
Abstract: Parallel bio-inspired algorithms have been successful in solving multi-objective optimisation problems.
In this work, we discuss a parallel particle swarm algorithm with added clustering for solving multi-objective
optimisation problems. The aim of this work is to perform sensitivity analysis of the parallel particle swarm
algorithm. We need to see how the added parallelism improves the overall execution time. Also, looked at
the effect of different strategies for population initialisation (such as mutating current set of leaders, random
population and lookup in archive for nearest points using geometric calculation). The results show that using
different migration frequencies for scattering reduced the overall overlap between processors. Results regarding
how clustering and gathering affect performance metrics are also reported.
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1 Introduction
Real-world problems, have many objectives to be op-
timized at the same time. In most cases, it is not easy
to solve the problem as the objectives are clashing
with each other. The name Multi-objective optimiza-
tion problems (MOPs) has been given to such cases,
[1], and can be formally (for a minimization problem)
defined as:

Minf1(−→x ), f2(−→x ), ..., fd(
−→x )

where −→x ∈ Ω ⊆ ℜn is a vector of decision variables.
It is difficult to find a unique solution vector −→x that
minimizes all objectives at the same time. Therefore,
the solution is a set called non-dominated solutions.
A dominance relation denoted by ”≺” can be defined
as follows, [1]:

(−→x1 ≺ −→x2) ⇔ ∀i ∈ {1, ..., d} , fi(−→x1) ≤ fi(−→x2)
and ∃i ∈ {1, ..., d} , fi(−→x1) < fi(−→x2)

The Pareto dominance equation will define the
minimal elements as Pareto-optimal. Also known as
Pareto-optimal set. When plotted in the objective
space they form the true Pareto-Front (PFtrue). Solv-
ingMOPs is not easy but algorithms attempt to gener-
ate PFknown that is a good approximation of PFtrue.

Biologically-inspired algorithms such as evolu-
tionary algorithms have managed solving optimiza-
tion problems. For example, swarm intelligence algo-
rithms, [2], are very competetive optimizers for com-
binatorial and optimization problems. Two famous

algorithms are Particle Swarm Optimization (PSO)
and Ant Colony Optimization (ACO), [3]. PSO is a
population-based algorithm that has interacting boids
or agents. It has been hybridized with other tech-
niques as in [4].

There are several parallel algorithms for MOPs.
Each has an approach to the parallelization process.
Several techniques are found common among authors
such as migration frequency, initial population, and
interchange of individuals among processors. There-
fore, it is important to study the various parameters
that are used in these systems. In this study, we are
proposing and discussing a parallel PSO for MOPs in
addition to performing a thorough sensitivity analysis
of its main parameters. We think this is something that
is not commonly done in related parallel algorithms
for MOPs.

In this work, we look at sensitivity analysis of a
parallel PSO algorithm that uses clustering to scatter
the Pareto Front among the parallel processors. In
particular, we are interested in migration frequency
as it relates to parallel behavior. The rest of the pa-
per is organized as follows. In Section 2, background
information is given about PSO. Section 3 presents a
parallel PSO for MOPS. The results are shown and
discussed in Section 4. Section 5 provides the sum-
mary and concludes the work.

2 Background
The following subsection outline, particle swarm al-
gorithms for MOPs and presents an overview of par-
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allel evolutionary algorithms for MOPS.

2.1 Particle Swarm Optimisation for MOPs
The Particle Swarm Optimisation (PSO) method is a
well-known optimization algorithm in the area of bi-
ologically inspired computing. Here, the algorithm
mimics flocks of birds when flying, [3]. Each indi-
vidual (i.e particle) updates its location in the search
by information transmitted from other particles.

It can be used to solve a general function F(x),
where x is a possible solution vector in a multidimen-
sional space. Here, a group of individuals (poten-
tial solutions of F(x), called boids) continously up-
date their positions to reach required destination. The
goal is to reach the global minima using data received.
In this work, the classical PSO is integrated with a
weight factor for restricting the velocity, [5]. The for-
mulas shown below are used to update the the nth par-
ticle velocity and position:

V n
i+1 = wV n

i +c1r1(P
n
L−xni )+c2r2(Pg−xni ), (1)

and

xni+1 = xni + αV n
i+1. (2)

Here, α is the time step; Pn
L is the local best vector

for nth particle, and Pg is the global best vector for all
particles; w is inertia weight factor; c1 and c2 are so-
cial factors; r1 and r2 are random numbers (between
0 and 1);

Single-objective PSOs have been successfully
extended to multi-objective optimization problems
by: Adding an external archive for collecting non-
dominated points. Adding a turbulence operator such
as the highly-disruptive polynomial mutation. Re-
placing the global best particles with a set of lead-
ers from an external archive. Managing the exter-
nal archive by using an update mechanism and lim-
iting the size of the external archive using crowding
or clustering.

2.2 The SMPSO Algorithm
SMSPO, [6], stands for Speed-constrained Multiob-
jective PSO. It is state-of-the-art in the area of evo-
lutionary multiobjective optimization. Its main fea-
tures are in the use of a constriction coefficient to con-
trol the particle’s velocity. The use of velocity con-
striction. The use of polynomial mutation rather than
uniform/non-uniform mutation. Different ranges for
C1 and C2 [1.5,2.5] and inertia weight set to 0.1.

2.3 Parallelisation of Evolutionary
Algorithms

A number of approaches, [7], [8], [9], [10], [11],
[12], have been proposed and carried out in the

past regarding how to parallelize evolutionary algo-
rithms. The main approaches are Master-worker, Is-
land, Diffusion and hybrid models. Master-worker
(also called global parallelization) model simply de-
codes and evaluates the fitness function of each in-
dividual of the population on the slaves. In the Is-
land model, the main population is divided into sub-
populations (or demes) and placed on different nodes.
Each node has its sub-population and runs an EA as
usual. It has two variants: with or without migration
(i.e. sending individuals to other nodes). A similar
approach is called cross-pollination as in [13].

In the previous two approaches the parallelization
was on the level of the population. However, in the
diffusion model, [10], (also called pollination models,
[14], fine-grain parallel evolutionary algorithms and
neighborhood model) the parallelism is exploited on
the individuals’ level. Here, each individual is placed
on a processor and forms a neighborhood structure
with few individuals from its local environment.

It is possible to mix two approaches or more in
a hybrid parallel evolutionary algorithm as in [15].
Interesting work in this area is the work of [16], (in
a system called pMOHypEA), where it is possible
to structure the population from coarse-grain island
models to fine-grained diffusion models using the
idea of hypergraphs.

Every two generations (as set in the experiments)
the local subpopulations on the remote processors are
gathered by themaster processor, clustered into k sub-
populations using the clustering centroids, and redis-
tributed to the remote processors. The clustering is
applied to the current Pareto-front. It has two modes:
1) cluster the search space, and 2) cluster the objec-
tive space. Also, zone constraints are added to every
processor using the constrained dominance principle,
[17], to limit the subpopulations to their specific parti-
tion. However, it is possible to mark individuals as in-
valid in case they are assigned to another centroid than
the subpopulation they belong to. From the results ob-
tained by experiments, it is clear that objective space
clustering outperforms search space clustering. Addi-
tionally, when the zone constraints are deactivated the
results improved. This means that each processor can
explore and exploit the entire objective space and pro-
cessors can overlap considerably. Also, in the experi-
ments they use a total population size of 600 individu-
als which might be needed for the clustering approach
to work. No computational speedup results were re-
ported as we think the process gathering, clustering,
and redistributing the results could hinder the compu-
tational performance significantly. More on paralleli-
sation approached can be found in [18], [19], [20]
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3 A Parallel PSO for Multicriteria
Optimisation

A PSO algorithm for multicriteria optimization has
been developed as part of a project funded by theMin-
istry of Higher Education in Jordan. The algorithm
was achieved by adding the following the single ob-
jective optimization PSO algorithm, [21]:

• An external archive for collecting the non-
dominated points,

• Adding polynomial mutation as a turbulence op-
erator to the PSO model,

• Replacing the global best particles with a set
of leaders from the external archive chosen ran-
domly,

• Limiting the size of the external archive by using
a crowing distance operator,

• Managing the archive by using an update mech-
anism.

Algorithm 1 Outline of the Parallel PSO clustering-
based multi-objective algorithm.
Each Processor Pi will execute:
1) If the main archive is empty then
Define a random population
Else
Take one cluster (i) from the master processor
2) Produce new population around cluster (i)
3) Use a PSO algorithm
4) Collect Sub-archives from slave processors
5) Update the main archive (lo-
cated on the main processor)
6) Apply the k-means algorithm
to cluster archive into k-clusters
7) Repeat steps 1-6 Until the Terminate condi-
tion is True

The sequential PSO for MOP was used as part
of parallel systems that are described in Algorithm
1. Each part was assigned to a different proces-
sor. Each processor generates a population around
the given cluster and applies the PSO algorithm for
multi-objective optimization. Such a kind of division
of the objective space is novel and can achieve good
results in terms of the quality of obtained solutions
as different processors focus on different parts of the
objective space in parallel. The overall design of the
proposed system is shown in Figure 1. Each proces-
sor is running SMPSO in a multi-start approach. The
processors perform scatter and gather operations ac-
cording to the frequency of gathering. Once the lead-
ers are gathered on the processor, they are clustered

into P clusters. The clusters are then scattered to pro-
cessors. Each processor will take its part as a leader.
There is a need for a population for the leaders. Later
in the experiments, we discuss how we can generate a
population for the leaders using more than one tech-
nique. To visualize the run time behavior of the pro-
posed system we can see Figure 2 as it illustrates how
the main archive is clustered into 8 different pieces
for DTLZ1 and DTLZ2.

Fig. 1:   Overall design of the proposed parallel PSO
System for MOPs

4 Experiments and Results
Here, thorough results are shown regarding the pro-
posed parallel system.

4.1 Experimental Environment
To evaluate the system we used the following prob-
lems: ZDT1 (2D, convex Pareto front), ZDT3 (2D,
disconnected Pareto front), DTLZ1 (3D) and DTLZ2
(3D). We used 25000 function evaluations and the re-
sults were averaged over 10 runs. To measure the
quality of the final obtained solutions we used In-
verted Generational Distance (IGD), Hypervolume
(HV) and Spread. As a turbulence operator, we used
the Polynomial Mutation. The entire system was im-
plemented using C + MPI. Experiments were con-
ducted on a cluster of PCs.

4.2 Adding Parallelism
In the initial design of the system, only the root pro-
cessor was responsible for generating the initial set of
leaders. The other processors remain idle. Therefore,
we parallelized this step using a static master-slave
model. Here, all processors work in parallel to pro-
duce the initial set of leaders. Each processor will run
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Fig. 2:    The distribution of the Pareto front across 8
processors for DTLZ1 and DTLZ2

a sequential version of the base algorithm (SMPSO),
then after a few iterations collect the results on one
processor. The gain here is number of iterations will
be divided equally among processors. The execution
time improved as can be seen in Figure 3. Here, the
execution time drops as we increase the number of
processors.

 0

 2

 4

 6

 8

 10

 12

 1  2  3  4  5  6  7  8

T
im

e
 i
n
 S

e
c
o
n
d
s

No. Processors

Execution Time

ZDT1
ZDT3

DTLZ1
DTLZ2
DTLZ4

Fig. 3:   Sequential vs Parallel Execution Time
.

4.3 Different Population Initialization
Strategies

In this part, we need to figure out the best method for
generating a new population for each processor after
we perform gathering and clustering. Each processor
will get its leaders to be used by the SMPSO algo-
rithm. Different methods were proposed for this:

• perform polynomial mutation on the current set
of leaders (called init 1 in the figures). This ap-
proach would work if there were many leaders to
mutate.

• generate the population randomly as we do in the
initial stage of the system (called init 2 in the Fig-
ures).

• The algorithm maintains an archive of current
population (called init 3). When leaders are
given, lookup/search in the archive for the near-
est points (calculated geometrically) to the cur-
rent leaders. The set of points will form the new
population. This approach aims to generate the
best set of individuals that shall follow the leader.
If far away then lots of iterationswill be needed to
converge to leader. However, if very close to the
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leader then not lots of variation can happen (pre-
mature convergence). In an ideal world, having
a mixture of points might work well.

Therefore, we performed an extensive set of ex-
periments to evaluate the suggested threemechanisms
for generating the population. Figure 4 and Figure 5
show HV and IGD results, respectively. It seems that
certain problems prefer a given initialization strategy
while other problems prefer other strategies. There-
fore, to be on the safe side then generating the popula-
tion randomly would be fine for most of the problems.

4.4 Migration Frequency
In this set of experiments, we would like to see the
effect of the frequency of gathering, clustering, and
scattering back to processors on the overall perfor-
mance of quality metrics. Figure 6 shows the HV re-
sults and Figure 7 shows the IGD results.

The main conclusion to draw from these results is
that most of the problems prefer a high frequency of
gathering. The gathering every 40 or 50 iterations
did not perform as well as frequencies of 5, 10, and
20. When migration is performed frequently then
clustering is applied to the collected population we
can reduce the overlap among processors. Although
this might add extra cost to communication overhead
these are negligible compared to the extra gain in
quality metrics. The issue now is that as migration is
very often then it is expected to improve HV and IGD
metrics. However, there is the cost for transmitting
the population and it is expected that overall speedup
will drop as more processors are used. Here, the users
of the system need to understand the tradeoffs among
speed and MOP metrics.

However, as more processors are used (beyond 4),
the performance does not improve. On the contrary, it
starts to drop. This is due to the large overlap among
processors and smaller cluster sizes given to proces-
sors. Also as the total number of iterations is divided
among processors, the base algorithm on each pro-
cessor does not get enough function evaluations to
progress well.

5 Summary and Further Work
The results obtained from the experiments are inter-
esting. We can conclude the following: Adding paral-
lelism to the first stage of the existing system does im-
prove execution time. Different techniques for gen-
erating the neighborhood population are good. The
suggested three approaches to answer this question.
However, the random generation of the population
did not do well. This is due to locality issues as the
population is far away from the leader. It is advis-
able to either mutate the leader or maintain an archive
of the old population then for a given leader search
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for the closest points within the archive. The fre-
quency of gathering and clustering the non-dominated
points on other processors is important. This should
be done quite often (preferably every 5, 10, or 15 iter-
ations). Waiting for longer periods will cause lots of
overlap of regions among processors and reduce the
overall quality of metrics. The above issues could be
problem-dependent. In other words, different prob-
lems may prefer different initialization and/or gather-
ing frequency. For further work, the sensitivity anal-
ysis could be done for further studies.
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