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Abstract: - Extremely massive MIMO (Multiple-Input Multiple-Output) is a technique to enable the spatial di-
versity. The systems employ a large number of antennas at the base stations, resulting in high computational
complexity in various processes of wireless communications. The precoding process is one of them because the
process requires the calculation of matrix inversion. The randomized Kaczmarz algorithm(rKA) is an iterative
method to obtain the approximation so the computational time of precoding can be decreased. Some improve-
ments of rKA were proposed so far, the iteration number required to obtain the approximation of inverse matrix
is not so small. In this paper, we propose a new rKA method that applies the D’Hondt method, typically used for
seat allocation in elections. In rKA process, the row vector is selected to use for updating approximation. Our
method selects the row vector based on the D’Hondt method while the conventional rKA methods select the row
vector probabilistic. Some results of simulation showed that the bit error ratio (BER) performance of our method
is superior to other rKA methods at higher normalized transmit powers (NTP). The results also showed that the
BER performances of our method with small number of iterations are more accurate than the others especially at
high NTPs. That means our method can achieve the same BER performance with smaller number of iterations as
the others, so the computational complexity of precoding with rKA is decreased.
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1 Introduction
The COVID-19 pandemic, which began around 2020,
has led to a rapid advancement in the online transfor-
mation of societal infrastructure. The increasing net-
work traffic has further escalated due to the explosive
growth in the user base of various services, such as
video streaming platforms, and the widespread use of
online tools for work and education. Wireless connec-
tivity is now more prevalent than ever, with devices
such as smartphones and Internet-of-Things (IoT) de-
vices, [1], [2], [3], [4], requiring reliable connections.

To meet the demands of this immense network
traffic, high-speed and stable wireless communication
is critical. Technologies likeMultiple-InputMultiple-
Output (MIMO), which enable the use of multiple
antennas to transmit multiple signals simultaneously,
have been key to achieving this. MIMO systems have
become a cornerstone of 5G networks, providing im-
proved spectral efficiency and system capacity.

As we transition towards 6G, the next generation
of wireless communication systems, even more ad-
vanced techniques are needed to handle the growing
data demands.

Extremely massive MIMO, [5], an extension of
conventional MIMO, involves the deployment of

hundreds or even thousands of antennas at base sta-
tions, allowing for enhanced spatial diversity and
beamforming capabilities. This technique promises
to further increase spectral and energy efficiency,
[6], making it a crucial technology for 6G sys-
tems.However, the computational complexity of pro-
cesses such as precoding also grows significantly as
the number of antennas increases, [7], [8], [9], [10],
[11], [12], [13].

The linear tensor zero-forcing (ZF) method, [14],
is a widely used technique for signal detection in
receivers and precoding in transmitters. However,
while ZF can effectively eliminate inter-user inter-
ference, its bit error ratio (BER) characteristics are
often not practical in large-scale systems due to its
sensitivity to noise. To address this, improved meth-
ods such as the regularized ZF (RZF) method, [15],
have been proposed, but the matrix inversion required
by these methods becomes a major bottleneck in ex-
tremely massive MIMO systems.

To reduce this complexity, iterative methods like
the randomized Kaczmarz algorithm (rKA) have been
proposed, [16]. rKA approximates the solution to the
large linear systems involved in precoding, without
the need for direct matrix inversion. However, while
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rKA reduces computational cost, the number of iter-
ations required for convergence is still a challenge.
Several improved variants of rKA have been devel-
oped, [17], but they still face limitations, especially
in extremely massive MIMO systems. Most conven-
tional methods for precoding, such as those used in
uplink scenarios, [18], [19], [20], assume that the
channel is stationary, [21]. However, in extremely
massive MIMO systems, the long antenna arrays lead
to non-stationary channel conditions, where the chan-
nel varies significantly over different antennas, [22].
This study focuses on precoding in the downlink en-
vironment, where non-stationary channels pose a sig-
nificant challenge.

In this paper, we propose a novel approach that ap-
plies the D’Hondtmethod, typically used for seat allo-
cation in elections, to the randomized Kaczmarz algo-
rithm for precoding in extremely massive MIMO sys-
tems. By improving the selection process of row vec-
tors during iterations, our method achieves faster con-
vergence and better BER performance, particularly
at higher normalized transmit powers (NTP). This
contribution reduces the computational complexity
of precoding and demonstrates superior performance
compared to other existing rKA-based methods.

Organization: The rest of this paper is organized
as follows. In Section II, the preliminary knowledges
including the model assumed in this study are ex-
plained. In Section III, the Kaczmarz Algorithm and
improved methods of it are shown for precoding pro-
cess. Our proposed method is also described in the
section. In Section IV, the BER performances of the
methods are shown used results of some computer
simulations. The conclusions are drawn in Section V.

2 Preliminaries
First, let us provide a summary of the fundamental
aspects relevant to this study.

2.1 Model
We establish the framework for the Massive MIMO
wireless communication system investigated in this
study. Initially, the base station is equipped with M
antennas, catering toK user devices, with each device
having a single antenna. The M antennas at the base
station are partitioned intoS subarrays, where the s-th
subarray comprises Ms antennas, and each subarray
accommodates a distributed set of user devices. The
number of user devices connected to subarray j is de-
noted asKj , as expressed in (1).

K = ΣjKj . (1)

In this context, let us denote yj,k as the received
signal by the k-th user device Uj,k connected to the

j-th subarray. The transmitted signal from the s-th
subarray is represented by xs, while hs

j,k signifies the
channel vector between the s-th subarray and Uj,k.
The channel matrix between the s-th subarray in the
base station and Kj user devices in the j-th subarray
is denoted as Hs

j = [hs
j,1,h

s
j,2, · · · ,hs

j,Kj
]. The re-

lationship between the received signal and the trans-
mitted signal is expressed in (2).

yj,k = Σs(h
s
j,k)

Hxs + nk
j . (2)

Here, (·)H represents the complex conjugate trans-
pose, nk

j denotes the additive circularly symmetric
complex Gaussian noise at Uj,k with zero mean and a
covariance of σ2.

In this research, it is assumed that the base sta-
tion possesses imperfect channel information. More
precisely, the estimated value of the communication
channel vector, denoted as h̃s

j,k, is obtained through
the process described in (3).

h̃s
j,k =

√
(1− τ2)hs

j,k + τns
j,k, (3)

where hs
j,k and ns

j,k denote the true values
of the communciation channel vector and the in-
dependent error vector, respectively. H̃s

j =

[h̃s
j,1, h̃

s
j,2, · · · , h̃s

j,Kj
] dentoes the estimated channel

matrix between s-th subarray in the base station and
Kj user devices in the j-th subarray.

For the non-stationarity channel assumed in this
paper, the communication channel vector between
Uj,k and Ms antennas in the s-th subarray is repre-
sented by (4) and (5).

hs
j,k =

√
Ms(Φ

s
j,k)

1

2zs
j,k ∈ CMs×1, (4)

Φs
j,k = (Ds

j,k)
1

2Rs
j,k(D

s
j,k)

1

2 ∈ CMs×Ms , (5)

where zs
j,k ∈ CMs×1 follows a Gaussian distribution

with mean zero and covariance 1
Ms

IMs
, IMs

dentoes
the identity matrix of orderMs,Rs

j,k ∈ CMs×Ms den-
toes the spatial correlation matrix betweenUj,k and s-
th subarray in the base station, and Ds

j,k ∈ CMs×Ms

denotes a diagonal matrix and has Ds
j,k non-zero di-

agonal elements betweenUj,k and s-th subarray in the
base station.

2.2 Precoding in RZF method
Precoding refers to the process in which signal pro-
cessing is applied to the transmitted signal at the trans-
mitter side in order to increase the signal gain at the re-
ceiver. Precoding is closely related to signal detection
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processing, and the selection of precoding depends on
the detection method being employed. Here, we will
explain the precoding technique when using the reg-
ularized zero-forcing (RZF) method as the signal de-
tection approach, [23].

The information vector expected to be transmit-
ted from the j-th subarray is represented as sj =
[sj,1, sj,2, · · · , sj,Kj

]T , where sj,k denotes the infor-
mation transmitted from the j-th subarray to Uj,k.
Note that sj,k follows a Gaussian distribution with
mean 0 and covariance pj,k. The transmitted signal
vector xj is generated as (6).

xj = Σ
Kj

k=1gj,ksj,k = Gjsj , (6)

where Gj = [gj,1, gj,2, · · · , gj,Kj
] is the precoding

matrix for user devices in the j-th subarray, and gj,k
represents the precoding vector for Uj,k. gj,k satisfies
the condition ∥gj,k∥2 = 1. Now, (2) is transformed
into (7).

yj,k = (hj
j,k)

Hgj,ksj,k +Σ
Kj

i=1,i ̸=k(h
j
j,i)

Hgj,isj,i

+ ΣS
s=1,s̸=jΣ

Ki

i=1(h
s
s,i)

Hgs,iss,i + nj,k, (7)

The first term in (7) is a desired signal, the second
one is intra-subarray interference, and the third one
is inter-subarray interference. One of the linear pre-
coding schemes is RZF, [13], whose precoding matrix
GRZF

j is denoted by (8).

Fj = Hj
j ((H

j
j )

HHj
j + ξIKj

)−1,

GRZF
j =

√
P/Tr(F H

j Fj) · Fj , (8)

where ξ = σ2

P , P dentoes average signal power, and
Tr(·) denotes the trace operator.

While the ZF method carries the risk of ampli-
fying the noise component, the RZF method miti-
gates this issue by incorporating a regularization term
ξ into the equation to prevent noise enhancement.
However, the inverse operator of matrix to obtain Fj

makes RZF method unpractical for extremely mas-
sive MIMO systems.

3 Methods
Although the RZF method can cancel the interference
between users and avoid noise enhanced, it requires a
large complexity for inverse operation. Therefore, it-
erative methods have been proposed to obtain approx-
imate solutions. In this chapter, various approaches
based on the Kaczmarz Algorithm (KA) are shown,
and the proposed improvements in this paper will be
explained.

3.1 Kaczmarz Algorithm
The KA is an iterative algorithm to solve the linear
equation systems represented as Ax = b. The equa-
tion can be considered as a set of m linear equations
aix = bi for i = 1, 2, · · · ,m where ai and bi denote
i-th row of A and b, respectively. The algorithm up-
dates the approximation of x with i-th row of A and
b as shown in (9).

xk+1 = xk +
bi − ⟨ai,x

k⟩
∥ai∥2

āi, (9)

where i = k mod m, xk denotes k-th approximation
of x, ⟨·⟩ denotes inner product operation. āi denotes
complex conjugation of ai.

3.2 Randomized Kaczmarz Algorithm
In order to meet the overdetermined linear systems,
the randomized KA (rKA) was proposed, [16]. The
difference between KA and rKA is the method of
selecting row for the update of xk. The rKA se-
lects randomly based on probability proportional to
∥ai∥2 while the KA selects in order from the first row.
Specifically, in rKA, the probabilities of selecting i-th
row from m rows are 1

m .

3.3 RKA for RZF Precoding
In RZF precoding process, the matrix GRZF

j is
needed to calculate. For that, kj rKA processes are
run to solve a set of linear equations as shown in (10),
[22].

(Aj)
Hzj = sj , (10)

where Aj = [Hj
j ;
√
ξIKj

] ∈ C(Mj+Kj)×Kj . Kj pro-
cesses of rKA to solve (10) are run in parallel. Specif-
ically, the procedure of rKA for RZF precoding is
shown in Algorithm 1.

Algorithm 1 rKA for RZF precoding

1: Input n-th canonical basis ek ∈ CKj as sj for
k-th process.

2: Assume the solution of (10) zj = [mj ∈
CMj×1;

√
ξnj ∈ CKj×1].

3: Update the approximation of zj with iterations of
(9). The i-th row in (9) is selected with the prob-
ability P rKA

j,i = 1/Kj .
4: Divide lastKj components of zj obtained in k-th

process by ξ and denote it as wj,k.
5: GRZF

j = βHj
jWj is obtained where Wj =

[wj,1,wj,2, · · · ,wj,Kj
] ∈ CKj×Kj .
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3.4 Sampling without Replacement rKA for
RZF

The Sampling without replacement rKA, [22], re-
ferred to as SwoR-rKA, is a method in which the
probability of row selection differs from the original
rKA. SwoR-rKA can improve the convergence speed
and spectral efficiency compared to the original. The
probability of selecting i-th row in Algorithm 1 is
changed into (11).

PSwoR
j,i =

∥hj
ji∥2 + ξ

∥Hj
j∥2F +Kjξ

, (11)

where ∥·∥F dentoes Frobenius norm.
In SwoR-rKA, the row is selected based on the

channel quality, so SwoR-rKA intends to select the
row corresponding to the user in good communication
channel. This approach can allocate more resources
to users in better channel than the others and that leads
to enhanced SE and faster convergence speed com-
pared to the original rKA.

3.5 Reverse Policy of SwoR-rKA for RZF
In SwoR-rKA, the selection of row is based on the
channel condition. The row corresponding to good
channel is likely to be selected. However, this ap-
proach leads to that only a limited set of linear equa-
tions can be solved well because approximation cor-
responding to worse channel is hardly solved due to
small number of updates.

When the channel conditions are favorable, there
is no need to allocate a significant computational load
to the estimation process. Conversely, when the chan-
nel conditions are poor, a larger computational load is
required. Therefore, the reverse policy of SwoR-rKA,
referred to as RSwoR-rKA, was proposed, [24] , in
which the probability shown as (12) is used to select
i-th row in Algorithm refalg1.

PRSwoR
j,i = 1−

∥hj
ji∥2 + ξ

∥Hj
j∥2F +Kjξ

. (12)

(12) means that the columns corresponding to
worse channel are tends to be selected.

3.6 Proposed Method: D’Hondt method in
rKA for RZF

In Algorithm 1, it is believed that the estimation val-
ues can converge more quickly if the i-th row to be
updated is appropriately selected. Therefore, we fo-
cused on the candidate selection system used in elec-
tions.

The D’Hondt system is one of the methods used
to determine the allocation of seats in an election. In
this system, voters cast their votes for choices such as
political parties or candidates, and seats are allocated
based on the election results.

The specific procedure involves voters first cast-
ing their votes for the choices, and the number of fa-
vorable votes obtained by each choice (political party
or candidate) is aggregated.

Then, the determination of seat allocation takes
place. Following the algorithm 2, the allocation of
seats is repeated until the remaining number of seats
reaches zero.

Algorithm 2 The original D’Hondt method
1: Let V (i) represent the number of votes obtained

by political party i(i = 1, 2, · · · ), and W (i) rep-
resent the number of seats obtained by the party
at the current stage.The number of seats to be al-
located is denoted as S.

2: Calculate V (i)/(W (i) + 1) for each political
party and find the party j with the highest value.

3: IncrementW (i) by one and decrease S by one.
4: Go back 2.

In the D’Hondt method, the allocation of seats
is carried out in order of the highest number of fa-
vorable votes. In other words, choices that have re-
ceived greater support from voters are given priority
in obtaining seats. This system is widely utilized as a
method for determining seat allocation in elections in
many countries and regions, as it allows for a direct
and fair reflection of the election results.

We apply the D’Hondt method into the selection
of i-th row in Algorithm 1, we call the method as D-
rKA. Specifically, D-rKA select rows by Algorithm
3:

Algorithm 3 Select rows with the D’Hondt method

1: Calculate PRSwoR
j,i for i = 1, 2, · · · ,Kj .

2: Vote for each row probabilistically according to
PRSwoR
j,i .

3: Select row by D’Hondt method according to the
number of votes.

D’Hondt method try keeping the average number
of votes per seat equally, so the number of updates
with each row inD-rKA aremore stable than the prob-
abilistic selection method such as SwoR-rKA.

4 Simulation
We conducted some simulation whose aims are to
confirm the changes of the BER performance with the
normalized transmit powers and with the number of
iterations in rKA method.
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4.1 Parameters
The environment of developing the simulation pro-
grams is shown in Table 1. The source code of this
simulation was written with Python.

The simulation program in this section used the
fixed parameters and precodingmethods shown in Ta-
ble 2. Other parameters are described in the com-
ments of each figure.

Table 1: Softwares and libraries to conduct the simulation.

Software/Library Version
Python 3.10.6
NumPy 1.24.3
SciPy 1.10.1

Matplotlib 3.7.1

Table 2: Parameters used in the simulation

Parameter Value Explanation
Kj 16 The number of users

in a subarray.
M 256 The number of antennas

at base station.
S 16 The number of subarrays.
Mj 16 The number of antennas

in a subarray.
T 16 The length of timeslot

to keep channel unchanged.
m 64QAM Digital modulation method.

trials 105 The number of trials
with fixed channel states.

τ 0.3 The quality of channel state
information at base station.

σ2 1 dBm The power of noise.

4.2 Results
We show the results in two viewpoints.

• The BER performances against the normalized
transmit power (NTP) with fixed number of it-
erations in rKA algorithm.

• The BER performances against the number of it-
erations in rKA algorithm with fixed NTP.

4.2.1 BER performace against NTP
The rKA method is an iterative method, so the num-
ber of iterations is important to make the accuracy of
approximation higher. However, too many iterations
are wasteful because residuals remain. Therefore, we

conducted the simulation that compare the BER per-
formance against the number of iterations. The re-
sults are shown in Figure 1, Figure 2, Figure 3, Fig-
ure 4, Figure 5, Figure 6, and Figure 7. The horizon-
tal line in each figure indicates the normalized trans-
mit power and vertical one indicates the BER perfor-
mances. The number of iterations in rKA process are
20, 40, 60, 80, 100, 120, and 140, respectively. The
channels in all simulations are non-stationary and the
base stations in all simulations have imperfect chan-
nel state information.

Figure 1: BER performances against normalized transmit power
with 20 times iterations in rKA algorithm. The channel
is non-stationary one and the base stations have imper-
fect channel state information.

Figure 2: BER performances against normalized transmit power
with 40 times iterations in rKA algorithm. The channel
is non-stationary one and the base stations have imper-
fect channel state information.

4.2.2 BER performace against the number of
iterations

Next, we compare the results of Figure 1, Figure 2,
Figure 3, Figure 4, Figure 5, Figure 6, and Figure 7,
according to changes in the number of iterations. The
results are shown in Figure 8, Figure 9, and Figure 10.
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Figure 3: BER performances against normalized transmit power
with 60 times iterations in rKA algorithm. The channel
is non-stationary one and the base stations have imper-
fect channel state information.

Figure 4: BER performances against normalized transmit power
with 80 times iterations in rKA algorithm. The channel
is non-stationary one and the base stations have imper-
fect channel state information.

Figure 5: BER performances against normalized transmit power
with 100 times iterations in rKA algorithm. The chan-
nel is non-stationary one and the base stations have im-
perfect channel state information.

Figure 6: BER performances against normalized transmit power
with 120 times iterations in rKA algorithm. The chan-
nel is non-stationary one and the base stations have im-
perfect channel state information.

Figure 7: BER performances against normalized transmit power
with 140 times iterations in rKA algorithm. The chan-
nel is non-stationary one and the base stations have im-
perfect channel state information.

These figures illustrate the BER performance at NTP
values of 20, 30, and 40, respectively. The horizontal
line in each figure indicates the number of iterations
in rKA algorithm and vertical one indicates the BER
performances.

4.3 Consideration
As illustrated in Figure 1, Figure 2, Figure 3, Figure
4, Figure 5, Figure 6, and Figure 7, our method shows
significantly better BER performance with a small
number of iterations, especially when the normalized
transmit power (NTP) exceeds approximately 10 dB.
This result suggests that our method achieves a more
accurate approximation with fewer iterations com-
pared to other methods. The difference between the
methods becomes smaller as the number of iterations
increases, but even at lower NTPs and higher itera-
tion counts, our method continues to outperform the
others.

WSEAS TRANSACTIONS on COMPUTER RESEARCH 
DOI: 10.37394/232018.2024.12.48 Tatsuki Fukuda

E-ISSN: 2415-1521 499 Volume 12, 2024



Figure 8: BER performances against the number of iteration in
rKA algorithm. NTP is 20 dB and the channel is non-
stationary one. The base stations have imperfect chan-
nel state information.

Figure 9: BER performances against the number of iteration in
rKA algorithm. NTP is 30 dB and the channel is non-
stationary one. The base stations have imperfect chan-
nel state information.

Figure 10: BER performances against the number of iteration in
rKA algorithm. NTP is 40 dB and the channel is
non-stationary one. The base stations have imperfect
channel state information.

One of the key findings, as seen in Figure 8, Figure
9, and Figure 10, is that our method maintains a su-
perior BER performance, particularly with fewer iter-
ations. In extremely massive MIMO systems, where
a large number of antennas is employed, reducing the
number of iterations is critical to minimizing compu-
tational complexity. The results demonstrate that our
method is effective in achieving low BER while sig-
nificantly reducing the required number of iterations.
For instance, at 20, 30, and 40 dB NTP , our method
converges to a lower BER than the other methods
even with fewer iterations.

In practical applications, the reduced number of
iterations has important implications. It can lead to
faster processing times and lower energy consump-
tion in real-time communication systems. Massive
MIMO systems, particularly in future 6G networks,
will require efficient algorithms to handle the in-
creased computational demands. The ability of our
method to achieve better BER with fewer iterations
makes it highly suitable for such large-scale systems.

However, despite the clear advantages, some lim-
itations remain. While our method performs well at
higher NTPs, residual errors limit its performance
at very high transmit powers. Exploring how the
method performs under different channel conditions,
such as those with more severe non-stationarity or in-
terference, would also be valuable.

5 Conclusion
The proposed method, which innovatively applies the
D’Hondt method for row selection in the randomized
Kaczmarz algorithm, stands out by offering faster
convergence and better BER performance. Unlike
conventional methods that rely on probabilistic selec-
tion, our approach ensures a more balanced and ef-
ficient update process, making it particularly advan-
tageous in scenarios with high normalized transmit
power.

Our simulation results demonstrated that our pro-
posed method significantly improves BER perfor-
mance compared to existing rKA-basedmethods, par-
ticularly in scenarios with imperfect channel state in-
formation at the base stations. The ability to achieve
better BER with fewer iterations highlights the com-
putational efficiency of our method, making it a suit-
able solution for real-world applications in massive
MIMO systems, where reducing complexity is cru-
cial.

The main contribution of this research is the in-
novative application of the D’Hondt method, which
helps balance the update process in rKA, leading to
more stable and accurate results. This approach is
particularly useful in large-scale systems where com-
putational efficiency is key.
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With these findings, we recommend that the pro-
posed method be implemented in large-scale wire-
less communication systems, such as future 6G net-
works, where the reduction of computational com-
plexity in precoding is critical. The faster conver-
gence and improved BER performance, especially at
higher normalized transmit powers, make our method
well-suited for real-time applications requiring high
reliability and low latency. Additionally, the pro-
posed method could be further optimized for hard-
ware implementation, allowing for even faster pro-
cessing in practical systems.

For future work, we plan to address the residual er-
rors that limit the performance of our method at very
high transmit powers. Moreover, testing the method
in real-world hardware environments will be essen-
tial to ensure that the computational savings trans-
late into tangible performance improvements. Inves-
tigating the performance of our method under differ-
ent channel conditions, such as perfect channel state
information or more severe non-stationary environ-
ments, will play an essential role in further validating
and enhancing the robustness of the method.
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