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resistance it is possible to mark the defective and suspicious printed circuit boards. 
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1  Introduction 

There are many special devices based on lasers, 
ultrasound, and X-ray radiation which are used to 
detect defects in printed circuit boards. Their 
purpose is to measure the thickness, the amount of 
solder, the quality of the layers of the components, 
as well as the shape of the drawing. The collected 
data are input for image recognition algorithms in 
the context of post-production defect detection, [1], 
[2], [3], [4]. Such devices and algorithms are 
implemented in powerful complex control systems 
to prevent damage to manufactured printed circuit 
boards and surfaces, [5], [6].  

Many works consider the visual presentation of 
printed circuit boards. They contain traditional 
image processing algorithms including subtraction 
algorithms, wavelet, and a table of connection traces 
based on contacts from the etalon image, [7], [8], [9]. 
In the last time, for inspection of inaccuracies in 
PCB production, neural networks were used, and the 
approaches were described in articles, [10], [11], 
[12], [13], [14], [15]. Three surveys contain many 
references to publications describing approaches and 
methods for the detection and classification of 
defects in printed circuit boards, [16], [17]. [18].  

Short, open circuits and depression changes in 
computer vision and artificial intelligence inspection 
systems are subjects in the publications, [19], [20], 
[21], [22]. The subtraction operations between PCB 
images used in many works are sensible to a 
deviation of the sizes of traces and contacts from the 

etalon. They give extra or lacking pixels that do not 
affect the correct operation of the electrical scheme. 
Defects in traces and contacts of such types as shift 
and extra metal are not analyzed. 

All mentioned approaches differ between 
themselves by complexity, input data, and 
characteristics of their implementation.  

In this work, the following approaches to solving 
the given problem are applied: mathematical 
comparison formulas, a filling algorithm for 
dividing and selecting circuits, artificial neural 
networks for the classification of printed circuit 
board images, and formulas for calculating the 
resistance characteristics of traces and contacts. 

The advantages of the proposed method are the 
preliminary division by artificial neural networks of 
images of printed circuit boards into two classes, 
followed by the detection of three classes of defects 
in the defective class: connections, excess, and lack 
of metal on traces and contacts. The influence of 
these defects on the conduction resistance is 
calculated. Areas with detected defects are marked 
on traces and contacts. This creates the possibility of 
additional analysis of the circuits for repairability or 
failure.  
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2  Separation of Chains in PCB Image 
 
2.1  Determination of chain coordinates 
Each printed circuit board has a geometry such that 
all pins assigned to one circuit are connected, and 
two or more pins assigned to different circuits are 
not connected. As a result, they are characterized by 
a planar topology of wires or traces. Automatic 
access to each chain is possible only if the 
coordinates of the pixels in the traces are known and 
with their help, one chain can be selected and 
separated from the entire set of black traces on the 
board. This can be done by changing the color of the 
selected chain.   

The Hilditch thinning algorithm, [8], works with 
binary (black and white) images and is reliable and 
easy to program. It is modified to find the pixel 
coordinates of specific points, which are taken as the 
output pixels for the fill algorithms, which select 
and separate circuits in PCB images by painting 
them with specified colors. 

Figure 1 shows a skeleton image created for a 
template PCB. It has two types of specific points: 
switches (circled in blue) and terminations (circled 
in red). Specific points on the image next to the 
coordinates are not identified, that is, they are not 
assigned the identification number of the chain that 
contains them. 

 
Fig. 1: Skeleton with endings and switches 

 
The specific points are united in the set P. All 

elements in the set denote only the coordinates of 
their location. Taking elements from the set as 
starting points the flood-fill algorithm fills chains 
with different colors. The filling algorithm is 
applied as many times as there are chains in the 
scheme.  

For illustration, the skeleton is overlaid with the 
template PCB image. The two chains are filled with 
green and blue and are shown in Figure 2. 

 
Fig. 2: Overlay of PCB image with skeleton, and 
filled chains (green and blue) 

 
Each color gives the identification number for 

the chain and its specific points. This allows to split 
the set P into subsets of specific points connected 
with the concrete chain:  

 
P(p1, p2,…,pN)=P(P1,P2,…,Pn), 

 
where p1, p2,…,pN are coordinates of all specific 
points, P1, P2,…,  Pn are sets of points assigned to 
the chains with the sequence numbers 1, 2, …,n.  
 In the extended version they are as follows: 

 

P1={(x11,y11, c11), (x12,y12, c12), (x1n(1),y1n(1) , 
c1n(1), )}→1, 

P2={(x21,y21, c21), (x22,y22, c 22),., (x2n(1),y2n(1) , 
c2n(1) )}→2, 

…, 
Pn={(xn1,yn1, c n1), (xn2,yn2, c n2),., (xnn(1),ynn(1), 

cnn(1)  )}→n, 
 
where ci1 is a variable of color, and the number of all 
points is N=n(1) +n(2)+…+n(n). 

The determined array is the input data for all the 
following processing algorithms working with 
chains of the circuit. 

 
2.2  The Flood-Filling Algorithm  
The flood fill algorithm is sometimes called initial 
fill. The seed is the starting pixel and then other 
seeds are planted in the area to change the color of 
the pixels. The algorithm replaces the internal color 
Io of the object with the fill color In. When there are 
no more pixels of the original interior color, the 
algorithm terminates. This algorithm is based on a 
four-join or eight-join method for pixel filling. It 
searches for all adjacent pixels that are part of the 
interior. 

The standard flood-filling algorithm requires for 
its work a uniform color surface when all pixels are 
of equal intensity. To improve the properties of the 
algorithm to apply to PCB images its principal 
formula is modified. For the available intensity 
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value Io and the target intensity value In the 
algorithm fulfills the modified formulas: 
a) tolerance only on lower intensities 

 
If I(xi, yi) = Io -( Io *Tol), then I(xi,yi) = In  , 

 
b) tolerance only on higher intensities 
  

If I(xi, yi) = Io +( Io *Tol), then I(xi,yi) = In  , 
 
c) tolerance on lower and higher intensities 
 

If I(xi, yi) = Io ±( Io *Tol), then I(xi,yi) = In  , 
 
where Tol is a relative tolerance to regulate rules on 
what surrounding pixel intensities must be changed 
(filled). 
 An example of the image to be filled and its 
distributed cumulative histograms from the OX and 
OY axes is shown in Figure 3. Arrows indicate the 
intensity values for red and blue. The intensity value 
of black is 0. 

     

 
Fig. 3: Image “Three srips” (a)  and its DCH images 
from OX and OY axes with an indication of the 
color intensity (b) 

 
Two examples of filling of areas with equal and 

lower intensities in the image “Three strips” are 
shown in Figure 4. Starting from black with a big 
tolerance the algorithm fills red and black rectangles 
in orange. For a bigger tolerance starting from blue, 
the algorithm fills three rectangles in orange. So, the 
tolerance allows to marking of different components 
with the same color.  

 

  
a                             b 

Fig. 4: Two flood-filled images: red pixel as starting 
point (a) and blue pixel as starting point (b) 

An example of the result of the filling algorithm 
when selecting circuits with different colors on a 
printed circuit board is shown above in Figure 2. 
 
 
3  Separation of Defects 

Defects are of various sizes and shapes. By their 
appearance, it is difficult to determine what effect 
they have on the functionality of the scheme. A very 
small strip can disrupt the transition of a signal, and 
a large round excess of connecting metal makes 
small changes in the operation of the circuit. This 
especially applies to short circuits and their breaks. 
The shape, size, and location of defects are random 
and may vary from one printed circuit board to 
another. Some examples of the most important 
defects as short and open are shown in Figure 5. 
 

  
a                                     b 

Fig. 5: Two short (a) and two open (b) defects  
 

A more difficult problem is to determine the 
type of track and contact defects. What amount of 
excess or insufficient metal is not just a defect, but 
an inaccuracy that affects the operation of the circuit 
and may or may not be corrected? Some examples 
of metal inaccuracies, such as metal excess and 
metal shortage, are encircled and shown in Figure 6. 
Examples of thinner (the width W is less than 
standard) and wider lines (the width W is greater 
than standard) are also shown in Figure 6. 
 

 
a          b           c       d 

Fig. 6: Extra metal (a), shortage of metal (b), thinner 
(c) and wider (d) circuits  

 
The first two defects in Figure 6 affect the 

passage of current and, in principle, are subject to 
repair. The third and fourth defects also change the 
value of the electric current, but they are difficult to 
eliminate.   

When the PCB image is presented in a binary 
form possible defects are detected by the XOR 
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operations. They work with pixels by following 
formulas: 
 

0 ^1 1, 1^ 0 1, 0 ^ 0 0, 1^1 0,     
 
where 0 denotes white and 1 denotes black or vice 
versa. 

 
These operations show surpluses and 

shortages of metal on the traces and contacts of 
the manufactured printed circuit board about the 
reference image. All defects belong to one class 
according to the way of their detection.  

Subtraction operations with the binary image 
allow the separation of positive and negative defects: 

 
, , ,   

 
Such operations are repeated twice: to a pair of 

the input images and swapped images. Positive and 
negative results form two classes of defects 
according to the way of their detection. 

The third type of the subtraction operation is 
planned to realize the following tasks: to keep tracks 
and pins on the board, to separate defects into two 
classes by the intensity value, to separate 
constructive elements and defects by the intensity 
value, to keep defects visible on their places near 
constructive elements.  

The operations to realize these tasks are as 
follows: 
 

0-1=red, 1-0=blue, 0-0=0, 1-1=1, 
 
where 0 denotes white and 1 denotes black or vice 
versa. Red and blue are of the constant intensity 
values. 

 
An example of the last subtraction operation is 

shown in Figure 7. 

Fig. 7: The comparison difference between the two 
PCB images 

 

The resulting image contains red and blue pixels 
reflecting associated and isolated areas that mark 
different types of defects. 

 
 

4 Artificial Neural Networks for 

 Defect Recognition  
 

4.1 Defects Recognition by Cumulative 

Histograms  
Reducing the inspection time in the production 
process of many printed circuit boards is possible 
thanks to the use of artificial neural networks 
(ANNs). They carry out a preliminary division of 
schemes into two classes: without defects and with 
defects. Later, the suspected circuit defects are 
processed by the developed software. 

So, both the reference and the test images are 
prepared for the artificial neural networks to train 
and identify defective PCBs. But instead of images 
from two classes, the following approach uses the 
different images or their extracted features. 

This approach is based on a single-layer neural 

network in Figure 8 with a reverse spread learning 

algorithm. 

 

 
Fig. 8: Architecture of a single-layer ANN. 
 

The single-layer ANN consists of m entries 

(vector X) connected to neural elements by a weight 

ratio. Neural elements, in their turn, consist of NET–

elements and an activation function. The output 

neurons (vector OUT) represent the classification 

result for the input image. An important role in 

training and recognizing plays an activation function 

in which values are at the output neurons. The most 

common type of activation function used in neural 

networks is the exponential sigmoid, shown in 
Figure 9.  
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Fig. 9: Exponential sigmoid curve and the formula  

 
The value range of this function is (0; 1), 

obviously, during the recognition process, the closer 

the value of the output neuron is to 1, the more 

likely the input image belongs to a certain class. 
The cumulative histogram was the first 

experimental feature for learning and recognition. It 

contains information about how many pixels belong 

to a certain brightness range (from 0 to 255). 
The neural network was implemented in the 

Python programming language, in addition to the 
PyTorch and NumPy libraries, and was trained 
using the DeepPCB dataset [23], which contains 
1500 pairs of images, each consisting of a defect-
free template image and an aligned test image with 
annotations , including the location of the six most 
common types of PCB defects: open, short, mouse 
bite, spurs, pinholes, and false copper. 

The accuracy of the neural network is calculated 
using this formula: 

 
 
where TP are instances belonging to the positive 
class that are accurately predicted as positive, FP 
are instances belonging to the negative class that are 
incorrectly predicted as positive, TN are instances 
belonging to the negative class that is accurately 
predicted as negative, FN are instances belonging to 
the positive class that is incorrectly predicted as 
negative. 

The cross-entropy loss function was employed as 
the loss metric during the training of the neural 
network: 

 
 
where n is the size of the dataset,  yi  is a true label 
for the instance i, yi  is the predicted probability of 
the instance i belonging to the positive class. 

When yi= 0 a loss for the instance i will be lower 
when

 
yi  approaches 0. When  yi= 1 loss for the 

instance i will be lower when yi approaches 1, [15].  

In the first experiment, cumulative histograms 
for the reference, sample, and image of the 
difference were calculated. They are shown in 
Figure 10 for one pair of tested images. Analysis of 
the charts demonstrates that two pairs of charts can 
be used as input in the artificial neural network. 
These pairs are cumulative histograms of the 
original template and sample images or cumulative 
histograms of the image differences. In the second 
case the difference between the two correct images 
does not contain pixels of defects and the 
cumulative histogram has only zero values. The 
second case was taken for the experiment because it 
allows to increase in the distance between the zero-
value chart and the chart of the difference. 

 

a                                        b 
Fig. 10: Cumulative histograms of two PCBs (a) and 
of the difference image (b) 

 
For the experiment, the two classes were 

selected, which ANN should recognize and 

distinguish from one another – images with defects 

(fragments of PCBs), and without defects (two 

examples are shown in Figure 11). 

 

 
a                              b 

Fig. 11: Two fragments of PCB images: with defects 
(a), and without defects (b)  

 
In the first experiment, 90 percent of the dataset 

was used for training the neural network, and 10 
percent for testing it. The neural network was 
trained over 200 epochs, and the training process 
required a total duration of approximately 3 hours. 
As a result, the accuracy of the test dataset was 
approximately 75 percent. The change in the 
accuracy of the training process is shown in Figure 
12. 
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Fig. 12: Neural network accuracy evolution over 
epochs for training and testing data 
 

As a result, fragments are divided into two 
classes. Two examples from them are shown in 
Figure 13, defective and valid circuits with a 
probability of their recognition.   

 

 
a                                              b 

Fig. 13: Correct classification result of the printed 
circuit board with defects (a) and without defects (b) 

 
The second experiment involves the use of the 

average mathematical value of the brightness of 
pixels.  Each corresponds to a separate grid cell. 
This grid covers and divides the image into small 
parts. This feature encapsulates a variety of 
information, including the brightness in certain areas 
and the corresponding coordinates associated with 
that brightness. 

The grid covers not the sample but the different 
image containing positive and negative pixels. 
Figure 14 illustrates the input image for the 
calculation of the mathematical means and later for 
processing by ANN. For illustration, a grid has a 
dimension of 10×10. In practice 20×20.The input 
chart for the ANN is shown in Figure 15. 

 

 
Fig. 14: Grid 10×10 on the difference image (its 
sizes are on the OX, and OY axes)  

 

 
Fig. 15: Mathematical means in cells (opposite signs 
mark the two colors) 

 
For the second experiment, 90% of the dataset 

was used for training of the neural network, 10% for 
testing of it. The cell size was set to 32 pixels in two 
coordinates. With a configuration of (640 / 32) * 
(640 / 32) = 400 input nodes, the neural network 
was trained over 200 epochs, which took 
approximately 4 hours. As a result, the accuracy of 
the test dataset was approximately 90 percent and 
fragments were divided into two classes. Two 
examples from them are shown in Figure 16.   

 

 
a                                            b 

Fig. 16: Correct classification result of the printed 
circuit board without defects (a) and with defects (b) 

 
In summary, the more pixels the difference 

image contains, the higher the probability observed 
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in both experiments when classifying defective 
samples. 

 
 

5  Separation of Defects  
After the subtraction-comparison operation, two sets 
of defects are distinguished. The first is 
characterized by metal deficiency and the second by 
excess metal. They are denoted as positive (red p) 
and negative (blue n) defects if the reference image 
is reduced and the sample image is subtracted: 
 

P= Pe + Ps or P= Pp + Pn. 
 

All shortage metal defects are neighboring to 
the constructive elements: tracks and pins. Among 
extra metals, defects are neighboring to the 
constructive elements and some are isolated: 
 

P= Pes +Pei + Ps  , 
 

where Pei is a set of isolated defects, and Pes is a set 
of extra metal defects having contact with tracks or 
pins.  

All defects from the previous PCB image are 
segmented and shown in Figure 17. By colors they 
are grouped into two classes encircled by red and 
blue. 

 
Fig. 17: Two classes of defects: encircled with blue 
is an extra metal, and with red is a shortage of metal 

 
Colors are auxiliaries for defects, which 

otherwise are grouped into two classes: those 
isolated from the circuit and those associated with 
traces or contacts. In turn, the second class is 
divided into two subclasses: connection defects and 
defects in the size and shape of structural elements. 

Isolated defects are separated from the image 
difference by an additional procedure. The 
procedure applies the flood-filling algorithm to n 

starting points representing each chain of the circuit. 
The target color is white. Due to the tolerance value 
black traces, red extra-metal defects, and shortage of 
metal become white which is invisible for other 
processing algorithms. An example of one filled 
component is shown in Figure 18. For visual 

demonstration, yellow is used in the figure instead 
of white.  

 
a                                 b 

Fig. 18: Two chains with defects before (a) and after  
filling (b) 

 
When all components are filled in white, defects 

from Pes , Ps  are invisible, and other defects from Pei 
are marked in green to distinguish them from all 
others previously discovered.  

No one can tell if it is a short circuit, an open 
circuit, or some other type of defect. In automatic 
mode, all defects are grouped into only three classes 
by color. As a rule, in the production process, all 
defects are of different types, shapes, and sizes. 
Neural networks trained on one type of defect will 
necessarily miss other types. 

All defects are visual, but there is no access to 
their pixels. In such a presentation, they cannot be 
taken as starting points or separated for analysis. 
They cannot be transferred from one image to 
another. 

In this case, the hierarchical clustering 
algorithm with a step 1×1 (one pixel) over a black 
image is applied to form all connected areas of 
defects. Two classes of defects Des and Ds associated 
with traces and contacts are separated and then 
clustered. This is illustrated in Figure 19(a) by 
examples with clustered defects in two classes. In 
Figure 19(b) defects are marked and selected with 
different colors. 

 
a                                             b 

Fig: 19: Increased clustered defects (a) and marked 
with full colors (b) 

 
All clustered defects are described as objects 

with the coordinates of the pixels that form these 
defects:    

 
Pp (i)={(x1i,y1i),…,(xki,yki)}, k= | Pp(i) |, 
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 i=1,2,…,|Pp  | 
 

Identifiers are assigned to these objects. Class 
numbers and the sequence positions in the class 
serve as keys for access to them. They are planned 
to be transferred to the canvas of the reference PCB 
image. In this stage, defects are not identified by the 
circuit number to which they belong.  
 
 
6  Determination of Type and 

 Intensity  of Defects 
 
6.1  The Metal Deficiency Class  
In automatic mode to identify these defects by the 
trace sequence number there is no other way except 
to fill the chain with a color different from the 
existing one. The reference image of the printed 
circuit board is a working model for the procedure 
to determine open and short defects. It serves also 
for the investigation of the influence of trace and 
contact inaccuracies on the stability of the circuit.  
    Firstly, blue, and then red defects from 
corresponding classes one by one are transferred to 
the reference image. An example of one transferred 
defect is shown in Figure 20. 
  

 
Fig. 20: The reference PCB covered by an object 
(defect)   

 
Initial points are formed earlier according to the 

thinning algorithm. They form the so-called chain 
status monitor. It is shown in Figure 21 only for the 
two k-th and (k+1)-th chains. 

 

 
Fig. 21: Two status monitors of two chains: the 
(k+1)-th chain is filled 

 
It's like a traffic light: green - no fill result, red - 

all identification points of the chain have changed 
color. Since the monitors are linked to tracking 
numbers, the transmitted defect receives its 

identification number when all points of the chain 
have changed color. 

The received identifier makes it possible to 
select a clean reference chain and a manufactured 
chain with a defect by adding to the reference a 
transferred defect. These two circuits are the basis 
for analyzing the effect of the defect on the 
operation of the circuit.   

Such a procedure is implemented for each 
object belonging to the metal deficiency class Ps and 
the additional metal class Pe. Elements from the first 
class insert defects such as circuit breaks and 
reduction of the conductive surface, and from the 
second-class short circuits and an increase in the 
conductive surface.   

The input data are the starting points of the k-th 
chain, coordinates of the pixels forming the s-th 
defect, and a traffic green light with all green 
components.   

When the object defect is transferred the filling 
algorithm is applied to its pixels marking it with 
white. This operation returns the state of the circuit 
to what it was in the produced circuit with one 
defect. Figure 22 shows one chain in which the red 
defect was marked in white. 

 

 
Fig. 22: One chain for testing 

 
Now, taking on the element from the set Pk as 

the starting point the flood-fill algorithm fills this 
chain with red. After filling, the traffic light is 
yellow because its components are red and green 
(Figure 23(a)). The k-th chain receives two 
components of contacts and traces marked with 
black and red (Figure 23(b)). 

 

 
a 

 
b 

Fig. 23: The chain status monitor (a) of the partially 
filled chain (b) 
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As a result, after one iteration, a type of defect 
and its coordinates are determined. 

 
6.2  The Extra Metal Class 
When an additional metal object representing a short 
defect is transferred to the image, a similar process 
takes place. This involves barrier-free filling from 
the pixel of the extra metal object to ascertain the 
number of connected chains, whether it's one or a 
few. Filling the blue object with black, and then 
together with the rest of the associated chain with 
red, selects the circuit. Figure 24(a) demonstrates 
how the short defect causes the two chains to be 
filled with red. Status monitors of these chains 
signal this occurrence. An example is shown in 
Figure 24(b) indicating the number of the filled 
chains (or numbers of some filled chains).  

  
a 

 
b 

Fig. 24: Two chains with short circuit (a) and their 
filled status monitors (b)  

 
After termination of the procedure, all tested 

objects are classified as three types of defects: open, 
short circuit, and other associated with traces but not 
affecting the connectivity of contacts.  

 
6.3  Trace Resistance Defects  
If the next object is not a connection defect, it 
displays an increase or decrease in conduction 
resistance due to a decrease or increase in metal 
surface area. It is difficult to find an accurate 
estimate of the value that indicates a hundred 
percent failure because the defect can be 
concentrated in one place or distributed over traces 
and contacts. Therefore, the defect is measured as 
distributed, which is calculated by the surface 
square and the surrounding perimeter. Also, the 
defect can be measured as concentrated when 
calculated only in areas of its placement.  

A distributed change in the resistance of the 
entire track is indicated by a change in the width of 

the entire track DW. A local concentrated change in 
resistance in a certain section of the track is 
indicated by a local change in the width Wd of the 
track in this section.  

For example, Figure 25 shows two fragments of 
traces without and with defects of a lack of metal. 
The width of the track and its length are marked. 
Defects with a lack of metal, which causes a change 
in resistance, are circled. Sections with a decreased 
width are marked.    

 

 

 
Fig. 25: Two chains: reference (a), with defects (b) 

 
The trace conductance resistance Rs is 

proportional to the length L of the trace and 
inversely proportional to its width W:  

 

Rs ≈(L/ W) 
 

Traces in the reference and manufactured PCBs 
have almost the same length but due to defects can 
differ by a width in some places.  This difference 
can be measured approximately. For that squares S1, 
S2 of two chains are calculated. Borders of two 
chains are found by the edge detection algorithm [24] 
and their two lengths are measured. A border’s 
length is twice as large as a trace’s length.  For two 
traces in Figure 26(a) and Figure 26(c), measured 
values for the reference circuit are S1=865, L1=204, 
and for the circuit with defects S2= 780, L2=236, i.e., 
in the second case, the area is smaller, and the 
length is longer. 

 
            a                                 b        

 
  c                                d             
Fig. 26: Chains and their edges with and without 
defects: small chains (a, c), large chains (b, d) 

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS 
DOI: 10.37394/23201.2024.23.7 Roman Melnyk, Vitalii Vorobii

E-ISSN: 2224-266X 78 Volume 23, 2024



A trace’s length is twice as short as a border’s 
length: 

 
L1(t)=L1/2, L2(t)=L2/2. 

 
  The approximated average widths of the two 

traces are as follows: 
 

W1=S1/L1(t), W2=S2/ L2(t). 
 

These widths are average and approximate. 
They are not equal exactly to real widths. They are 
required only for the estimation of losses in the 
resistance. 

In the case of the small trace in Figure 26(a) 
W1=8.4, W2=6.6. For the whole length the integrated 
distributed width difference DW=W2-W1=-1.8 is 
essential due to the small sizes of the traces (only 
two close contacts). For large sizes, it is much 
smaller. 

The concentrated difference caused by a change 
in squares and lengths in chains with defects is 
calculated by the following formulas: 

 Sd= S2 -S1, Ld= L2 -L1  , Wd= Sd/ Ld. 
  
For the example in Figure 26(c) a change in the 

width caused by a defect approximately is equal: 
Sd=-85, Ld=32, and Wd=-2.7. 

 
The minus sign in Wd indicates that the defect is 

due to a lack of metal. The obtained value is 
compared to the average width W1 of the reference 
chain (8.4) to determine whether a new width or a 
new resistance will affect the work of the 
manufactured circuit. In the considered case the new 
width is as follows:  

W1n=W1+Wd=8.4-2.7= 5.7. 
 
So, the width difference in a place of defects is 

2.7   which exceeds 30 percent of the reference 
value. The conduction resistance of the trace 
increases in accordance.   

One more example with the larger chain is 
shown in Figure 26(b) and Figure 26(d). For this 
sample, the calculated features are of the following 
values: 

S1=5529,  S2=5421, L1=1348, L2=1410, 
L1(t)=674, L2(t)=705, 
W1=8.20, W2=7.68, 

Sd=-108, Ld=62, and Wd=-1.74 
 
The integrated difference W2-W1=-0.52 is small 

compared with the reference width W1=8.20 (6 
percent). However, the concentrated average 
difference Wd=-1.74 is about 22 percent of the 

reference value. Defects in some places can increase 
the resistance by a larger percentage. In this case, 
the scheme's failure is a matter of time. 

All measured values are in pixels and easily 
converted to real values. The difference in width is 
negative in the case of a lack of metal and positive 
in the case of an excess of metal in traces and 
contacts.  

The last case is demonstrated in Figure 27. 
 

 
a                                   b 

Fig. 27: Fragments and their edges without defects 
(a), and with defects (b)  

 
For separated fragments S1=775, L1=120 (240/2), 

and for the circuit with defects S2= 870, L2=124 
(247/2), i.e., in the second case, the area is greater, 
and the length is longer. After the calculation of 
intermediate values, the widths of the chains and the 
difference are as follows: 

W1=6.46, W2=7.04, DW= W2- W1=0.58. 
 
The difference between the lengths 

Ld= L2 – L1= 7 
 
does not correspond to the real size of a defect 
because a part of the defect length belongs also to 
the reference trace and is subtracted.  

So, in the case of an extra metal, a defect must 
be presented in its determined color: red or blue. An 
example is shown in Figure 28(a). Then, the 
determined edge contains three components: the 
main native black, red for the external border of the 
defect, and green   for the common border between 
the trace and defect.       

 
a                                         b 

Fig. 28: A fragment with defect (a) and its edge (b)  
 
Now the difference between trace areas is Sd=95 

which is a square of the defect, and the length of the 
red edge is Ld=43. Under these conditions, the 
concentrated width of the trace in one place is 
Wd=95/43=2.  Additional metal causes the final 
difference Wd=2 which is more than 30 percent of 
the reference width. The conduction resistance is 
reduced by one-third in this place. On the contrary, 
the distributed losses of resistance show less than 10 
percent.  

In conclusion, two criteria of the failure caused 
by defects in traces are possible: tolerance on the 
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distributed width of the trace DW and tolerance on 
the concentrated width of the trace Wd.   

 
6.4  Division of Traces into Fragments  
The conduction resistance can be accepted as a 
criterion function for detecting defects and checking 
the functionality of the circuit by analyzing its 
printed circuit board. In this case, the shift of tracks 
and small changes in their size are not considered 
automatically. For example, Figure 29 shows two 
fragments: one is the reference image and the 
second is the difference between it and the shifted-
by-pixels fragment. Are there defects in the traces? 
It is difficult to answer. The summary number of red 
or blue pixels is large enough. 
 

   a                                        b 
Fig. 29: Fragments of PCB image (a) and its 
difference with shifted one (b)  
  

When considering the traces as reference, with a 
lack of metal and with an excess of metal in Figure 
30 their approximate widths are of the following 
values W1=3.46, W2=3.26, W3=4.35.  

 

   
Fig. 30: Chains without and with defects  

 
Unfortunately, in this approach, only one 

parameter characterizes the chain in the reference 
and sample PCB image. Changes in the local 
conductance resistance could be distributed along 
the resistance of other parts belonging to the long 
trace. Then the defect is compensated by the correct 
values of the parameter. So, in the previous 
approach, only places with defects were analyzed.  

It is possible to exclude the preliminary 
detection of the location of defects if the concept of 
distributed conductive resistance of the track is used. 
Namely the values of the width of the track in its 
various sections. Instead of one parameter W, the 
trace should be characterized by the vector W= (W1, 

W2,…,Wn), where n is the number of sections of a 
trace. 

In general, trace division is a complex and 
separate problem, [25], since the traces have a 
horizontal, vertical, and hybrid arrangement. They 
are of different sizes and irregular shapes. Traces are 
uniform in color. The number of parts is planned 
according to the area of the entire trace and the size 
of the separated part. Therefore, each trace is 
considered for division into parts separately. 

The main idea used for the division of a trace is 
flood-filling them with different colors. At the 
beginning the mask image with n parts – for 
example, rectangles is generated. Each rectangle is 
filled in its random color. An example with 6 parts 
is shown in Figure 31(a). 

 

  
a                                             b 

Fig. 31: Rectangles with 6 random colors (a) and 
overlay with a black chain (b) by its sizes 

 
Then an image with the black trace is overlayed 

with rectangles by the following formula applied to 
every channel of the pixel: 

𝐼𝑟(x,y)=αI𝑐(𝑥𝑖,y𝑖) + (1 − 𝛼)𝐼𝑏(𝑥𝑖,y𝑖)(𝑟), 
 
where Ir, Ic, Ib are the pixel intensity of the resulting, 
rectangles, and chain images, α is the coefficient of 
transparency. The resulting image with four 
rectangles is shown in Figure 32(a). 

Now, four fragments are characterized by four 
various colors. They are easy to select by applying 
the flood-filling algorithm to fragments and 
backgrounds. They are shown in Figure 32(b). 
Fragments of the trace are ready for the principal 
processing: edge detection and measurements of the 
area and length of the perimeter. 

 

  
a                                          b 

Fig. 32: Overlay of the chain and rectangles (a) and 
its filled sections (b) 
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In the case of the trace with defects from Figure 
30 rectangles and the trace are overlayed, flood-
filled, and separated too (Figure 33). 

 

  
a                                                 b 

Fig. 33:  Overlay of the chain with defects and 
rectangles (a) and its filled sections (b) 
 

After processing the two traces in the reference 
and sample images they are characterized by two 
vectors of fragmentary conductance resistance (in 
this case, the trace width): 
 

Wr = (Wr1, Wr2, …,Wrn) , Ws= (Ws1, Ws2, …,Wsn), 
 
where n is the number of fragments, the same for 
similar traces and different for other traces. 

The two conduction resistance vectors are 
calculated and have the following components: 
 

Wr = (8.20, 7.42, 9.16, 9.41), 
Wr = (7.20, 7.53, 8.96, 7.12). 

 
The vectors show that the two metal deficiency 

defects increase resistance on the green and red 
sections of the trace. Losses are 12 and 24 percent in 
accordance. 

The two types of defects affect resistance 
diametrically oppositely: a lack of metal increases, 
and an excess of metal decreases the resistance in 
the trace. Therefore, criterion functions are formed 
separately for each case: 
 

M=sqrt { 1/N-*∑ (Wrk (i) - Wsk
-(i))2}, 

P=sqrt{ 1/N+*∑ (Wrk(i) - Wsk
+(i))2}, 

 
where M is a standard deviation for defects Wsk

-(i) 
reducing the resistance, and P is a standard 
deviation for defects Wsk

+(i) increasing the 
resistance, N-, N+ are the numbers of correspondent 
defects in all traces determined after they were 
processed, i is the sequence number of the trace, k is 
the sequence number of the section in the trace. 

As a result, all inaccuracies in the components 
of the printed circuit board are measured and 
prepared to decide the readiness of the circuit for 
operation or not. 

To visualize the location and type of defects, the 
difference in the resistance parameters is checked in 
comparison with the tolerance value set by the user: 

tol+ for additional resistance, and tol- for reduced 
resistance:   
 

Wrk (i) - Wsk
-(i)>  tol-, 

Wrk(i) - Wsk
+(i)> tol+. 

 
If one of the equations is satisfied, the section 

Wsk
-(i) is filled in blue, or the section Wsk

+(i) is filled 
in red. the tolerance can be chosen such a value that 
the scheme should not only be marked but also 
rejected. 
  
 
7  Conclusion 
The work is devoted to the investigation of the ANN 

application to learn and recognize defective PCB 

images by their features, particularly: the cumulative 

histograms of defect pixels, and the grid cell 

intensity mean. Testing of the implemented 

algorithms has revealed, that trained single-layer 

ANN can successfully classify the PCB images, 

where the aspect is placed on the range of defect 

colors and their location. 
The approach includes such algorithms and 

methods as mathematical formulas of comparison, 
the filling algorithm for selecting, separating, and 
dividing chains, formulas for calculating the 
resistance characteristics of circuit components, and 
K-means clustering for the selection of objects in 
the PCB image.  

The proposed approach contains operations for 
the selection of three classes of defects: negative, 
positive, and connection. Marked with different 
colors, these defects are used to train the single-
layer neural network for further automatic division 
of the PCB image into two classes: having defects 
and without defects. It reduces the time consuming 
of the developed software which is planned to 
indicate the location and determine the intensity of 
defects. In conclusion, such software will reduce 
hardware and make the PCB diagnostic process 
cheaper. 

The goal of future work is to modify the 

subtraction operation using an approach that is 

independent of the bias and dimensions of the tracks 

and pins. To do this, it is necessary to investigate 

new features of printed circuit boards, such as the 

description of connection defects, excess and lack of 

metal, resistance properties, and the absence of 

contact areas. The development of the automation of 

circuit division into parts, the creation of specific 

neural networks for printed circuit board images, 

and their application to recognize defective circuits 

is envisaged. 
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