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Abstract: - A digital controller for exact command tracking control without integration is derived from a 
periodic series. The ratios of adjacent values will be converged to unities after the output has tracked the 
reference input command. Integration in control loop usually introduces phase lag to slow command response 
and degrade performance. 
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1 Introduction 
For discrete-time unit feedback control systems, the 
control sequences )( SjTG  are usually functions of 
the difference between the sampled reference input 
and output of the plant [1-3]. 

ST  is the sampling 
interval. They are linear control sequences. In this 
literature, ratios of ))1(( STkG   to )( SkTG  of the 
control sequences will be formulated as a nonlinear 
function of the reference input command and the 
output of the plant. The value of )( SkTG  is the 
control effort of the plant at time interval between 

STk )1(   and 
SkT . Thus, the considered system is 

closed with )( SjTG .The output of the plant will 
track the reference input exactly after 

))1(( STkG  / )( SkTG  converged to be unities. It 
implies that )( SkTG  will be converged to a steady-
state value for a constant reference input applied. 
The stability of the closed-loop system is guaranteed 
by selecting the proper function of 
ratios ))1(( STkG  / )( SkTG . It will be proven that the 
considered system with the proposed )( SkTG  is a 
stable negative feedback control system. 
 
 

2. Propose Method 
A series with time period 

ST [1-3] can be written as 
in the form of 
 

,....1,,..,3,2,1),(  nnjjTG S
,                         (1) 

 
where )( SkTG  represents a constant value between 
time interval between 

STj )1(   and j
ST . For 

simplicity, the representation of )( SkTG  will be 
replaced by )( jG  in following evaluations. The 
ratios )(/)1( jGjG   of the series are defined as  
 

,.....1,,...,3,2,1),(/)1()(  nnjjGjGjF ,    (2) 
 

Eq.(2) gives the value of )1( nG  approaches to be 
a constant value when the value of )(nF approaches 
to be unity. Now, the problem for closing the 
considered system with exact command tracking is 
to find the formula of )( jF  which is the function of 
reference input command and output of the plant. 

)1( nG  will be used as the input of the considered 
system. Considering a possible series to close the 
considered system, it is 
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where )(nR is the reference input command and 
)(nYS
 is the non-zero sampled output of the plant Y 

at the sampling interval SnT . Assume that the 
reference input command has been tracked by the 
control effort )( jG , Eq.(3) becomes 

)()1(
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nGanG
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 ;                                  (4) 

For steady-state condition, )1( nG  approaches to 
be a constant value. It gives 1

0
 

m

i ia . 
Rearranging the Eq. (3) and taking the derivative of 
it with respect to )(/)( nRnYS

, we have 
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and 
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The sufficient but not necessary condition for Eq.(6) 
less than zero is 0ia  for 1)(/)( nRnYS

 and 
Eq.(5) is rewritten as in the form of 
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0ia  will be used in following evaluations. 
Negative value of Eq.(6) represents the closed-loop 
system with Eq.(3) activated as a negative feedback 
system around the equilibrium condition; 
i.e., )()( nRnYS  . These statements will be 
illustrated by the first order polynomial:  

  )()(/)()1()1( nGnYnRnG S   ;            (8) 

where  satisfies constrains stated above and 
becomes a adjustable parameter. The 
ratios )(nF becomes 

  ))(/)(/()1()( nRnYnF S
               (9) 

Taking the derivative of Eq. (9) with respect 
to )(/)( nRnYS

, we have 

2))(/)(/()1())(/)((/)( nRnYnRnYnF SS    (10) 

For negative value of Eq.(10), the value of  must 
be less than one. The suitability of the proposed 
nonlinear digital controller is based upon this 
characteristic. Fig.1 shows ratios )(/)( nRnYS

versus 
)(/)1()( nGnGnF   represented by Eq.(8) for  

=0.9, 0.7, 0.5 and 0.3; respectively. Fig. 1 shows 
that the value of )(nF is less than one for )(nYS

 
greater than )(nR , then the value of )1( nG  will be 
decreased; and the value of )(nF is greater than one 
for )(nYS

 less than )(nR , the value of )1( nG  will 
be increased. This implies that the controlled system 
connected with Eq.(8) will be regulated to the 
equilibrium point ( )(/)( nRnYS

=1) and gives a 
negative feedback control system for deviation from 
equilibrium point. One can adjust  to get desired 
regulating characteristic. Certainly, other tracking 

functions can be formulated and proposed also for 
the considered system, if its derivative with respect 
to )(/)( nRnYS

 is negative. 
Fig.2 shows the connected system configuration in 
which Eq.(8) and output of the nonlinear controller 
are modified for negative control swing. The C(z) is 
the digital compensation for better performance. 
Eq.(8) is rewritten as 

)(]))(/())(1[()1( nGYnYYRnG OSo   ;      
(11) 

where 
oY  is the desired negative control swing, 

)(nYS
 is the sampled value with hold of the plant 

output at sampling interval 
SnT , and U is the 

sampled value with hold of the controller output. 
The values of )(nG and )(nF will be all positive for 
the summation of )(nYS

 and 
oY  (or R and

oY ) is 
greater than zero with a specified value of 

oY .  All 
positive values will give better continuities, 
regulating characteristics of the series. Note that 
singularity of Eq.(8) for )(nYS

=0 is avoided by use 
of Eq.(11). Eq.(11) implies 

]))(/())(1[()(   OSo YjYYRjF , j=1,2,3,., 

n,n+1,....                  (12) 

and inputs of the plant )1()1(  nGnu  are replaced 
by  

)0(/)1()1( PYnGnu o ;                   (13) 

for the negative swing control with positive values 
of , )( jG  and )( jF . 
 

 
Fig.1. G(n+1)/G(n) Versus )(/)( nRnYS

 for 
 =0.9,0.7,0.5, and 0.3. 
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Fig.2. The Nonlinear Digital Controller. 

 

 

3. Numerical Examples  
Example 1: The design example [4] is  

)1.01(
100)(

ss
sPo


                                           (14) 

After it has been closed with feed-forward gain 0.03, 
the DC gain of the closed- loop subsystem P(s) is 
unity. The sampling period 

ST =1/40 second is 
selected. Time responses of the overall system with 
the nonlinear digital controller for =0.95 is shown 
in Fig.3. The amplitude of reference 
inputs )( jR between 0 and 2 seconds are equal to 1; 
between 2 and 6 seconds are equal to -0.2, between 
6 and 9 seconds are equal to 0.6, and between 9 and 
12 seconds are equal to 1.2, in which gives 
reference command )( jR  (solid-line), plant output 

)( jYS
 (dot-line), control effort )( jG (dash-line), and 

ratios )( jF  (dash-dot-line) of )( jG . Fig.3 shows 
that )( jG  and )( jF  are all positive while the value 
of output )( jYS

 tracking the negative value of the 
reference input )( jR  exactly. Fig.3 shows also that 
ratios )( jF  are converged to be unities quickly; i.e., 
the controlled output tracks the reference input 
quickly and exactly. 

 
Fig.3. Time Responses of the Design Example 

for  =0.95. 

 
Example 2: Consider the very high order plant: 
 

203 )1(
1)(



s

sP                                 (15) 

 
Parameters of the nonlinear controller are 5.0  
and .25msTS   Fig.4 shows time response of the 
controlled system, in which gives reference input 

)(nR  (dash-line), output Y(solid-line), Time series 
)(nG (dot-line), and ratios )(nF (dash-dot-line) of 
)(nG .  It gives good performance and zero steady-

state errors. The phase-lead filter C(z) is in the form 
of 

1
12102.0

18.0)(








z

z

T
s

S

s

s
zC                         (16) 

Fig.4 shows the considered plant is a large time-lag 
system. The high order system model is usually 
used to describe the industry process for replacing 
pure time-delay(e.g. sTde

 ). Such that conventional 
analysis and design techniques can be applied[5,6]. 
Fig.4 shows the proposed method can be applied to 
a large time-delayed system. 
 

 
Fig.4. Time responses of Example 2 with C(z) 

for β=0.5; .25msTS   
 

Final results and four other methods are presented 
for comparison and show the merit of the proposed 
method. They are Ziegler-Nichols method[7-9] for 
finding PI and PID compensators, Zhuang et al. [10] 
for finding PI compensator and Majhi[11,12] for 
finding PI compensator. Parameters of four found 
compensators are given below:  
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(1)ZN(PI)   : 0305.0   585.0  ip KandK . 

(2)ZN(PID): 9135.4    05088.0 ,77256.0  dip KandKK . 

(3)Majhi’s(PI) : .0443.0   5097.0  ip KandK  

(4)Zhuang’s(PI): 058.0   473.0  ip KandK . 
 

Time responses are shown in Fig.5. Table 1 gives 
integration of absolute error(IAE) and integration of 
square error(ISE) of them. From Table 1 and Fig.5, 
one can see that the proposed method gives better 
performance than those of other methods.  
 

 
Fig.5. Time Responses of Example 2 with 

Different Control Methods. 
 

Table 1. IAE and ISE Errors of Example 2 with 
Different Control Methods. 

Methods Proposed ZN(PI) ZN(PID) Majji Zhuang 

IAE 16.010 21.227 16.216 20.190 21.814 

ISE 18.337 32.708 22.970 26.829 32.912 

 
 
Example 3: Consider a gas turbine engine with 
plant transfer function matrix[13-14].  
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where 432 22.1133.13577.35022525)( sssss  . 
It is a 22  multivariable plant. The steady-state 
gain of open loop )(3 sP  is in the form of 
 











3485.100085893.4
2265.71500316.1

)0(5P                (18) 

 

A pre-compensating matrix )0(1
3
P  is first applied to 

decouple the plant in low-frequency band. Then, 
two digital filters are used in the diagonal to filter 
outputs of two time series for speeding up transient 
responses. They are in the form of   
 

1z
1z

T
2s

1

s

1s0.15
1s0.75(z)C







                     (19) 

and  

1z
1z

T
2s

2

s

1s0.25
1s0.60(z)C







                     (20) 

 
where msTs 25  is the sampling period. Fig.6 
shows time responses of this controlled system for 
 =0.5. It shows that the proposed control scheme 
can be applied to the multivariable feedback control 
system also.  
 

 
Fig.6. Time Responses of Example 5 for  

=0.5 and msTS 25 . 
 
4. Conclusions 
 A new nonlinear digital controller has been 
proposed for analyses and designs of sampled-data 
feedback control systems. It gave exact command 
tracking without integration; i.e., zero steady-state 
error. The convergence of ratios was illustrated by 
one servo system example and two complicated 
examples. From simulation results, it can be seen 
that the nonlinear digital controller provided another 
possible control scheme for exact command tracking 
without integration. 
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