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Abstract: The present paper reports on the current progress about the laboratory-based assessment of the fluency

of attitude maneuvering of a quadcopter. The manuscript illustrates a laboratory-based data-acquisition setup and

a mathematical data-processing algorithm to test a novel attitude maneuvering fluency estimation index termed

geometric lurch. The geometric lurch index is defined in terms of angular variables’ values as returned by gyro-

scopic sensors that a quadcopter vehicle is equipped with. The results of several numerical tests, conducted on both

synthetic and real-world gyroscopic signals, show that the geometric lurch index is fairly sensitive to the fluency

of attitude maneuvering.

Key–Words: Attitude Maneuvering; Drone; Gyroscopic lurch; Inertial measurement unit; Quadcopter.

1 Introduction

A unmanned aerial vehicle is typically intended to be

used as a search and rescue field robot as it affords

high levels of maneuverability, including the ability

to hover. An unmanned aerial vehicle is able to ac-

quire and to transmit data to an operator situated at a

safe vantage point [5]. The structure of a quad-rotor

helicopter, hereafter a quadcopter, comprises four ro-

tors attached at the ends of a symmetric light struc-

ture (see, e.g., the Figure 1). The key features of a

Figure 1: A Parrot AR Drone Quadricopter, 2.0 Elite

Edition.

quadcopter structure are rigidity and symmetry [5]. To

avoid unstable flight phenomena and to improve ma-

neuverability, the structure should be as rigid as pos-

sible, while maintaining the lightest possible weight.

Symmetry is also of great importance, namely, the

center of gravity should be kept as close to the middle

of the drone as possible, so as to facilitate the control

of the vehicle. Similar to a conventional helicopter,

a quadcopter is a six degree-of-freedom, highly non-

linear, multi-variable, strongly coupled, and under-

actuated system [5].

The availability of inexpensive commercial sen-

sors to measure kinematic variables, such as position,

speed and orientation, boosted the design of small fly-

ing objects controlled by a remote site by a human

operator or by an automated control system.

In particular, in order to measure the orientation

(or attitude) of a non-moving object (yaw, pitch and

roll), a three-axis accelerometer may be employed.

For a static vehicle, a three-axis accelerometer returns

the value of the gravity field on three axes and, there-

fore, its orientation. In fact, since the gravitational

force always points toward the center of the earth, we

can know how the accelerometer device, and hence

the vehicle, is tilted. Such method has been used in

smartphones and may provide accurate results. How-

ever, if a vehicle starts translating in space, it becomes

subjected to an additional force that changes its ac-

celeration: The assumption that was made previously

to compute its orientation will not hold true anymore,

hence the calculated orientation will no longer be re-

liable.
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The most commonly used sensor in quadcopter

control is the gyroscopic sensor. A gyroscope returns

the angular velocity around three axes of space, in de-

grees per seconds, while the actual attitude may be

computed by appropriate numerical techniques on the

basis of the acquired gyroscopic signals. A problem

in quadcopter’s data acquisition and control is the sen-

sitivity of sensors to vibrations and shocks due to the

inner nature of the sensors, in particular:

◦ As mentioned, a gyroscope is only able to measure

an angular rate, not an absolute orientation. Any

numerical integration method to compute the ac-

tual attitude over a vehicle will unavoidably empha-

size the contribution of the noise and of the vibra-

tions/shocks in the measurements.

◦ All the common gyroscopes show a drift, which im-

plies that even if a drone flies steadily or do not

move at all, the sensor will notwithstanding out-

put nonzero angular velocities. Depending on the

quality of the sensor, the drift can be pretty large

for some sensors (e.g., it can rise up to 2 degrees

per second on a commercial gyroscope), therefore

destroying the accuracy of the measurement when

such readouts get numerically integrated to compute

the actual attitude of the vehicle.

Practitioners know different ways of getting the most

accurate orientation estimate from a combination of

sensors readouts. The most common approach is a

complementary filter. The idea behind the comple-

mentary filter is that the filtered accelerometer value

of the angle is not subject to drift, therefore it may be

used to correct the readouts from the gyroscope. The

same complementary filter may be exploited when the

above-mentioned sensors are used in conjunction with

a magnetic compass (which returns the local direction

of the earth’s magnetic field), to compute the attitude

of the quadcopter. Another well-known method to

filter out the artifacts from the sensed data is to pre-

process the acquired measurements through a Kalman

filter [6].

Most research studies in aerial vehicles control

focus on the design of control strategies to ensure

smooth maneuvering of drones [7]. However, unpre-

dictable events, such as the drone being shoved by a

strong gust of wind or being hit by another flying ob-

ject, might make an attitude maneuver less smoother

than predicted. The present paper focuses on the in-

lab assessment of the fluency during maneuvering of a

quadcopter vehicle by means of a mathematical algo-

rithm that is able to reveal the vibration and shocks

measured by gyroscopic sensors during an attitude

maneuver.

The large amount of data arising from kinematic

measurements call for a data-processing technique to

evaluate the fluency during attitude maneuvering of

a quadcopter. In particular, the present contribution

proposes and tests a novel kinematic index termed gy-

roscopic lurch. The gyroscopic lurch arises as a math-

ematical extension of the known concept of Carte-

sian kinematic lurch, that is, of the time-derivative of

the acceleration of a trajectory on a Cartesian (flat)

space. The contribution [10] surveys several appli-

cations of the Cartesian lurch, namely, high dynamic

motion aerial vehicle trace measurement, earthquake-

resistant structures design, analysis of mechanisms of

high-speed automatic control of machines, and study

of human responses in high-speed moving vehicles.

The present manuscript aims primarily at propos-

ing a mathematical algorithm to compute a numerical

index that could work as a synthetic indicator of the

fluency of attitude maneuvering and at illustrating a

possible in-lab test-bed to conduct experiments on its

numerical features. The current manuscript presents

a preliminary study on the notion of geometric lurch

and on its physical measurement and calculation. Pos-

sible real-world applications that are currently under

investigation will be discussed in the concluding Sec-

tion.

The current paper is organized as follows. The

Section 2 illustrates the in-lab data-acquisition setup

and recalls some fundamental notions from the mathe-

matical theory of attitude maneuvering. The Section 3

defines the geometric lurch index in terms of angular

variables sensed by gyroscopes that aerial vehicles are

supposed to be equipped with. The Section 4 illus-

trates the results of numerical experiments, conducted

on both synthetic and real-world, acquired data, about

the estimation of the fluency of attitude maneuvering.

The Section 5 concludes the paper.

2 In-lab acquisition of gyroscopic

data

The Subsection 2.1 illustrates the laboratory setup

used to acquire gyroscopic data from a quadcopter,

while the Subsection 2.2 recalls some fundamental

notions and properties from the mathematical theory

of attitude maneuvering.

2.1 Data acquisition setup

The gyroscopic data that represent the instantaneous

orientation of a quadcopter were collected in a labo-

ratory through an Inertial Measurement Unit (IMU)

mounted on the drone, as a part of a typical setup for

robot control [1].

The inertial measurement unit was selected as

a SparkFun Electronics MPU-6050 integrated 6-axis
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Figure 2: A SparkFun Electronics, triple axis ac-

celerometer and gyroscope (model MPU-6050). The

depicted IMU includes a gyroscope that measures the

orientation with respect to a fixed reference frame.

Motion-Tracking device that combines a 3-axis gyro-

scope and a 3-axis accelerometer [4] shown in the Fig-

ure 2. The MPU-6050 device consists of three inde-

pendent vibratory MEMS1 gyroscopes, which detect

a rotation about the X−, Y−, and Z−axes. When the

gyroscopes are rotated about any of the sense axes, the

Coriolis effect causes a vibration that is detected by a

capacitive pickoff. The resulting signal is amplified,

demodulated and filtered to produce a voltage signal

that is proportional to the angular rate. Such voltage

is digitized using individual on-chip 16-bit analog-to-

digital converters to sample each axis. The full-scale

range of the gyroscopic sensors may be digitally pro-

grammed to ±250, ±500, ±1000 or ±2000 degrees

per second. The analog-to-digital converters sample

rate is programmable from 8000 samples per second

to 3.9 samples per second, and user-selectable low-

pass filters enable a wide range of cut-off frequencies.

The IMU interfaces with an ARDUINO
TM Uno

micro-controller board trough an Inter Integrated

Circuit (I2C) bus, while the ARDUINO
TM board

interfaces with a personal computer (PC) through a

serial USB cable. The ARDUINO
TM is a commercial,

standalone, general-purpose micro-controller used

as interface to low-voltage electronic components,

electro-mechanical components and electronic

systems like personal computers, modems and

wireless devices. The ARDUINO
TM Uno board

is displayed in the Figure 3. The libraries used

1The acronym MEMS stands for micro-electro-mechanical

system. A MEMS usually consists of a central unit that processes

data and a number of components that interact with the surround-

ings such as the microsensors [8].

Figure 3: An ARDUINO
TM Uno board. The digital

input channels to connect the IMU and the Univer-

sal Serial Bus (USB) port to connect the ARDUINO
TM

micro-controller board to a PC can be clearly seen.

to pilot the MPU-6050 inertial measurement unit

via an I2C bus and to acquire the gyroscopic data

in an appropriate format were written by J. Row-

berg (http://www.sectorfej.net/) and

are publicly available at https://github.

com/jrowberg/i2cdevlib/tree/master/

Arduino/MPU6050.

The MATLAB
r computing platform was used to

acquire the signals from the IMU and to execute the

data-processing algorithm of interest on the acquired

signals. The MATLAB
r treats a port like a data-file,

therefore, reading out the signals from the IMU via

the ARDUINO
TM board may be performed like read-

ing the records of a data-file, as shown in the code

excerpt Listing 1. In this example, the PC was run-

ning a Linux OS and the ARDUINO
TM was supposed

to connect to the USB port labeled ‘USB4’.

The gyroscopic signals were acquired under the

form of a sequence of 3 angles (ψk, θk, φk), with k =
1, . . . , N , termed, respectively, yaw, pitch and roll, as

illustrated in the Figure 4. An example of acquired

angular data is shown in the Figure 5.

2.2 From the yaw-pitch-roll representation

to the angular velocity vector

Let us denote again by ψ the yaw angle, by θ the pitch

angle and by φ the roll angle. Such variables represent

the orientation of the drone with respect to a labora-

tory’s inertial reference system. The rotation matrixR

corresponding to a triple (ψ, θ, φ) may be written as:

R = Rz(φ)Ry(θ)Rx(ψ), (1)
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Listing 1: MATLAB
r script to acquire the gyroscopic

signals from the IMU via the ARDUINO
TM board.

% Script to read out IMU signals by the

% MATLAB computing platform

% Version: May 2015

% The transfer rate is of 115200 baud

% Initializes the serial port

arduino=serial('/dev/ttyUSB4');

set(arduino,'baudrate',115200)

fopen(arduino);

% Data matrix

N = 4000; % 4000 readouts

data = zeros(3,N);

% Data acquisition

for i = 1:N,

data(:,i) = fscanf(arduino,'%f');

% Float-type data

end

% Saves the acquired data

save data;

where the functions Rx, Ry and Rz denote standard

rotation functions about the canonical axes [5]. Dur-

ing an attitude maneuver, the angles (ψ, θ, φ) change

with time and the rate of change of orientation of the

drone varies according to the law

Ṙ =
d

dt
Rz(φ(t))Ry(θ(t))Rx(ψ(t)). (2)

From the theory of 3D rotations, it is known that such

change rate obeys the rule Ṙ = RΩ, where the ma-

trix Ω is termed angular velocity matrix and is skew-

symmetric, namely, of the form

Ω(t) =





0 ω1(t) ω2(t)
−ω1(t) 0 ω3(t)
−ω2(t) −ω3(t) 0



 . (3)

The independent components of the angular velocity

matrix may be computed by the inverse relationship

Ω = RT Ṙ and were found to relate to the rate of

change of the yaw-pitch-roll angular coordinates by





ω1

ω2

ω3



 =





− cos(φ) cos(θ) sin(φ) 0
cos(θ) sin(φ) cos(φ) 0

sin(θ) 0 −1









ψ̇

θ̇

φ̇



 .

(4)

The angular velocities ω1, ω2 and ω3 are the

Cartesian coordinates of the angular velocity vector

denoted as ω.

Figure 4: Physical meaning and pictorial illustration

of the yaw, pitch and roll angles to describe the in-

stantaneous orientation of a flying device with respect

to an inertial reference frame.

3 Gyroscopic lurch index

The Subection 3.1 defines the geometric lurch index

in terms of angular variables sensed by gyroscopes,

while Subsection 3.2 presents a comparison between

the proposed geometric kinematic lurch index and the

known Cartesian kinematic lurch index.

3.1 Definition of gyroscopic lurch index

The kinematic state of a moving rigid object may be

represented by the position of its center of mass and

by a three-dimensional vector that describes its instan-

taneous rotation speed, termed angular velocity, de-

noted by ω ∈ R
3. In the present research endeavor,

we focus on the evaluation of the rotational fluency of

a quadcopter during attitude maneuvering. The direc-

tion of the vector ω represents the orientation of the

rotation axis of the rigid object and its amplitude rep-

resents the actual rotation speed.

In terms of gyroscopic data only, the motion of

a quadcopter may be described by a continuous-time

signal ω(t) ∈ R
3 that represents the instantaneous ro-

tation speed and orientation of the drone over time.

The vector-field ω is a tangent vector-field in the

trivialized tangent bundle of the Lie group of three-

dimensional rotations and, as such, obeys the rules

of calculus prescribed by differential geometry, upon

metrization of the tangent bundle. The manuscript

[9] describes the mathematical structure of such space

and related calculations in details. The calculations

are based on the notion of covariant derivative ∇, that

affords the calculation of the rate of change of a first

vector field in the direction specified by a second vec-

tor field.

In order to evaluate the fluency of the rotational

motion of a quadcopter, in robotics a specific vector
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Figure 5: Exemplary gyroscopic data acquired by an

IMU driven by an ARDUINO
TM board. Graphical rep-

resentation of the three angles yaw, pitch and roll.

Only the first 2, 000 samples are shown for the sake

of clarity.

field is calculated that is the lurch associated to a ve-

locity field. The lurch is defined as the second time-

derivative of the speed (namely, as the derivative of

the acceleration). In the present study, therefore, we

define the lurch associated with the field ω as gyro-

scopic lurch. According to the calculations explained

in [9], while the instantaneous acceleration associated

to a field ω is simply ∇ωω = ω̇, its second-order time-

derivative takes on the form [9, Proposition 4.2]:

∇2
ωω = ω̈ + 1

2ω × ω̇, (5)

where the symbol × denotes the standard three-

dimensional vector cross product. The scalar gyro-

scopic lurch is the amplitude of the second-covariant

derivative (5), namely, ‖∇2
ωω‖, where the symbol ‖·‖

denotes the standard Euclidean norm in R
3.

If we denote by [0, T ] the time interval that the

gyroscopic data measurement was taken over, an in-

dex of attitude maneuvering fluency may be defined

as the time-integral of the scalar gyroscopic lurch by:

L = CL

∫ T

0

∥

∥ω̈(t) + 1
2ω(t)× ω̇(t)

∥

∥ dt, (6)

where the constant CL needs to be defined in a way

that makes the index (6) independent of the maneu-

vering time and of the maneuvering speed, in order to

enable a user to compare different values of the index

(6) pertaining to different quadcopter trajectories.

In order to define such a scaling constant, we de-

fine first the accumulated angular speed as

S =

∫ T

0
‖ω(t)‖dt, (7)

and the normalization constant as

CL =
T 2

S
. (8)

The computation of the gyroscopic lurch index

starting from a Euler-angles data-sequence may be

performed, in MATLAB
r language, through the func-

tion in the Listing 2. In such computer program, the

Listing 2: Function to compute the normalized gyro-

scopic lurch index (6.

% MATLAB function to compute the

% gyroscopic lurch of an angular velocity

% data omega over a time-interval T

% Version: November 2015

function [S,L] = glurch(omega,T)

N = size(omega,2); DT = T/N;

S = DT*sum(sqrt(sum(omega.ˆ2,1)));

omegap = diff(omega,1,2)/DT;

omegapp = diff(omegap,1,2)/DT;

gl = omegapp + 0.5*...

cross(omega(:,1:N-2)',omegap(:,1:N-2)')';

L = (DTˆ2/S)*sum(sqrt(sum(gl.ˆ2,1)));

array ω is of size 3×N , where N represents the num-

ber of acquired samples.

3.2 Comparison with the Cartesian lurch

The gyroscopic lurch differs substantially from the

popular Cartesian lurch used in other applications

[10]. Given an angular speed field ω, its second-order

time-derivative may be defined Cartesian lurch. In

particular, denoting the Cartesian coordinates of ω as

ω(t) = [ω1(t) ω2(t) ω3(t)]
T , (9)

the squared scalar Cartesian lurch computes as

‖ω̈‖2 = ω̈2
1 + ω̈2

2 + ω̈2
3. (10)

Conversely, by using the Cartesian parametrization (9)

in the formula to compute the squared scalar gyro-

scopic lurch, it is readily obtained that:

‖∇2
ωω‖

2 =

(

ω̈3 +
ω1 ω̇2

2
−
ω2 ω̇1

2

)2

+

(

ω̈2 −
ω1 ω̇3

2
+
ω3 ω̇1

2

)2

+

(

ω̈1 +
ω2 ω̇3

2
−
ω3 ω̇2

2

)2

. (11)

Apparently, the scalar gyroscopic lurch differs greatly

from the scalar Cartesian lurch. For example, if in

DESIGN, CONSTRUCTION, MAINTENANCE 
DOI: 10.37394/232022.2021.1.11 Simone Fiori, Nicola Sabino, Andrea Bonci

80 Volume 1, 2021



a point of a trajectory the Cartesian lurch is negligi-

ble, namely ω̈2
1 + ω̈2

2 + ω̈2
3 ≈ 0, still the gyroscopic

lurch may differ considerably from zero, because its

squared value would approximately equal 1
4 [(ω1ω̇2 −

ω2ω̇1)
2 + (ω2ω̇3 − ω3ω̇2)

2 + (ω1ω̇3 − ω3ω̇1)
2].

4 Numerical assessments

The first experiment pertains to synthetic data, gener-

ated by means of a specific numerical algorithm, and

was meant to evaluate the sensitivity of the gyroscopic

lurch index L (6) with respect to the known smooth-

ness of a rotational signal, as explained in the Sub-

section 4.1. The second set of experiments, illustrated

and discussed in the Subsection 4.2, refer to acquired

data measured in different conditions.

4.1 Numerical assessment of synthetic data

In order to simulate the change of orientation of a

quadcopter during attitude maneuvering, a pseudo-

random data generator, especially developed to simu-

late a fluent maneuvering and an erratic maneuvering

mode, was made use of.

In particular, two data sets were synthetically gen-

erated by gluing together five sub-data-streams. Each

sub-stream is of the type fluent (F) and erratic (E).

The F-type sub-stream was generated through a for-

mula described in [9], while the E-type sub-stream

was generated via an auto-regressive moving aver-

age ARMA(1,0) system over the Lie group SO(3) de-

scribed in [2, 3].

A number N = 800 of samples were generated

for each data-set: The first synthetic gyroscopic data-

set was made up as the sequence ‘FFFFF’ of sub-

streams, while the second data-set was made up as

the sequence ‘FEFEF’ of sub-streams. The orientation

angles corresponding to the two obtained gyroscopic

data-sets are displayed in the Figure 6. It is interesting

to note that the synthetic gyroscopic data illustrated in

the Figure 6, namely a fluent maneuver and an erratic

maneuver, are supposed to be the same except for a

few shocks in the erratic attitude maneuvering, how-

ever, the two curves in each panel tend to diverge in

time due to a (simulated) drift in the sensors.

The Figure 7 illustrates the physical meaning of a

gyroscopic data by simulating the rotation of a rigid

body according to the erratic signal. As it is read-

ily appreciated, in some time-intervals the rigid object

moves smoothly taking nearly similar orientations,

while in some time-intervals the object’s orientation

varies abruptly.

The results of the numerical evaluation of the

accumulated angular speed S and of the gyroscopic
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Figure 6: Synthetic gyroscopic data. Graphical

representation of the angles generated synthetically.

(Dot-dashed line: Fluent attitude maneuvering mode

‘FFFFF’. Solid line: Erratic attitude maneuvering

mode ‘FEFEF’.)

lurch index L pertaining to such synthetic data are dis-

played in the Table 1. The obtained numerical results

suggest that the gyroscopic lurch index is very sensi-

tive to the attitude maneuvering fluency conveyed by

gyroscopic data.

Accum. ang. velocity Lurch

Fluent 0.8691 0.8552

Erratic 1.2432 286.3964

Table 1: Indexes calculated on two synthetic gyro-

scopic data.

4.2 Numerical assessment of acquired quad-

copter data

The acquired gyroscopic data are referred to a num-

ber of experiments on different attitude maneuvering

strategies operated by the quadcopter shown in the

Figure 8.

A first set of data is shown in the following Fig-

ures. In particular, the data pertaining to the Maneuver

1 are shown in the Figure 9, the data pertaining to the

Maneuver 2 are shown in the Figure 10, the data per-

taining to the Maneuver 3 are shown in the Figure 11

and the data pertaining to the Maneuver 4 are shown

in the Figure 12.

The data were acquired with a sampling period of

about 10ms. From the Figures, it is immediate to rec-

ognize that the first 2000 samples, approximately, do

not carry any relevant information about the vehicle
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k = 26 k = 53 k = 80 k = 106 k = 133

k = 160 k = 186 k = 213 k = 240 k = 266

k = 293 k = 320 k = 346 k = 373 k = 400

k = 426 k = 453 k = 480 k = 506 k = 533

k = 560 k = 586 k = 613 k = 640 k = 666

k = 693 k = 720 k = 746 k = 773 k = 800

Figure 7: Synthetic gyroscopic data. Graphical repre-

sentation of the result of the non-smooth rotation sig-

nal on a solid shape (downsampled for clarity).

orientation as the corresponding signal portion is due

to the self-setup and calibration of the gyroscopic sen-

sor. In the evaluation of the geometric lurch index, the

first 2000 samples were, therefore, discarded.

The results of the numerical evaluation of the

accumulated angular speed S and of the gyroscopic

lurch index L pertaining to such real-world data are

summarized in the Table 2. The obtained numerical

results confirm that the gyroscopic lurch is fairly sen-

sitive to the attitude maneuvering fluency conveyed by

the acquired gyroscopic data. In particular, accord-

Accum. ang. velocity Lurch

Maneuver 1 18.59 12.09

Maneuver 2 29.98 8.61

Maneuver 3 40.85 15.21

Maneuver 4 108.66 14.90

Table 2: First real-world data-set: Indexes calculated

on four gyroscopic data-sets acquired in the labora-

tory.

ing to the fluency ranking induced by the geometric

lurch index, the Maneuver 2 is substantially more flu-

ent compared to the Maneuvers 1, 3 and 4.

We believe that it is interesting to compare the

values of the cumulative lurch versus the value of the

cumulative velocity for the four maneuvers, where the

Figure 8: A quadcopter designed at the Department of

Information Engineering of the Università Politecnica

delle Marche at Ancona (Italy).

above indexes are defined as:

Cumulative velocity at time t =
∫ t

0 ‖ω(t)‖dt, (12)

Cumulative lurch at time t =

T 2
∫ t

0 ‖∇
2
ω(t)ω(t)‖dt, (13)

for 0 ≤ t ≤ T . The value of the cumulative lurch ver-

sus the value of the cumulative velocity for the four

maneuvers are illustrated in the Figure 13. In the ex-

periment pertaining to such first real-world data-set,

the curves resulted from plotting the cumulative lurch

versus the cumulative velocity may be roughly ap-

proximated by straight lines. Note that the lurch index

(6) is defined as the ratio

L =
Cumulative lurch at time T

Cumulative velocity at time T
(14)

because of the normalization constant CL. There-

fore, in this experiment, the slope of the approximat-

ing straight lines is proportional to the geometric lurch

index. Such observation reveals that what actually

matters is the ratio between the accumulated lurch

and the accumulated velocity, rather than their values

singularly. In fact, without such a normalization, a

long smooth flight will result more erratic than a short

bumpy flight, just because of the cumulative nature of

the lurch index. Also note that the curve related to

the Maneuver 3 and, even more clearly, the curve per-

taining to the Maneuver 4 exhibit a stairs-like shape,

which correspond to the shocks that are visible in the

Figures 11 and Figures 12.

A second set of gyroscopic signals were acquired

by mimicking the actual flight of a quadcopter. The
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Figure 9: First real-world data-set: Acquired gyro-

scopic data referred to the Maneuver 1.
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Figure 10: First real-world data-set: Acquired gyro-

scopic data referred to the Maneuver 2.

results of the numerical evaluation of the accumulated

angular speed S and of the gyroscopic lurch index L
pertaining to such real-world data sets are summarized

in the Table 3. The obtained numerical results confirm

that the gyroscopic lurch is fairly sensitive to the atti-

tude maneuvering fluency conveyed by the acquired

gyroscopic data. According to the fluency ranking in-

duced by the geometric lurch index, the Maneuver 6,

whose acquired gyroscopic signals are shown in the

Figure 14, is the most fluent attitude maneuver in this

data-set, while the Maneuver 2, whose acquired an-

gular signals are shown in the Figure 15, is the most

erratic one.

The value of the cumulative lurch versus the value

of the cumulative velocity for the six maneuvers are

illustrated in the Figure 16. The curves shown in the
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Figure 11: First real-world data-set: Acquired gyro-

scopic data referred to the Maneuver 3.
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Figure 12: First real-world data-set: Acquired gyro-

scopic data referred to the Maneuver 4.

Figure 16 can summarize a whole attitude maneuver.

We conjecture that, in a general case, the local slope

of such curves, which could be measured even in real

time by means of an appropriate mathematical algo-

rithm, might carry on meaningful information about

the status of a flying drone. Such aspect has not been

investigated in the present research endeavor and will

be the subject of future studies.

5 Conclusion

The present manuscript illustrates a laboratory-based

data-acquisition setup and a mathematical data-

processing algorithm to test a novel attitude ma-

neuvering fluency estimation index termed geometric

lurch. After recalling some fundamental notions from
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Figure 13: First real-world data-set: Cumulative lurch

versus cumulative velocity corresponding to Maneu-

vers 1–4.

Accum. ang. velocity Lurch

Maneuver 1 3.23 60.48

Maneuver 2 2.79 80.11

Maneuver 3 4.69 49.64

Maneuver 4 6.28 36.67

Maneuver 5 6.98 34.19

Maneuver 6 8.24 30.01

Table 3: Second real-world data-set: Indexes calcu-

lated on six gyroscopic data-sets acquired in the labo-

ratory.

the mathematical theory of attitude maneuvering, we

define the geometric lurch index in terms of angu-

lar variables’ values as returned by gyroscopic sen-

sors that quadcopter-type aerial vehicles are equipped

with. The results of several numerical tests, conducted

on both synthetic and real-world gyroscopic signals,

show that the geometric lurch index is fairly sensitive

to the fluency of attitude maneuvering.

The next steps of the present research will be to

explore the sensitivity of the geometric lurch index in

a series of outdoor tests by equipping the quadcopter

with an acquisition system that is able to transmit the

sensed gyroscopic data wirelessly to a remote per-

sonal computer in order to investigate on the useful-

ness of the lurch index in a real-time control problem.

Moreover, in order to adapt the proposed geometric

lurch index to real-time processing, it will be neces-

sary to reformulate the proposed method to compute

the lurch index as a computationally-light, recursive,

on-line algorithm.

Further research activities could be conducted
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Figure 14: Second real-world data-set: Acquired gy-

roscopic data referred to the Maneuver 6.

1000 2000 3000 4000 5000 6000 7000
3

3.5

4

4.5

5

Y
a
w

ψ
k
[r
a
d
]

1000 2000 3000 4000 5000 6000 7000

0.4

0.5

0.6

0.7

P
it
ch

θ
k
[r
a
d
]

1000 2000 3000 4000 5000 6000 7000
−0.1

0

0.1

0.2

0.3

R
o
ll
φ
k
[r
a
d
]

Sample k

Figure 15: Second real-world data-set: Acquired gy-

roscopic data referred to the Maneuver 2.

about the investigation of the sensitivity of the lurch

index on self-balanced autonomous ground vehicles

instead of unmanned aerial vehicles. On these vehi-

cles, the lurch index could be used for the inclination

fluency estimation, to identify the sensitivity of sen-

sors to vibrations and shocks due to the rough terrains.
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