changed from its original position so 
as to bring about suppression of the limit cycle. The 
most general multivariable nonlinear system [53] is 
shown in Fig. 9 (a). For existence of limit cycles, an 
autonomous system (input U=0) Fig. 9(a) can be 
represented in simplified form as shown in Fig. 9(b). 
Making use of the first harmonic linearization of the 
nonlinear elements, the matrix equation for the 
system of Fig. 9(b) can be expressed as  
X = -HC, where C = GN(x) X.  Hence, 

X = -HGN(x) = AX                                       (5) 

Where, A = -HGN(x) 

 
Fig. 9(a): Block diagram representation of a most general 
nonlinear multivariable system 
 

Fig. 9(b): Equivalent of the system of Fig. 9 (a) with input 
U= 0 
Realizing Eqn. (5) as a transformation of the vector 
X onto itself, it is noted that for a limit cycle to exist 
the following two conditions should be satisfied, [6], 
[53]: 

(i) For every non-trivial solution of X, the matrix 
A must has an Eigen value λ equal to unity, and 

(ii) The Eigen vector of “A” corresponding to this 
unity Eigen value must be coincident with X. 
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4.1.1: Arbitrary Pole Placement for 

suppression of limit cycles in the Example 

with all ideal relays     
In order to suppress the limit cycles, arbitrary pole 
placements may be possible if the system is 
completely state controllable [46].  

The controllability matrix                         

                            (6) 
Where,  

  ;  

 

 

;  

 
From Table 1 for the Example, 

 X1= 6.08, X2= 6.08, X3 =6.32 

N1(X1) =    =  = 0.419; N2(X2) =   =  

= 0.314, N3(X3) =  =  = 0.202 

 =  = 1.913                                                                                                                 

 =  =  = 0.351        

 = 0.673 
On substitution of the numerical values:  

 = -0.419 X 1.913 = - 0.802,  
 

 = - 0.314 X 0.351 = -0.110,  

 = -0.202 X 0.673 = -0.136 

 ; AB = 

  = ; 

B =   = 

 

Hence S = = 0.0215≠0 (The 

system is completely state controllable) 
Hence arbitrary pole placement is possible [46] 

=                                           (7)      
The system under autonomous state is represented as 
shown in Fig. 10. 

 
 
 
 
 
. 
 

Fig. 10: A system with state feedback 
Consider Fig. 10: 
The control law u = -KX                           (8) 

 Where K= [ ] is the feedback matrix. 
 Replacing K in Eqn. (7) by Eqn. (8), we get, 

= (A-BK) X                     (9) 
Substituting the values of A, B and K, we get: The 
Characteristic Equation as   
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Hence    

   = 

                                                                   

      

=  

= + ( + + + )+ (2 +2

+2 + + +

+ )+(4 +

+ =0    (10) (Ch. 

Equation)  

On substitution of the values of , , ,  and 

,  in Eqn. (10), we get, 

+ (0.136+0.11+0.802+ +

0.177+0.218+0.030+ + +

}+(0.048+0.522+ =0          Or 

+ (1.048+ + 0.136

(0.57 x0.03)=0 
(11) 
If the poles are selected arbitrarily at 

 respectively, the 
characteristic equation becomes: 

(  (  (  = +4 +5 +2=0         

(12) 
Comparing Eq. (12) with Eq. (11), and equating the 

coefficients of like powers of  we get: 

4 = 1.048                (13) 

2 = (0.57  x 0.03), whence  …  (14) 

5 = (0.425  x 0.136 +  x 0.136  x 0.91) 

   

5= (0.425   0.136 +  x 0.136  
x 0.91) or  

5=(0.425  +  x 0.136 ), whence 

  (15) 

Hence K =  = 

 (16) 

From Eqn. (9), (A – BK) = A1, with shifted poles for 
Example 1. Or 

A1 =  = 

 (17) 

The images/response   in the 

autonomous state obtained from digital simulation 
for A1 of Example, are shown in Fig.11. 
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Fig. 11: Suppression of Limit Cycles by State Feedback 
with arbitrarily selection of feedback gain matrix for the 
Example. 
 

 

4.1.2 Optimal Selection of Feedback gain 

Matrix using Riccati Equation for Example 1 

The Riccati Equation is A′P+PA- B′P+Q=0 

 (18)  

And K = Feedback gain matrix =  B′P  (19) 

Assuming R = 1, B= , Q =   

 

Let P= , considering P to be 

symmetric matrix: = ,   

Hence P =   

 

A′ P =   

  

=  

   (20) 

PA=  

=  
 

 
      

     (21) 

B′P= ,

= 

 

 

 = 

=

=

           (22) 

On substitution of numerical values, Eqn. 20 can be 
written as            
 

 
---- (23) 
 
On substitution of numerical values, Eqn. 21 can be 
written as 

                                         
---- (24) 
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On substitution of these values of Eqns. (22), (23), 
(24) and the assumed value of Q in Riccati Eqn. 18 
yields: 

(-1.604 -1.604 )+1-p213 = 0 

           (25) 

(-0.912 +0.802 -0.802 -0.11 +0.11 -

p13 p23=0            (26) 

(-0.938 +0.802 p23-0.802 p33+0.136 p11-0.136 p12- 

p13 p33=0  (27) 

(-0.22 p12-0.22 p22+0.22 p23- p2
23 = 0

  (28) 

(-0.11 p13-0.246 p23+0.11 p33+0.136 p12-0.136 p22- p23 

p33=0   (29) 

(0.272 p13-0.272 p23-0.272 p33- p33 p23) = 0 

 (30) 

Further, subtracting Eqn. (29) from Eqn. (30), we get,  

0.382 p13 – 0.026 p23 – 0.382 p33 – 0.136  + 0.136 

p22    (31) 

The solution of these simultaneous Eqns. 
(26),(27),(28),(29),(30) & (31) yields :  

   = -116.68,  = -110.48, =6.58,  = -
93.24, p23 = -6.58, p33 = 0 

From Eqn. (19), K =  B′P = 1  

 

Or =

  

Or =   

=  , 
 

Whence,  = 6.58, = -6.58 and  = 0  

 (32) 
Hence, A – BK =  

A2=  

 

 
 
Fig. 12: Suppression of Limit Cycles by State Feedback 
with optimal selection of feedback gain matrix for the 
Example. 
 

On substitution of numerical values for Example 1, 
A2 becomes:  
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A2=  

 = 

   (33) 

The images/responses C =  and  =  in the 

autonomous state, obtained from digital simulation 
for the Example, are shown in Fig. 12. 
 

5 Conclusion 

 In today’s scenario, nonlinear self-sustained 
oscillations or Limit Cycles are the basic feature of 
instability. The existence /exhibition of such 
phenomena limit the performance of most of the 
physical systems such as the speed and position 
control in robotics, automation industry in particular. 
Quenching/Complete extinction of such LC has been 
a severe headache among the researchers for several 
decades. There are some methods, seen in the 
available literature which suggests the solution to this 
problem occurring in SISO or 2x2 systems. However, 
our present work explores the solution for 3x3 
systems in the event of existence of LC problem and 
establishes the result graphically & validated by 
digital simulation. The novelty of the work claims in: 
(i) Quenching of LC exhibited in nonlinear systems 
by Signal Stabilization with deterministic as well as 
random (Gaussian) signals, (ii) Suppression of limit 
cycles in 3x3 nonlinear systems by Pole Placement 
using State feedback with arbitrary selection as well 
as optimal selection of feedback gain matrix K.  

More importantly the poles of such 3x3 systems 
are shifted or placed suitably by State feedback so 
that the system do not exhibit limit cycles. This pole 
placement is done either by arbitrary selection 
satisfying the complete state controllability condition 
or by optimal selection of feedback gain matrix K 
using Riccati equation which has not been attempted 

elsewhere. 
The present work has the brighter future scope of 
adopting the techniques like signal stabilization [44] 
and suppression of limit cycles [46] in the event of 
the existence of limit cycling oscillations for 3x3 
higher dimensional systems through an exhaustive 
analysis. 

Analytical/Mathematical procedures may also be 
developed for signal stabilization using both 
deterministic and random signals applying DIDF and 
RIDF respectively.  

Backlash is one of the nonlinearities commonly 
occurring in physical systems which are an inherent 
characteristic of Governor, more popularly used for 
load frequency control (LFC) in power systems. The 
LFC shows poor performance due to the backlash 
characteristic of the governor. Similarly, the backlash 
characteristic limits the performance of speed and 
position control in the robotics, automation industry. 
The poor performance of LFC, speed and position 
control in robotics and in automation industries are 
happening since these systems exhibit limit cycles 
due to their backlash type of nonlinear 
characteristics. The proposed method of suppression 
of L.C. can be extended and developed for backlash 
type nonlinearity in 3x3 systems and used to 
completely eliminate the limit cycle to mitigate such 
problems.  
The phenomena of synchronization and de-
synchronization can be observed/identified 
analytically using Incremental Input Describing 
function (IDF). 
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