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Abstract: - The solution of a problem of analogue circuit optimization is mathematically defined as a controllable 

dynamic system. In this context the minimization of the processor time of designing can be formulated as a 

problem of time minimization for transitional process of dynamic system. A special control vector that changes the 

internal structure of the equations of optimization procedure serves as a principal tool for searching the best 

strategies with the minimal CPU time. In this case a well-known maximum principle of Pontryagin is the best 

theoretical approach for finding of the optimum structure of control vector. Practical approach for realization of 

the maximum principle is based on the analysis of behaviour of a Hamiltonian for various strategies of 

optimization. It is shown that in spite of the fact that the problem of optimization is formulated as a nonlinear task, 

and the maximum principle in this case isn't a sufficient condition for obtaining a minimum of the functional, it is 

possible to obtain the decision in the form of local minima. The relative acceleration of the CPU time for the best 

strategy found by means of maximum principle compared with the traditional approach is equal two to three orders 

of magnitude. 
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effect. 
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1 Introduction 
The problem of reducing processor time spent on 

the optimization of electronic circuits is one of the 

important problems associated with improving the 

quality of design. Some works devoted to this 

problem are devoted to how to reduce the number of 

operations in solving two main problems: circuit 

analysis and numerical optimization. Solving these 

problems gives us a significant reduction in CPU 

time. Methods that can be used in the analysis of 

complex systems are being improved. Some ideas 

regarding the use of the sparse matrix method [1-2] 

and decomposition methods [3] are used to reduce 

the analysis time of circuits. Other alternative 

methods such as homotopy methods [4] were 

successfully applied for circuit analysis too. 

Some methods of optimization were developed 

for circuit designing, timing, and area optimization 

[5-6]. However, classical deterministic optimization 

algorithms may have a number of drawbacks: they 

may require that a good initial point be selected in 

the parameter space, they may reach an 

unsatisfactory local minimum, and they require that 

the cost function be continuous and differentiable. 

To overcome these issues, special methods were 

applied to determine the initial point of the process 

by centering [7], or by applying geometric 

programming methods [8].  

Other formulation of the circuit optimization 

problem was developed at a heuristic level some 

decades ago [9]. This approach ignored Kirchhoff’s 

laws for all the circuit or part of it. The practical 

aspects of this idea were developed for the 

optimization of microwave circuits [10] and for the 

synthesis of high-performance analog circuits [11] 

in case where all the equations of the circuit model 

were not solved during the total optimization 

process. 

The new formulation of the problem of circuit 

optimization is formulated in terms of the theory of 

optimal control [12-13]. In this case the process of 

circuit optimization was generalized and defined as 

the dynamic controllable system. A basic element is 

the control vector that changes the structure of the 

equations of system of optimization process. Thus 

there is a set of the strategies of optimization that 

have different number of operations and different 

processor time. Introduction of the function of 
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Lyapunov of the optimization process [14] allows to 

compare various strategies of optimization and to 

choose the best of them having the minimum 

processor time. At the same time, the solution to the 

problem of finding the optimal strategy and the 

corresponding optimal trajectory can be found 

within the framework of the Pontryagin maximum 

principle [15]. 

The main complexity of application of the 

maximum principle consists of the search of initial 

values for auxiliary variables at the solution of the 

conjugate system of equations. Application of the 

maximum principle in case of linear dynamic 

systems is based on the creation of an iterative 

process [16-17]. In case of nonlinear systems, the 

convergence of this process is not guaranteed. 

However, application of the additional 

approximating procedures [18-19] allows 

constructing sequence of the solutions converging to 

a limit under certain conditions. 

Section 2 gives the formulation of the circuit 

optimization process based on the methods of 

control theory using a control vector. Section 3 

gives an example of the application of the maximum 

principle for optimizing the simplest nonlinear 

circuit. It is shown that analysis of the Hamiltonian 

behaviour allows one to obtain the exact structure of 

a control vector that minimizes processor time. 

 

2 Problem Formulation 
We define the optimization process for analog 

circuit as the problem of minimization of the 

generalized cost function ( )UXF ,  by the equation 

(1) with the constraints (2): 

 

        
s

s

ss
HtXX ⋅+=+1

  (1) 

 

   ( ) ( )1 0− =u g Xj j ,  j M=12, ,...,  (2)    

        

where N
RX ∈ , ( )XXX ′′′= , , 

KRX ∈′  is the vector 

of the independent variables and the vector 
MRX ∈′′  is the vector of dependent variables 

( MKN += ), s is the iterations number, st is the 

iteration parameter, 
1

Rt s ∈ , ( )Xg j  presents the 

equation j of the circuit’s model,  H ≡ H(X,U) is the 

direction of the generalized cost function ( )UXF ,  

decreasing, U is the vector of the special control 

functions ( )U u u um= 1 2, , . . . , , where u j ∈ Ω ; 

{ }Ω = 0 1; . The generalized cost function ( )UXF ,  

is defined as: 

 

      ( ) ( ) ( )UXXCUXF ,, ψ+= ,   (3) 

 

where ( )XC  is the non-negative cost function of the 

designing process, and ( )UX ,ψ  is the additional 

penalty function: 

 

       ( ) ( )∑
=

⋅=
M

j

jj XguUX
1

21
,

ε
ψ .  (4)  

 

By means of this formulation we redistribute the 

computer time expense between the solution of 

problem (2) and the optimization procedure (1) for 

the function ( )UXF , . The control vector U is the 

main tool for the redistribution process in this case. 

The problem of search of the optimal design 

strategy with a minimal CPU time is formulated as 

the typical problem for the functional minimization 

of the control theory. The functional that needs to 

minimize is the total CPU time T of the design 

process. This functional depends on the operations 

number and on the strategy of designing that has 

been realized. The main difficulty of this definition 

is unknown optimal dependencies of all control 

functions u j
. 

The Eq. (1) can be replaced by the differential 

equation in  continuous form using the next formula: 

 

     ( )
dx

dt
f X U

i

i= , ,  Ni ,...,2,1=    (5)  

      

The equations (2), (3), (4) and (5) compose the 

continuous form of the design process. The 

functions of the right hand part of the system (5) can 

be determined for example for the gradient method 

by means of the next expression: 
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ixδδ /  hear and below means 
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s

ix  is equal to ( )x t dti − ; ( )η i X  is the implicit 

function ( ( )x Xi i=η ) that is determined by system (2). 

The control variables u j  have the time 
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dependency in general case. The equation number j 

is removed from (2) and the dependent variable 

xK j+  is transformed to the independent when u j =1. 

This independent parameter is defined by the 

formulas (5), (6'). In this case there is no difference 

between formulas (6) and (6'). The transformation of 

the vectors ′X  and ′′X  can be done at any time 

moment. 

We need to find the optimal behavior of the 

control functions u j  during the optimization process 

to minimize the total computer time of designing. 

The more adequate method for solution of this 

problem is a maximum principle of Pontryagin. 

 

3 Maximum Principle Application 
The main complexity of application of the 

maximum principle consists of the search of initial 

values for auxiliary variables at the solution of the 

conjugate system of equations. Application of the 

maximum principle for the linear dynamic systems 

is based on creation of iterative process [16]. 

In case of nonlinear systems the convergence of 

this process isn't guaranteed, however application of 

the additional approximating procedures [17-19] 

allows constructing sequence of the solutions 

meeting to a limit under certain conditions. In the 

present work the possibility of application of the 

maximum principle for creation of the optimal 

control vector and the optimal trajectory of 

optimization process corresponding to it is 

investigated. The example of optimization of the 

simplest nonlinear circuit for which the analytical 

solution of the task was obtained is investigated. We 

will consider a nonlinear circuit of a voltage divider 

in Fig. 1. 

 
 

Fig.1 Simplest nonlinear circuit of voltage divider 

 

Let us consider that the nonlinear element has the 

following dependence: 

 

( )01 VVbaRn −+= ,    (7) 

 

where a>0, b>0, a>b,  0V  and 1V  the voltages on an 

entrance and an exit of circuit. 

We will consider that 0V  is equal 1. We will 

define the variables x1, x2. Rx =1
, 

12 Vx = . Thus 

the vector of phase variables 
2RX ∈ . In this case 

the formula (7) can be replaced with the following 

expression: 
      

          ( )12 −+= xbaRn
.    (8) 

 

We can present the equation of a circuit in the form: 

 

( ) ( )[ ] 01, 1212211 =−−++≡ xxbaxxxxg   (9) 

 

The circuit optimization is formulated as a 

problem of obtaining at the exit of a circuit of the 

defined voltage w. We will determine the cost 

function of the optimization process by a formula: 
 

           ( ) ( )2

2 wxXC −= .             (10) 

 

In this case the problem of circuit optimization is 

converted to minimization of the cost function 

( )XC . Following theoretical basis, that were 

developed in [12], we formulate the problem for 

circuit optimization as a task of search of the 

optimization strategy with a minimum possible CPU 

time. For this purpose we define the functional, 

which is subject to minimization, by the following 

expression: 
 

     ( )∫=
T

dtXfJ
0

0
,              (11) 

 

where ( )Xf0
 the function which is conditionally 

determining density of number of arithmetic 

operations in unit of time of t. In that case, the 

integral (5) defines total number of operations 

necessary for circuit optimization and is 

proportional to the total CPU time. 

The structure of function ( )Xf0
 can't be 

defined, however we can compute CPU time, using 

possibilities of the compiler. We will identify 

further the integral (11) with CPU time and 

therefore the problem of minimization of CPU time 

corresponds to a problem of minimization of the 

integral (11). 

According to [12] we introduce the control 

vector U that consists of only one component u(t) 

for the reviewed example. This component has one 

of two possible values: 0 or 1. The control vector 

allows to generalize the circuit optimization process 

and to define a set of the optimization strategies 

differing in operations number and CPU time. The 
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generalized cost function can be defined in this case 

by means of the formula: 

 

         ( ) ( ) ( )XXCXF ϕ+= ,             (12) 

 

where ( )Xϕ  is an additional penalty function, 

which can be determined, for example, by the 

following formula: 
 

( ) ( )∑
=

⋅=
M

j

jj XguX
1

2ϕ ,             (13) 

 

where M is the number of nodes of the circuit. In 

our case M=1. The process of circuit optimization 

thus can be described by the system (14) with 

restrictions (15): 
 

( )uxxf
dt

dx
i

i ,, 21= ,   i=1, 2,        (14) 

 

        ( ) ( ) 0,1 211 =− xxgu ,             (15) 

 

where functions ( )uxxf i ,, 21  are defined by a 

concrete numerical method of optimization. When 

using a gradient method these functions are defined 

by the following formulas: 
 

( ) ( )XF
x

uxxf
i

i
δ

δ
−=,, 21

, i=1, 2.  (16) 

 

The value u(t)=0 corresponds to the traditional 

strategy of optimization (TSO). In this case in 

system (14) there is only one equation for the 

independent x1 variable while the variable x2 is 

defined from the equation (15). The value u(t)=1 

corresponds to the modified traditional strategy of 

optimization (MTSO) when both x1 and x2 variables 

are independent. In this case the system (14) 

includes two equations for the independent variables 

x1 и x2, and the equation (15) disappears. Change of 

the value of function u(t) with 0 on 1 and back can 

be made at any moment, and generates a set of 

various strategies of optimization. Two main 

strategies of structural basis can be defined by 

means of the next two approaches. 

1) TSO, u=0. The equations (14)-(16) are replaced 

with the following equations: 
 

1

2

2

1

dx

dx

dx

C

dt

dx ∂
−=              (17) 

 

( )
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dx

x

x

dt

txdx 1

1

212 ,

∂

∂
=              (18) 

where the derivative 
12 / dxdx  is defined from the 

equation (9), and 

( ) 



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
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
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++
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+−=

1

2

1

1

1

2

4

2
1

2

1

bxcx

bcx

bdx

dx , 

с=a-b. 

2) MTSO, u=1. The equations (14) are transformed 

to the next one: 

 

     ( ) ( )[ ]XgXC
xdt

dx

i

i 2

1+−=
δ

δ
,   i=1, 2.     (19) 

 

In general case the right hand parts of the 

equations (14) can be presented in the form: 

 

( ) ( ) ( ) ( )21122111211 ,,1,, xxfuxxfuuxxf ⋅+⋅−= , 

                 (20) 

( ) ( ) ( ) ( )21222121212 ,,1,, xxfuxxfuuxxf ⋅+⋅−= , 

 

where the functions ( )21 , xxf ij
 are determined by 

the following formulas: 
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bxxcwxxxf
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According to methodology of the maximum 

principle, the system of the conjugate equations for 

additional variables 
21 ,ψψ  has the next form: 

 

( ) ( )
2

1

212
1

1

2111 ,,,,
ψψ

ψ
⋅

∂

∂
−⋅

∂

∂
−=

x

uxxf

x

uxxf

dt

d
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                 (22) 

( ) ( )
2

2

212
1

2

2112 ,,,,
ψψ

ψ
⋅

∂

∂
−⋅

∂

∂
−=

x

uxxf

x

uxxf

dt

d
, 

 

where the partial derivatives of functions 

( )uxxf i ,, 21 , i=1, 2 can be calculated by 

formulas (20), (23). 
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The Hamiltonian is expressed by the following 
formula: 

 

    ( ) ( )uxxfuxxfH ,,,, 21222111 ⋅+⋅= ψψ    (24) 

Substituting (14) in (18) and doing identical 

transformations we obtain the following expression 

for a Hamiltonian: 

    
( ) ( )
( )2121

2121221111

,,,

,,

ψψ

ψψ

xxu

xxfxxfH

Φ⋅+

⋅+⋅=
     (25) 

where 
  

( ) ( ) ( )[ ]
( ) ( )[ ]212121222

2111211212121

,,

,,,,,

xxfxxf

xxfxxfxx

−⋅+

−⋅=Φ

ψ

ψψψ
. 

 

According to the maximum principle, we obtain 
the next main condition for the control function u: 





>Φ

<Φ
=

0,1

0,0
u              (26) 

 

The behavior of the control function u(t) that 

corresponds to the maximum principle is defined 

also by behavior of functions ( )t1ψ  and ( )t2ψ , 

which are computed from the equations (22). At the 

same time the solution of the equations (22) depends 

on initial values 
10ψ  and 

20ψ , which are defined 

within the precision of common multiplier. One of 

these constants can be taken arbitrary. Let us define 

the constant 110 −=ψ . The value of 
20ψ  that 

corresponds to the adequate solution of a task in the 

conditions of the maximum principle can be 

obtained by iterative procedure. We use iterative 

procedure on the basis of the Newton method that 

provides the solution for the minimum time. 

The analysis of optimization process for a similar 

example which is carried out in work [17] showed 

that the TSO (u=0) is optimal one when initial 

values of variables 
1x and 2x , ( 10x , 20x ) are 

positive. At the same time the negative initial values 

of the variable 2x leads to significantly other 

results. In case of negative initial values of variable 

20x , emergence of effect of acceleration of the 

process of circuit optimization is possible. This 

effect accelerates the optimization process in some 

times. It is interesting to check, whether it is 

possible to obtain similar result on the basis of 
maximum principle. 

Fig. 2 shows the trajectory of the process of 

circuit optimization in phase space of two variables 

1x , 2x , corresponding to the initial point ( 10x =1, 

20x =1) that was obtained with a main condition of 

the maximum principle (26). 

 

 
 

Fig. 2 Trajectories of optimization process in phase 

space for initial point 
10x =1, 

20x =1 

WSEAS TRANSACTIONS on COMPUTERS 
DOI: 10.37394/23205.2020.19.11 Alexander Zemliak

E-ISSN: 2224-2872 82 Volume 19, 2020



In this case the optimum trajectory corresponds 
to TSO and the constant value u=0. Thus the 

number of iterations is equal to 3719 and time of the 

CPU is equal to 20.45 msec. Changing of the initial 
point of S at any other positive values of coordinates 

1x , 2x , doesn't lead to change of a trajectory. 

However the negative value of coordinate 2x  leads 

to essential change of the solution. The trajectories 
of process of circuit optimization corresponding to 

the initial point ( 10x =1, 20x = -1) are shown in 

Fig. 3. 

 

 
 

Fig. 3 trajectories of optimization process in phase 

space for initial point 
10x =1, 

20x = -1 

 

 The structure of function u(t) that was obtained 

automatically and corresponds to a condition of the 

maximum principle (26) has one point of a rupture 

that corresponds to switching from the trajectory 
corresponding to MTSO (u=1, a dotted curve) on 

trajectory corresponding to TSO (u=0, a continuous 

curve). Coordinates of a point of switching of tsw 

depend on value of 20ψ . The data corresponding to 

points 1, 2, 3, 4, 5, 6 and 7 in Fig. 3 are presented in 

Table 1. 

 
Table 1. Data for different initial value 

 

 

Change of the value of 20ψ  from 40.0 till 14.35 

leads to reduction of iterations number and CPU 

time from 19.62 msec to 1.520 msec, but the CPU 
time is increasing later on. That is visible also in 

Fig. 4, where the dependence of CPU time of the 

solution of a task from initial value 20ψ  is shown. 

 

 
 

Fig. 4 CPU time as function of parameter 
20ψ  

 

The value opt20ψ = 14.35 corresponds to the 

minimum CPU time Tmin and integral J, and is the 

same initial value of variable ( )t2ψ  which, 

according to the maximum principle, provides the 

maximum and constant value of a Hamiltonian of H. 

The gain in time computed as time relation for TSO 

by the minimum time of Tmin thus equal to 13.45 

times. Dependences of the functions ( )t1ψ  and 

( )t2ψ , and also a Hamiltonian of H(t) are presented 

in Fig. 5. 

Hamiltonian in this case is a constant and this 

fact corresponds to the maximum principle. It is 

interesting to analyze behavior of these functions 
with a non-optimal point of switching tsw of the 

control function u(t). Dependences of u(t) in change 

of tsw as parameter are presented in Fig. 6 and Fig. 7. 
 

 
 

Fig. 5 dependencies of ( )t1ψ , ( )t2ψ  and H(t) for 

optimal opt20ψ  

N Iterations Time

 number (msec)

1  40.00 3568  19.620

2  30.00 3383  18.613

3  20.00 2790  15.351

4  16.00 1810    9.962

5  14.35 277    1.520

6  10.00 1152    6.310

7    2.00 1887  10.781

20
ψ
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Fig. 6 dependencies of ( )t1ψ , ( )t2ψ  and H(t) for 

20ψ < 
opt20ψ  

 

 
 

Fig. 7 dependencies of ( )t1ψ , ( )t2ψ  and H(t) for 

20ψ > 
opt20ψ  

 

Hamiltonian is changing in time when the 

switching point is differing from the optimal one. 

This criterion can be the basic in practical search of 
the optimal control function. 

The analysis of optimization process of the 

presented circuit showed that application of the 
maximum principle really allows to find optimum 

structure of the control function u(t), by means of 

iterative procedure. Criterion of the end of 

procedure is an invariable value of a Hamiltonian. 

Thus considerable reduction of CPU time in 

comparison with traditional approach is observed. 

 

4 Conclusion 

The task of constructing a time-minimized algorithm 

can be adequately solved on the basis of control 
theory. The design process in this case is formulated 

as a controlled dynamic system.  

Analysis of the application of maximum 
principle to a problem of circuit optimization proves 

that the formerly studied effect of acceleration on 

the process of optimization appears owing to this 
principle. This means that the maximum principle of 

Pontryagin provides a theoretical justification for 

the acceleration effect that appears when we use the 
generalized formulation of process of circuit 

optimization. It is confirmed that the maximum 

principle allows for finding one or several local 

minima of the functional that is defined as the 

processor time. Aside from that, the use of the 

maximum principle provides the chance to 
significantly reduce the computing time for circuit 

optimization. 

 The analysis of optimization process of the 
presented circuit showed that application of the 

maximum principle really allows finding the 

optimum structure of the control vector U by means 
of iterative procedure. The solution to this problem 

allows you to build an algorithm for optimizing the 

system in minimal time. 
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