
Implementation of Application Specific Instruction set Processor for

Approximate Computing

AKSHAY DEOLE, VANITA AGARWAL, VAISHALI INGALE

Electronics and Telecommunication Department,
COEP Technological University,

Pune, Maharashtra,
INDIA

Abstract: - The performance, energy efficiency, power dissipation, and cost of the processors used in Internet
of Things edge devices can be improved by introducing approximate computing. In this paper, the design and
synthesis of an application-specific instruction set processor for approximate computing is proposed.
Approximate computing can also be defined by using Artificial Intelligence-based technique like the Fractal
theory and Inconsistent Information System. Application Specific Instruction Set Processor is a new processor
design area and is used to design a new instruction set using existing processor configuration available on the
EDA tool. From the results, it is observed that significant improvement is achieved in processor performance
using the TIE application as compared to without the TIE application which is applied to user-designed
instruction.

Key Words: - Approximate Computing, ASIP, FPGA, Internet of Things (IoT), Smart City, TIE Language, and
Tensilica Tool.

Received: November 19, 2023. Revised: June 21, 2024. Accepted: July 16, 2024. Published: August 14, 2024.

1 Introduction
The development of electronic commodities usually
uses the path: of accomplishing more functions, do
them faster, and diminishing the cost. It creates huge
pressure on the design teams. The performance of the
product is improved by two factors, one is
computational complexity which is an important
parameter for hardware design and the second is data
rates for data transfer, [1]. Due to this, energy
consumption is an increasing concern in many
computer systems and other electronic products.
Much of the focused concern with reducing energy
consumption has been on low-power architectures,
performance/power tradeoffs, and resource
management. Presently, almost all processors use
exact computing as the core and promote Instruction
sets for the same. However, in many applications
especially for IoT edge devices, for simple operation,
this consumes a lot of silicon area and energy. This
results in increased costs for the unnecessary
functions/accessories which will not be used in the
lifetime of IoT devices. So to solve this problem we
are exploring the design of Application Specific
Instruction Set Processor (ASIP) for approximate
computing applications. Many emerging applications
do not require an exact answer but rather acceptable
ones. Similarly, the utilization of a complete
instruction set for the IoT edge devices is also a

matter of concern especially when battery life is
restricted and most of the instructions of ARM and
similar processors are never used in the lifetime of
the IoT cycle. Approximate computing deliberately
introduces significant “acceptable errors” into the
computing process and promises significant energy
efficiency gains, [2]. The approximate computing
along with ASIP can offer a potential solution to the
problem of silicon area, energy, and increased cost of
hardware. Synopsys Processor Designer (PD),
Cadence Tensilica is a tool-based solution for the
design and implementation of ASIPs. The Language
for Instruction Set Architecture (LISA), a processor
design platform (LPDP) based on machine
descriptions in the LISA language provides one
common environment for design phases present in
ASIP, [1], [3].

General-purpose processorsdonot perform all the
operations related to mathematics such as
exponential, sine/cosine, etc. To use this function we
have to include a math header file in the program.
Sometimes there is no need to work faster in simple
operations but the processor works faster which is
not good. Approximate computing can be done at
different levels such as approximate software,
approximate architecture, and approximate circuit,
[2]. We can improve energy efficiency, and speed,
decrease power dissipation, and silicon area using

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.19 Akshay Deole, Vanita Agarwal, Vaishali Ingale

E-ISSN: 2224-2872 204 Volume 23, 2024

approximate computing, and result in a decreased
cost of hardware.

This paper is organized as follows. Section 2
focuses on the ASIP approach and its advantage over
other processor design methodologies. Section 3
discusses the type of methods available for
approximate computing and gives an idea about a
fractal method for approximate computing. Section 4
provides information about xtensa architecture and
TIE languages in brief. Section 5 provides
information on the project methodology flow for
design instructions. Results are calculated on a
software basis for the proposed method. Lastly, the
paper is concluded and future scope is discussed.

2 Application-Specific Instruction Set

Processor
The term application specific is not only associated
with application software but is also applicable to the
functionof the processor with a different perspective
such as system-specific context, a specific function
with a unique design objective, [1], [4], [5]. It is
important to meet design constraints related to ASIP
through hardware implementation and design point
of view. Also, it is observed that the instruction
format for ASIP is slightly different from the
traditional instruction which contains mnemonic and
operands that use register/memory to store or load
the data into it, [1]. ASIP interfaces are used for
outer communication whereas inner communication
between functional units is defined by instruction
operand. Currently, ASIP design consists of four
phases Architecture Exploration, Architecture
Implementation, Software Application Design, and
System Integration, [6], [7].The basic information
about these four phases is given as follows:

2.1 Architecture Exploration
In this phase, the application is implemented on a
processor with a repetitive process to obtain a perfect
fit between architecture and application, [1], [6]. In
addition to this, hotspot plays an important role in
securing great performance improvement in the
application. Hotspots are software functions that
consume the majority of processor cycles in the
application. It is important to detect hotspots present
in the application if any and should be minimized.
Nowadays, various tools are available to identify
hotspots in an application with a profile option.

2.2 Architecture Implementation
The user-defined processor must be synthesized
using Hardware Description Languages (HDL) and

this can be done using different HDLs like VHDL
and Verilog. The synthesized codes are used to
implement on PLDs like Field Programmable Gate
Array (FPGA), Programmable Array Logic (PAL),
and Programmable Logic Array (PLA), [7], [8].

2.3 Software Application Design
Systematic application design for specific purposes
is a challenge to software designers as they require
the collection of various software development tools
for standard production [6]. But still, a requirement
of software designers and hardware designers play a
different role in software development tools.

2.4 System Integration and Verification
Usually, cycle-accurate processor instruction sets are
released for verify the development activities of a
particular processor. TI’s Code Composer Studio
promotes this extensively. Also, the BDTI 2000
benchmark helps in the evaluation of the processor
family for its performance. Unlike this, the Tensilica
Xtensa processor modules are not working in
simulation mode when we use them in Xtensa
Xplorer software.

Due to all above mention features, ASIP is
preferred over General Purpose Processors (GPP)
and Application Specific Integrated Circuit (ASIC)
because of some issues. Table 1 gives a comparison
on a different processor with respect to the various
parameters.

Table 1. Comparison between different SoC, [1]
Specification GPP ASIP ASIC

Performance Low High Very High
Power Large Medium Small
Software

Design

Large None Large

Hardware

Design

Small Very Large Large

Flexibility Excellent Good Poor
Cost Mainly on

Software
Volume-
Sensitive

Large

Reuse Excellent Good Poor
Market Very Large Small Large

Referring to Table 1, ASIP is the solution to the
tradeoff between performance and flexibility
associated with GPP and ASIC respectively. Due to
this reason, we move towards ASIP as compared to
GPP and ASIC.

3 Approximate Computing
Approximate computing plays an important role in
smart cities wherein we think about low power

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.19 Akshay Deole, Vanita Agarwal, Vaishali Ingale

E-ISSN: 2224-2872 205 Volume 23, 2024

consumption in hardware, especially through an IoT
perspective. There is lot of work done by Purdue
University [2]. The main focus of this paper is on a
new method of approximate computing using the
fractal method.

3.1 Fractals
Fractal is a complex and never-ending pattern that
repeats itself on a different scale and follows self-
similarity property, [9], [10]. They are made by
repeating a simple process. Some physical systems
are complex, repetitive, and productive and are
represented by fractals. Generally, fractals does not
stick to regular mathematical dimensions such as 1-
D, 2-D, 3-D, etc. so it is obvious that fractals are
distinguished as a real dimension e.g. fractal curve
and fractal surfaces, [9]. The fractal curve has a
dimension between 1-D and 2-D whereas the fractal
surface lies between 2-D and 3-D, [9]. Fractals can
be observed in nature, algebra, geometry, circuits,
and city. Fractal uses replacement rule for the
development of irregular shape. For example, a
straight line with dimensions1-D can be divided into
three equal parts and the middle part is replaced by
the shape as shown in Figure 1(a) and it has the same
length as an original middle portion and it goes on.

(a)

(b)

Fig. 1: Replacement Rule (a) Fractal in a straight
line, [6] and (b) Fractal in a triangle, [9]

As shown in Figure 1(b), the replacement rule
can be applied to a 2-D object like a triangle, star,
etc. There are different types of fractals like
Mandelbrot Set fractal, Julia fractal, etc. This paper
mainly focuses on Mandelbrot Set fractals.

3.2 Mandelbrot Set Fractal
The Mandelbrot Set is a function that uses a complex
number such as 𝑧 = 𝑥 + 𝑖𝑦 in the fractal. The
absolute value of a complex number is given and
denoted by √𝑥2 + 𝑦2 and |𝑧| respectively, [10].
Definition 1: The Mandelbrot set is complex
quadratic iterative equation and assemblage of the
value of c in the complex plane for which succession
of the quadratic plot remains bounded, [10].

𝑍𝑛+1 = 𝑍𝑛
2 + 𝐶 (1)

In equation (1) above, C is any value

(complex/real/integer) lies in a complex plane 𝑧𝑛 and
𝑧𝑛+1 is the iterative value in the complex plane for a
finite number of points (n).
Definition 2: A point is said to be in Mandelbrot Set
if it is satisfies, [9]:

|𝑍𝑛+1| < 2; 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 0 (2)

In another word, if the absolute value of 𝑧𝑛+1 is
more than 2 then Mandelbrot sequence will go to
infinity. Refer to (1), suppose initially 𝑐 = 1 and
𝑧0 = 0, then function 𝑧𝑛+1 will have value
0,1,2,5,26,…..and it goes on infinity and referring to
(2), we can figure out that selected point does not
belong to Mandelbrot Set whereas if 𝑐 = −1 and
𝑧0 = 0.Function 𝑧𝑛+1 contains value 0,-1,0,-1…goes
to infinity. By observing function 𝑧𝑛+1 it is found
that second point belongs to the Mandelbrot set
fractal. Equation (2) gives us an idea about the
convergence of the Mandelbrot set in complex plane
Z.

4 XTENSA Architecture And TIE

Language
Xtensa processor is based on simple RISC
architecture with a single core, [11], [12], [13], [14].
It has a separate instruction bus and data bus which
allows load/fetch of data concurrently and consists of
5 or 7-stage pipeline structure which is configurable.
It uses a 24-bit instruction set for xtensa core and
instructions are defined using TIE language.
According to the requirement, it supports optional 16-
bit “density” instructions which can be used
frequently in an assembly program. Pipeline structure
of xtensa consists of different stages like Instruction
Fetch (I), Register Read (R), Execute (E), Memory
Access (M), and Write Back (W).

Fig. 2: 5-stage abstracted pipeline view for
instructions

Figure 2 shows a simple and basic representation

of the 5-stage pipeline for xtensa core. The

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.19 Akshay Deole, Vanita Agarwal, Vaishali Ingale

E-ISSN: 2224-2872 206 Volume 23, 2024

combinational logic in the core is represented by
clouds. Generally, every instruction spends a
minimum of one clock cycle in each stage and it may
vary depending on other situations like interrupt and
exceptions which occur during program execution.
The working of each stage present in Figure 2 is
given below:
Prefetch: It is used to send the address to instruction
memory.
Instruction Fetch: The main purpose of this stage is
to fetch an instruction from memory & align the
instruction.
Register Read: This stage is used to decode the
instruction and read the value from the register file
during the execution of instructions.
Execute: It is the most important stage where all
computation and address calculations for different
types of instructions are performed.
Memory Access: This stage loads or reads data from
memory or cache and loads it in ALU result.
Write Back: This is the 5th stage of the pipeline and
writes computed results obtained from the executing
stage via the memory access stage to the
corresponding register file or memory.

Fig. 3: 5-stage pipeline representation of ADD
instruction

Figure 3 represents a 5-stage pipeline of ADD
instruction. In the execute stage, the addition of a2
and a5 takes place and then it is stored in memory
and finally, the result gets stored in a4, which is part
of the register file.

As xtensa supports 7- a stage pipeline, so the
remaining two stages for xtensa core are H stage
used for instruction fetch along with the I stage and
L stage extended with M stage to access local
memory between instruction and data memory.
According to application requirements, user-defined
instruction can use the xtensa platform as it provides
various constraints present in TIE language like
operation, semantic, scheduler, functions, register
file, proto, ctype declaration etc. These constraints
can be used to add instructions for various DSP
processor and specific applications. We have used
TIE language due to its immense features which are
available to end users and through which instruction
sets can be created. The instructions requiredto

support Mandelbrot Set Fractals are divided into
different part parts like arithmetic instructions, data
transfer instructions, etc.

Table 2. Proposed Instruction Set for Mandelbrot Set

fractal
Instruction Type Instructions Data

Length

Arithmetic
CADD, CSUB 32-bit
CMUL, CSQU

Data Transfer

LDA16, STA16 16-bit
LDA32, STA32, MOV 32-bit
LDA64, STA64,
MOVE

64-bit

Table 2 shows the classification of the

instruction set. The instruction syntax in assembly
language is shown below:

ADD ar, as, at AR[r] AR[s] + AR[t]

Where ADD is mnemonic with source and target
are two operands and denoted by as and at
respectively, whereas ar is the destination operand.
AR is a predefined register which is used in the
application.

1000 0000 R S T 0000
Fig. 4: Bit representation for Opcode and operand in
Assembly Language

Figure 4 shows the bit representation format of

ADD instruction for opcode and operand part present
in assembly language. The lower 4 bits are reserved
for the register address. With 4 bits, 16 locations can
be accessed. The high order 8 bits represent the
opcode for that instruction.

4.1 Program Code

The actual definition for Mandelbrot Set user-
defined instruction in assembly and C/C++ language
is given below:
(A) Assembly Language Representation of Design

TIE Instruction:

CADD c4, c3, c1; //c4 = c3 + c1

(B) C/C++ Function Prototype for Design TIE

Instruction:

// C or C++ header file declaration

#include<xtensa/tie/add.h>
int main ()
{

 CR32 X, Y, Z;

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.19 Akshay Deole, Vanita Agarwal, Vaishali Ingale

E-ISSN: 2224-2872 207 Volume 23, 2024

 Z = CADD (X, Y);

 Return 0;
}

Code1: Code snippet for Instruction calling
definition of Mandelbrot set in assembly and C/C++
language

From code-1, it is observed that instruction has a
specific direction for input and output argument. Due
to this, the instruction calling process will be
different in C/C++ language and mathematical
representation in the assembly language will be
changed.

5 Project Methodology
There are various steps that are followed to obtain
the best possible optimization in hardware through a
software application in the cadence Tensilica tool.
Figure 5 gives a simple and basic idea about the
steps present in the instruction design process. The
first step is to create an xtensa C/C++ project
followed by C/C++ application code and selection of
language depending on our expertise. The next step
is to look for an active set like a project which we
have created, the configuration on which we will
write source code, and finally the debug
configuration option which is used to debug code on
the FPGA platform. Once successfully built and run,
themost important part is benchmark perspective
which is nothing but profiling of source code. It
gives information about hotspots present in the code.
After the analysis performed in the profile section,
we will use predefined TIE instruction with new
code and compare its result with the source code. If it
is observed that both results are the same then
instructions are designed using TIE language to
reduce hot spots in design and instructions are
verified in C/C++ source code with some
modification in the source code. Again repeat the
same process up to the profile configuration. Now
compare the profile section with and without TIE for
optimization purposes.

Once the optimized source code is finalized then
the next part is to generate synthesizable RTL code
for the application-specific processor and the last
step is to implement it on FPGA hardware using
vivadotoolchain provided by Xilinx where we can
check for the area, power, and operating frequency as
it gives us exact information about newly design
processor. The results obtained in the TIE report are

approximate and hence to get an accurate result this
hardware implementation is a necessary step.

Fig. 5: Proposed Flowchart of adding Instructions
for Processor Design using TIE Language

5.1 Design Instruction
This section gives information about designed
instruction for the Mandelbrot set fractal along with
its prototype. There are two types of instruction such
as - arithmetic and data transfer instruction. Table 2
shows the proposed instructions set for Mandelbrot
Fractal. The “operation” TIE construct is a primary
requirement for the design of any instruction. TIE
has another construct to design instruction like
“iclass”. Also, we require a register file to store the
value of the input argument, and can be done using
the “regfile” TIE construct. Along with this, we can
use immediate data in the instruction whenever we
require instant data for application and it is just like
the 8085 microprocessor or 8051 microcontroller
with different instruction widths.

6 Experimental Results
The instruction to support the Mandelbrot Set is
synthesized using ASIP and approximate computing.
The different parameters such as performance, area,
the frequency are analyzed on the Tensilica EDA
tool. The exact value of the parameter is available
after synthesis.

Figure 6 shows the instruction cycles comparison
graph for with and without TIE for user-defined
instructions. So by using TIE language, cycles are

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.19 Akshay Deole, Vanita Agarwal, Vaishali Ingale

E-ISSN: 2224-2872 208 Volume 23, 2024

reduced. Along with this, by using different TIE
construct, the hardware area is reduced. TIE
construct like semantics is used to design single data
paths for different instructions.

Fig. 6: Instruction cycle optimization for Mandelbrot
Set

Table 3. Profile information for Mandelbrot set

instruction
Parameters Without TIE With TIE

Total Number of Cycles 104946 74554
Total Instructions 68198 47409
Application Size (bytes) 1012 566

Table 3 gives information about the architecture

performance of the xtensa processor. A superior
architecture will result in better performance. We
don’t explore other processor configurations which is
available in the xtensa tool. The period of a selected
processor configuration for a single clock cycle is
1.26 ns. Similarly, the same architecture but on
different fabrication technologies like 45nm, 90nm,
and 22nm are not explored in this paper. We
specifically focus on TIE.

Fig. 7: TIE Area optimization for Mandelbrot Set

Figure 7 shows the comparison between
combined and separate instruction which is designed
for the Mandelbrot set fractal. From Figure 7, it is
observed that the area for designed instruction is
reduced.

Table 4. TIE Area Overview
Parameters Area(Gate) Percentage (%)

TIE Instruction 8217 31.85
Register File 11826 45.84
Functions 1380 5.34
Decoder, Mux, etc. 3195 12.38

Table 4 provides an idea about the area in terms

of gate count related to TIE instruction. Different
architectures such as CISC, RISC, and NISC are
implemented on FPGA and compared with TIE.
NISC is used to convert C program applications to
hardware language with no instruction, fixed design
architecture, and no flexibility to explore design
space whereas in TIE it allows us to explore design
space for the instruction set. Hence though Table 4
gives gate count for instructions, register files,
functions, decode, and multiplexer it is not
treatedsimilarly to FPGA gate count. The TIE report
is useful in designing iterative-based optimization
i.e. changing the register file number, and register
word length. For the same processor configuration,
one configuration design used an N1 register number
for each of the W1 word lengths out of these designs
compared with another configuration with N2 as the
register number and W2 as word length of each
register where N2 < N1 but W2 > W1. This report also
helps in overcoming design constraints like register
files, instruction sets, and clock speed. The
experimental result with a change in clock speed is
not the focus of this paper.

Fig. 8: Simulation result for design TIE instruction

Figure 8 shows the instructions that have been
simulated for the Mandelbrot set fractal and these
simulation results are in agreement with manual
calculation. The Analysis of power constraint using
approximate computing is not calculated.

7 Conclusions
This paper explains two emerging areas such as
ASIP and approximate computing in the
semiconductor field. ASIP is used to overcome the
problem of GPP and ASIC. It is observed that the
overall performance of processor architecture is
improved by 40.76% concerning TIE. The
improvement observed in the number of instruction
cycles ranges from 20.9% - 55.7% for the designed
instruction. TIE construct like semantics is used to
design single data paths for different instructions.
Using semantic construct, for combined addition and

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.19 Akshay Deole, Vanita Agarwal, Vaishali Ingale

E-ISSN: 2224-2872 209 Volume 23, 2024

subtraction instruction, the area is reduced by 1.48
times compared to separate addition and subtraction
instruction. Moreover, this process of synthesis of
Application-specific instruction set processor is
faster.

Acknowledgement:
Authors would like to thank Cadence Design
System, Pune for their immense inputs and timely
suggestions which helped us in timely completion of
our proposed work. We also acknowledge the
guidance of late Prof. A B Patki for his continuous
guidance and inspiration in successful completion of
this work.

References:
[1] Nohl, Achim et al. “Application specific

processor design: Architectures, design methods
and tools.” 2010 IEEE/ACM International

Conference on Computer-Aided Design

(ICCAD) (2010), San Jose, CA, pp. 349-352.
[2] Q. Xu, T. Mytkowicz and N. S. Kim,

"Approximate Computing: A Survey," in IEEE

Design & Test, vol. 33, no. 1, pp. 8-22, Feb.
2016, doi: 10.1109/MDAT.2015.2505723.

[3] P. V.Bhandarkar, S.S.Limaye, “Modeling with
LISA- A Power Full Machine Description
Language”, IJCSET, Vol-3, Issue 1, 2013, pp.
1-7.

[4] Laura Micconi, Jan Madsen, Paul Pop,
“System-level synthesis of multi-ASIP
platforms using an uncertainty model”,
Integration, the VLSI Journal, Volume 51,
2015, pp. 118-138, ISSN: 0167-9260.

[5] S. Ramanathan, V. Visvanathan, S.K. Nandy,
“Synthesis of ASIPs for DSP algorithms”,
Integration, Vol. 28, Issue 1, 1999, pp. 13-32,
ISSN 0167-9260.

[6] M. Hohenauer, R. Leupers, “ASIP Design
Methodology. In: C Compilers for ASIPs
Automatic Compiler Generation with LISA”,
Springer Science and Business Media, LLC,
2010, pp.7-13.

[7] Meyer-Bäse, U., Vera, A., Rao, S., Lenk, K.,
and Pattichis, M., “FPGA wavelet processor
design using language for instruction-set
architectures (LISA)”, in Independent
Component Analyses, Wavelets, Unsupervised
Nano-Biomimetic Sensors, and Neural
Networks, 2007, vol. 6576: doi:
10.1117/12.719020.

[8] J. Stepaniuk, M. Kopczynski, T. Grzes, “The
First Step Toward Processor for Rough Set

Methods”, Fundamenta Informaticae, vol. 127,
Issue 1-4, Jan. 2013, pp. 429-443.

[9] D. Ashlock, "Evolutionary Exploration of the
Mandelbrot Set," 2006 IEEE International

Conference on Evolutionary Computation,
Vancouver, BC, Canada, 2006, pp. 2079-2086,
doi: 10.1109/CEC.2006.1688563

[10] L. Lazareck, G. Verch, J. F. Peters, “Fractal in
Circuits”, Canadian Conference on Electrical

and Computer Engineering, Canada, 2001, pp.
589-594.

[11] Cadence Design Systems, Inc. (2019). Tensilica
Vision DSP Family [White Paper]. Cadence
Design Systems, Inc.

[12] Cadence Design Systems, Inc. (2014). Xtensa
Processor Developer’s Toolkit [White Paper].
Cadence Design Systems, Inc., [Online].
https://ip.cadence.com/uploads/102/HWdev-
pdf (Accessed Date: June 17, 2024).

[13] Cadence Design Systems, Inc. (2014). Tensilica
Software Development Toolkit (SDK) [White
Paper]. Cadence Design Systems, Inc, [Online].
https://ip.cadence.com/uploads/103/SWdev-pdf
(Accessed Date: June 17, 2024).

[14] Ninad Patil, Vanita Agarwal, “Performance
Simulation of a Traffic Sign Recognition based
Neural Network on Cadence’s Tensilica Vision
P6 DSP using Xtensa Xplorer IDE”, WSEAS
Transactions On Computer Research, Vol. 10,
2022, pp. 35-42,
https://doi.org/10.37394/232018.2022.10.5.

Contribution of Individual Authors to the

Creation of a Scientific Article (Ghostwriting

Policy)

- Akshay Deole carried out the simulation work.
- Vanita Agarwal and Vaishali Ingale were

responsible for ideating, formulating, guiding,
organizing and execution of Research carried.

Sources of Funding for Research Presented in a

Scientific Article or Scientific Article Itself

No funding was received for conducting this study.

Conflict of Interest

The authors have no conflicts of interest to declare.

Creative Commons Attribution License 4.0

(Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.19 Akshay Deole, Vanita Agarwal, Vaishali Ingale

E-ISSN: 2224-2872 210 Volume 23, 2024

https://ip.cadence.com/uploads/102/HWdev-%20pdf
https://ip.cadence.com/uploads/102/HWdev-%20pdf
https://ip.cadence.com/uploads/103/SWdev-pdf
https://doi.org/10.37394/232018.2022.10.5
https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

