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Abstract: We prove that the stationary solution of a class of reaction-diffusion systems is stable in the 
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given to a special case, the combustion model. The stationary solution considered here is the end state of the 
traveling front associated with the system, and thus the present result complements recent work by A. 
Ghazaryan, Y. Latushkin and S. Schecter, where the stability of the traveling fronts was investigated.  
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1 Introduction 
The theory of reaction-diffusion equations emerged 
in the first half of the last century and has been 
influenced by various applications such as thermal 
explosions and the propagation of chemical waves. 
It brings together the theory of heat conduction and 
mass diffusion on the one hand and has a wide range 
of applications to chemical and biological kinetics 
on the other. Specifically, in the late 1930s, 
Kolmogorov-Petrovskii-Piskunov [6] and Fischer 
[3] proposed reaction-diffusion waves; 
subsequently, Zeldowitsch and Frank-Kamenetzki 
[10] studied them in conjunction with combustion 
theory. In this type of study, the reaction-diffusion 
equation 

∂𝑡𝑢 = ∂𝑥
2𝑢 + 𝐹(𝑢)                             (1) 

is considered over the infinite domain −∞ < 𝑥 < ∞, 
and 𝑢  can be either the temperature or the 
concentration of the reactant. A traveling wave is a 
solution of the system (1) of the form 𝑢(𝑥, 𝑡) =
𝑤(𝑥 − 𝑐𝑡), where 𝑐 is a constant, i.e., the speed of 
the wave. This type of solution propagates with a 
constant speed and a certain shape and describe the 
asymptotic behavior of the system. The existence, 
stability and bifurcation problems of traveling 
waves are associated with many applications and 
mathematical models and have therefore been 
studied intensively in recent decades. In general, 
when analyzing the reaction-diffusion equation in 
unbounded domains, the invertibility of the limiting 

operator is required. This condition implies that the 
essential spectrum does not contain the origin, so we 
often need to study the essential spectrum of the 
linear operators of the system. In the practical 
application of this technique, especially in the study 
of some models in combustion and chemical 
kinetics, one often finds that the essential spectrum 
may contain the origin. In such cases, many 
conventional methods and theories are no longer 
applicable. 

In this paper we will illustrate how to deal with 
this case in terms of the stability of the stationary 
solution of reaction-diffusion waves in one-
dimensional space of a special class, and lead to 
some questions worth investigating. We will 
introduce the settings and some definitions in 
Section 2 and study the spectrum of the operator 
obtained by linearizing the equation with respect to 
the stationary solution in Section 3.1. Section 3.2 
focuses on the nonlinear terms in the system and 
some nonlinear estimates needed to prove the main 
theorem. The proof of the stability of the stationary 
solution is given in Section 3.3, see Theorem 3.16. 
Finally, in Section 4 we give a generalization of the 
type of reaction-diffusion systems considered in 
[4,5]. 
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2 Problem Formulation 
We first briefly introduce a combustion model in ℝ𝑑 
that includes two equations: 
 

{
𝑢1𝑡 = Δ𝒙𝑢1 + 𝑢2𝑔(𝑢1), 𝑢1, 𝑢2 ∈ ℝ,

𝑢2𝑡 = 𝜖Δ𝒙𝑢2 − 𝜅𝑢2𝑔(𝑢1), 𝒙 ∈ ℝ
𝑑,

      (2) 

 
where the parameters 𝜖 and 𝜅 satisfy 0 ≤ 𝜖 ≤ 1 and 
𝜅 > 0, and 𝑔(⋅) in the nonlinear terms is taken in 
the form of Arrihenius exponential: 
 

𝑔(𝑢1) = {
𝑒
−
1

𝑢1 , 𝑖𝑓 𝑢1 > 0;
0      , 𝑖𝑓 𝑢1 ≤ 0.

                       （3）   

 

Let 𝒖 = (
𝑢1
𝑢2
)  and 𝑓(𝒖) = (

𝑓1(𝑢1, 𝑢2)
𝑓2(𝑢1, 𝑢2)

) =

(
𝑢2𝑔(𝑢1)
−𝜅𝑢2𝑔(𝑢1)

), then the system (2) can be rewritten 

in the vector form as  
𝒖𝑡(𝑡, 𝒙) = (

1 0
0 𝜖

)Δ𝒙𝒖(𝑡, 𝒙) + 𝑓(𝒖(𝑡, 𝒙)).  (4) 
Given a fixed vector 𝒆 ∈ ℝ𝑑 , the corresponding 

system written in the moving coordinate frame 𝒙 +
𝑐𝑡𝒆 can be reduced to the equation 

 
𝐰𝑡 = (

1 0
0 𝜖

)Δ𝐱𝐰+ 𝑐(𝐞 ⋅ ∇𝐱)𝐰 + 𝑓(𝐰),𝐰 ∈ ℝ
2.  

(5)                                                                                   
We are concerned with the traveling wave 

solution of (5). In general, considering the 
practical model, such reaction-diffusion waves 
will approach the stationary states 𝒖−  and 𝒖+ 
exponentially as 𝑧 = 𝒙 ⋅ 𝒆 tends to infinity, that is, 
there exist constants 𝐾 > 0  and 𝜔− < 0 < 𝜔+ 
such that ‖𝐰 − 𝒖−‖ ≤ 𝑲𝑒−𝜔−𝑧  for 𝑧 ≤ 0  and 
‖𝐰 − 𝒖+‖ ≤ 𝐾𝑒

−𝜔+𝑧 for 𝑧 ≥ 0. The stability of 
the stationary solution with respect to small 
perturbations is usually determined by the 
spectrum of the linear operator. The situation is 
more complex in the case of traveling waves, 
because these are families of solutions, and the 
corresponding linear operator will have a zero 
eigenvalue. In this case, the discussion may 
involve a transfer of stability, i.e., the 
convergence of the solution of the non-stationary 
problem to a stationary solution in the family of 
solutions. 

It is obvious that the system (5) has two types 
of stationary solutions: one when 𝑢1(𝒙) is equal 
to a real constant and 𝑢2(𝒙) = 0, and the other 
when 𝑢1(𝒙) = 0  and 𝑢2(𝒙)  is equal to a real 
constant. In particular, we can choose 𝑢1 = 1/𝜅, 
𝑢2 = 0 , which is the state corresponding to 
completely burned reactants, and 𝑢1 = 0, 𝑢2 = 1, 

which corresponds to unburned substances. In 
other words, we choose 𝒖− = (1/𝜅, 0) and 𝒖+ =
(0,1), see [4] to see why 𝒖− and  𝒖+ are chosen 
this way. The one dimensional gasless 
combustion model of a solid fuel described by the 
system 

∂𝑡𝑢1 = ∂𝑥𝑥𝑢1 + 𝑢2𝑔(𝑢1)

∂𝑡𝑢2 = −𝜅𝑢2𝑔(𝑢1), 𝑥 ∈ ℝ
                  (6) 

has been studied in detail in [4], in which 𝜅 > 0, 𝑢1 
is the temperature, 𝑢2  represents the concentration 
of unburned fuel. The authors of [4] investigated a 
traveling wave solution (𝑢1, 𝑢2)(𝜉), 𝜉 = 𝑥 − 𝑐𝑡  for 
𝑐 > 0 where 𝑐 is the speed of the front. Furthermore, 
(𝑢1, 𝑢2)(𝜉) approaches the end states exponentially. 
However, the traveling wave is not spectrally stable 
in 𝐻1(ℝ). The authors introduced a weight function 
𝑒𝛼𝜉 , where 𝛼  is positive and small, such that the 
perturbation of the traveling wave belonging to this 
weighted space approaches 0 exponentially near the 
right end state, that is, as 𝜉 → ∞. In the weighted 
space, the nonlinear terms in (6) do not yield a 
locally Lipschitz mapping. To prove the stability of 
the traveling wave, the authors proved that 
perturbations of the traveling wave that are small in 
both the weighted norm and the unweighted norm 
will decay exponentially to the traveling wave in the 
weighted norm. As we will see in what follows, the 
study of the stability of the left end state of the front 
encounters similar difficulties. 

We will now consider a time-independent 
solution of (5) of the form 𝜙(𝑧), where we assume 
that the function 𝜙  depends only on the scalar 
variable 𝑧 = 𝒙 ⋅ 𝒆. We can perturb the function 𝜙 by 
either  adding a function that depends only on 𝑧, that 
is, by considering the solution 𝐰(𝑡, 𝒙) of (5) with 
initial condition 

 𝐰(0, 𝒙) = 𝜙(𝑧) + 𝐯(0, 𝑧)                (7) 
 
with some 𝐯:ℝ × ℝ → ℝ2  from an appropriate 
function space; or by adding a function that depends 
on 𝒙 , that is, consider the solution 𝐰(𝑡, 𝒙)  of (5) 
with the initial condition 𝐰(0, 𝐱) = 𝜙(𝑧) + 𝐯(0, 𝐱) 
with some 𝐯:ℝ × ℝ𝑑 → ℝ2  from an appropriate 
function space. The two types of perturbations lead 
to the spectral analysis of two different operators 
acting on 𝐻1(ℝ)2  or 𝐻𝑘(ℝd)2  respectively. We 
have already studied the second type of perturbation 
in [7].  In this paper we will study the first type as 
described in (7), noting that a similar approach as in 
[5] is mainly used here. 

In particular, the study is related to the essential 
spectrum of the linear operator of the system. If the 
essential spectrum is in the right half-plane, it can be 
shifted to the left half-plane by introducing some 
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exponentially weighted space. Given a real 
parameter 𝛼 , we shall say that 𝛾𝛼: ℝ ↦ ℝ  is a 
weight function of class 𝛼 if 𝛾𝛼(𝑧) = 𝑒𝛼𝑧 for 𝑧 ∈ ℝ. 
The weighted space with the weight function 𝛾𝛼  is 
defined as 

 𝐻𝛼1(ℝ) = {𝑢 ∈ 𝐻𝑙𝑜𝑐1 (ℝ): 𝛾𝛼(⋅)𝑢(⋅) ∈ 𝐻1(ℝ)}.  (8) 
 
We denote the norm of 𝑢 on the unweighted space 
𝐻1(ℝ) by ∥⋅∥0 and the norm on the weighted space 
𝐻𝛼
1(ℝ) by ∥ 𝑢 ∥𝛼=∥ 𝛾𝛼𝑢 ∥0. 
Since we will use only perturbations of the first 

type, we need a solution of the form 𝐰(𝑡, 𝑧) = 𝐮− +
𝐯(𝑡, 𝑧), where 𝐯(𝑡,⋅) belongs to an appropriate space 
of functions on ℝ. With this notation we will have 
the following equation for the perturbation 𝐯(𝑡, 𝑧): 

𝐯𝑡 = (
1 0
0 𝜖

) 𝐯𝑧𝑧 + 𝑐𝐯𝑧 + 𝑓(𝐯 + 𝐮−).        (9) 
 
Introduction of the nonlinear term  

𝐻(𝐯) = 𝑓(𝐮− + 𝐯) − 𝑓(𝐮−) − ∂𝐮𝑓(𝐮−)𝐯, 
the equation (9) can be rewritten as follows: 
𝐯𝑡 = (

1 0
0 𝜖

) 𝐯𝑧𝑧 + 𝑐𝐯𝑧 + ∂𝐮𝑓(𝐮−)𝐯 + 𝐻(𝐯).   (10) 
Since  

∂𝐮𝑓(𝐮−) =

(

 
 

𝑢2

𝑢1
2 𝑒

−
1

𝑢1 𝑒
−
1

𝑢1

−𝜅
𝑢2

𝑢1
2 𝑒

−
1

𝑢1 −𝜅𝑒
−
1

𝑢1

)

 
 

𝐮=𝐮−

= (
0 𝑒−𝜅

0 −𝜅𝑒−𝜅
),                             

 

we therefore have  
𝐯𝑡 = (

1 0
0 𝜖

) 𝐯𝑧𝑧 + 𝑐𝐯𝑧 + (
0 𝑒−𝜅

0 −𝜅𝑒−𝜅
)𝐯 + 𝐻(𝐯). 

 
We now define the linear differential expression 𝐿 
with constant coefficients by 
𝐿 = (

1 0
0 𝜖

) ∂𝑧𝑧 + (
1 0
0 1

) 𝑐 ∂𝑧 + (
0 𝑒−𝜅

0 −𝜅𝑒−𝜅
). (11) 

 
A major difficulty is that the nonlinear term in 

(10) does not give a locally Lipschitz mapping on 
the weighted space 𝐻𝛼1(ℝ). To fix this problem, we 
introduce a new space: 

ℰ:= 𝐻1(ℝ) ∩ 𝐻𝛼
1(ℝ).                  (12) 

with ∥ 𝑢 ∥ℰ= 𝑚𝑎𝑥{∥ 𝑢 ∥0, ∥ 𝑢 ∥𝛼}. 
 
 
3 Stability of the Left End State 
In this section, we will consider perturbing the right 
end state 𝐮−  of (5) with the perturbation as 
described in (7) and investigate the stability of the 
end state. 
 
 

3.1 Spectral of the Linear Operators 
To determine the stability of the perturbation as in 
(10), we need spectral information about the linear 
operator associated with (11). Consider the system 
of differential expressions 𝐿 given by (11). We will 
now define several differential operators associated 
with 𝐿. 

We define the linear operator ℒ on 𝐻1(ℝ)2 by the 
formula 𝐮 → 𝐿𝐮 and the domain of ℒ as the set of 
(𝑢1, 𝑢2)  where 𝑢1, 𝑢2 ∈ 𝐻3(ℝ) . For the space 
𝐿2(ℝ) , the domain of ℒ  in 𝐿2(ℝ)2  is the set of 
(𝑢1, 𝑢2) where 𝑢1, 𝑢2 ∈ 𝐻2(ℝ). 

We will show below that the spectrum of ℒ 
touches the imaginary axis so that the equilibrium 
solution is not spectrally stable in 𝐻1(ℝ)2. A way 
out of this problem is then to use a weighted space 
𝐻𝛼
1(ℝ)2. 
We define the operator ℒ𝛼  on  𝐻𝛼1(ℝ)2  as the 

linear operator given by the formula 𝐮 → 𝐿𝐮, and 
the domain of ℒ𝛼 is the set  

{(𝑢1, 𝑢2): 𝛾𝛼(⋅)𝑢1(⋅), 𝛾𝛼(⋅)𝑢2(⋅) ∈ 𝐻
3(ℝ)}, 

see formula (8). Similarly, we define the weighted 
space 𝐿𝛼2 (ℝ):= {𝑢: 𝛾𝛼(⋅)𝑢(⋅) ∈ 𝐿2(ℝ)}, the domain 
of ℒ𝛼 on 𝐿𝛼2 (ℝ)2 is the set:  

{(𝑢1, 𝑢2): 𝛾𝛼(⋅)𝑢1(⋅), 𝛾𝛼(⋅)𝑢2(⋅) ∈ 𝐻
2(ℝ)}. 

We denote by ℒℰ the linear operator on ℰ2 given 
by 𝐮 → 𝐿𝐮 where the domain of  ℒℰ is the set of 𝐮 
on  ℰ2 satisfying 𝐮 ∈ dom (ℒ) ∩ dom (ℒ𝛼), where 
dom (ℒ)  and dom (ℒ𝛼)  are the respective domains 
defined above. 

In the remaining part of this subsection, we will 
collect several elementary facts about the spectrum 
of the differential operators ℒ  and ℒ𝛼  on the 
respective spaces. We recall here that for a general 
closed densely defined operator 𝒯, the resolvent set 
𝜌(𝒯)  is the set of 𝜆 ∈ ℂ  such that 𝒯 − 𝜆𝐼  has a 
bounded inverse. The complement of 𝜌(𝒯)  is the 
spectrum 𝜎(𝒯) . It is the union of the discrete 
spectrum  𝜎𝑑(𝒯), which is the set of isolated points 
in 𝜎(𝒯) that are eigenvalues of  𝒯 of finite algebraic 
multiplicity, and the essential spectrum 𝜎𝑒𝑠𝑠(𝒯) , 
which is the rest. We will use the Fourier transform 
to find 𝜎(ℒ)  on 𝐿2(ℝ)2 . First, we notice that the 
operator ℒ  on 𝐿2(ℝ)2  is similar to the operator of 
multiplication on 𝐿2(ℝ)2  by the matrix-valued 
function 𝑀(𝜃), where   
𝑀(𝜃) = −(

1 0
0 𝜖

) 𝜃2 + 𝑖𝜃𝑐𝐼 + ∂𝐮𝑓(𝐮−), 𝜃 ∈ ℝ,(13) 
see e.g. [2. Section 6.5]. The spectrum of ℒ  on 
𝐿2(ℝ)2 is the closure of the union over 𝜃 ∈ ℝ of the 
spectra of the matrices 𝑀(𝜃). Hence the spectrum of 
ℒ  is equal to the closure of the set of 𝜆 ∈ ℂ  for 
which there exists 𝜃 ∈ ℝ such that   
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det (𝑀(𝜃) − 𝜆𝐼) = det (− (
1 0
0 𝜖

) 𝜃2

+(𝑖𝜃𝑐 − 𝜆)𝐼 + ∂𝐮𝑓(𝐮−)) = 0.
 

It is a collection of curves of the form 𝜆 = 𝜆𝑘(𝜃), 
where 𝜆𝑘(𝜃)  are the eigenvalues of the matrices 
𝑀(𝜃). 

The spectrum of ℒ  on 𝐿2(ℝ)2  is equal to its 
spectrum on 𝐻1(ℝ)2 , which is proved in the 
following lemma. 

 
Lemma 3.1. The linear operator ℒ  with constant 

coefficients associated with the differential 

expression 𝐿  in (11) has the same spectrum on 

𝐿2(ℝ)2 and 𝐻1(ℝ)2. 

 
Proof. We will denote the operator associated with 
𝐿 by ℒ𝐿2  on 𝐿2(ℝ)2 and by ℒ𝐻1  on 𝐻1(ℝ)2. Recall 
that  ∂𝑧,𝐿2 has the domain 𝐻1(ℝ) and spectrum 𝑖ℝ. 
Therefore, the operator  

𝒟 = (
∂𝑧,𝐿2 + ℐ 0

0 ∂𝑧,𝐿2 + ℐ
) :

𝐻1(ℝ) × 𝐻1(ℝ) ↦ 𝐿2(ℝ) × 𝐿2(ℝ)

 

is an isomorphism. Using the identity 𝒟ℒ𝐻1𝐯 =
ℒ𝐿2𝒟𝐯  for all 𝐯 ∈ dom ℒ𝐻1 = 𝐻3(ℝ)2 , we get 
𝒟ℒ𝐻1𝒟

−1 = ℒ𝐿2 . Thus, we can conclude that 
𝜎(ℒ𝐻1) = 𝜎(𝒟ℒ𝐿2𝒟

−1) = 𝜎(ℒ𝐿2) as claimed.      □ 
 

By Lemma 3.1 and the preceding discussion, for 
the operator ℒ  associated with the differential 
expression  

𝐿 = (
∂𝑧𝑧 + 𝑐 ∂𝑧 𝑒−𝜅

0 𝜖 ∂𝑧𝑧 + 𝑐 ∂𝑧 − 𝜅𝑒
−𝜅),     (14) 

the spectrum of ℒ on 𝐿2(ℝ)2 and 𝐻1(ℝ)2 is  

𝜎(ℒ) =∪𝜃∈ℝ 𝜎 (
−𝜃2 + 𝑐𝑖𝜃 𝑒−𝜅

0 −𝜖𝜃2 + 𝑐𝑖𝜃 − 𝜅𝑒−𝜅
)

= ∪ (−𝜃2 + 𝑐𝑖𝜃)𝜃∈ℝ ⋃∪𝜃∈ℝ (−𝜖𝜃
2 + 𝑐𝑖𝜃 − 𝜅𝑒−𝜅).

 

(15) 
Hence, the spectrum of ℒ on 𝐿2(ℝ)2 is the union of 
the two curves 𝜆1 = −𝜃2 + 𝑐𝑖𝜃  and 𝜆2 = 𝜖 ∂𝑧𝑧 +
𝑐 ∂𝑧 − 𝜅𝑒

−𝜅  where 𝜃 ∈ ℝ, therefore 𝑠𝑢𝑝{𝑅𝑒 𝜆: 𝜆 ∈
𝜎(ℒ)} = 0. Thus the spectrum of ℒ on 𝐿2(ℝ)2 and 
𝐻1(ℝ)2 touches the imaginary axis. 

Next, we will tackle 𝜎(ℒ𝛼)  on 𝐻𝛼1(ℝ)2 , which 
can be described as follows. Let ℰ0  be 𝐿2(ℝ)  or 
𝐻1(ℝ)  and ℰ𝛼 = {𝑢: 𝛾𝛼(𝑧)𝑢(𝑧) ∈ ℰ0} . The linear 
operator ℳ defined by ℳ𝐮 = 𝛾𝛼𝐮  is an 
isomorphism from ℰ𝛼2  to ℰ02 . Define the linear 
operator ℒ̂ = ℳℒ𝛼ℳ−1  on ℰ02 , with domain 
𝐻2(ℝ)2 if ℰ02 = 𝐿2(ℝ)2, or domain 𝐻3(ℝ)2 if ℰ02 =
𝐻1(ℝ)2 . It is therefore similar to ℒ𝛼  on ℰ𝛼2  and 
hence has the same spectrum. 

Assume that (𝑣1, 𝑣2)  belongs to the weighted 
space with the weight function 𝛾𝛼 . It follows that 
(𝑣1, 𝑣2) = 𝛾𝛼

−1(�̃�1, �̃�2) with  �̃� = (�̃�1, �̃�2) ∈ 𝐿2(ℝ)2. 
By substituting into the formula for 𝐿 (

𝑣1
𝑣2
)  and 

multiplying by 𝛾𝛼  and noticing that �̂�𝑧�̃� =
𝛾𝛼𝜕𝑧𝛾𝛼

−1�̃� = 𝛾𝛼((𝛾𝛼
−1)′�̃� + 𝛾𝛼

−1�̃�) = (∂𝑧 − 𝛼)�̃�, we 
can rewrite the linear differential expression  
�̂� = (

1 0
0 𝜖

) (∂𝑧 − 𝛼)
2 + 𝑐(∂𝑧 − 𝛼) +

(
0 𝑒−𝜅

0 −𝜅𝑒−𝜅
) = 𝐿 − 2𝛼 (

1 0
0 𝜖

) ∂𝑧 + 𝛼
2 (
1 0
0 𝜖

) −

𝑐𝛼𝐼. 
Via the Fourier transfom, the operator ℒ̂ on 𝐿2(ℝ)2 
is similar to the operator of multiplication on 
𝐿2(ℝ)2 by the matrix-valued function  

𝑁(𝜃) = −𝜃2 (
1 0
0 𝜖

) + 𝑖𝜃(𝑐𝐼 − 2𝛼 (
1 0
0 𝜖

))

+𝛼2 (
1 0
0 𝜖

) − 𝑐𝛼𝐼 + (
0 𝑒−𝜅

0 −𝜅𝑒−𝜅
) .

 

Hence the spectrum of ℒ̂ on 𝐿2(ℝ)2 equal to that of 
multiplication by 𝑁 on 𝐿2(ℝ)2. 

Thus, we find that the spectrum of the operator ℒ̂ 
is the union of the two curves 𝜆1 = −𝜃2 + (𝑐 −
2𝛼)𝜃𝑖 + 𝛼2 − 𝑐𝛼 and 𝜆2 = −𝜖𝜃2 + (𝑐 − 2𝛼𝜖)𝜃𝑖 +
𝜖𝛼2 − 𝑐𝛼 − 𝜅𝑒−𝜅 for all 𝜃 ∈ ℝ. Then 

𝑠𝑢𝑝{Re 𝜆: 𝜆 ∈ 𝜎𝑒𝑠𝑠(ℒ𝛼)}
= 𝑠𝑢𝑝{Re 𝜆: 𝜆 ∈ 𝜎𝑒𝑠𝑠(ℒ̂)}

= 𝑚𝑎𝑥{𝛼2 − 𝑐𝛼, 𝜖𝛼2 − 𝑐𝛼 − 𝜅𝑒−𝜅}

= 𝛼2 − 𝑐𝛼.

 

The linear operator ℒ𝛼  is an operator with 
constant coefficients, so 𝜎(ℒ𝛼) = 𝜎𝑒𝑠𝑠(ℒ𝛼) . We 
also have the following analogue of Lemma 3.1. 

 
Lemma 3.2. The linear operator ℒ𝛼 associated with 

the differential expression, that is defined in (14), 

has the same spectrum on 𝐿𝛼
2 (ℝ)2 and 𝐻𝛼

1(ℝ)2.  
 

For 𝛼 ∈ (0, 𝑐/2) , we will have 𝑠𝑢𝑝{Re 𝜆: 𝜆 ∈
𝜎(ℒ𝛼)} < 0so that the  spectrum 𝜎(ℒ𝛼) has been 
moved to the left of the imaginary axis. We 
summarize this result as the following proposition. 

 
Proposition 3.3. On the unweighted space 𝐻1(ℝ)2, 

one has 𝑠𝑢𝑝{Re 𝜆: 𝜆 ∈ 𝜎(ℒ)} = 0, the spectrum of ℒ 

will touch the imaginary axis. On the weighted 

space 𝐻𝛼
1(ℝ)2, if 0 < 𝛼 < 𝑐/2, then the spectrum of 

ℒ𝛼 will be bounded away from the imaginary axis 

and 𝑠𝑢𝑝{Re 𝜆: 𝜆 ∈ 𝜎(ℒ𝛼)} < −𝜈 for some 𝜈 > 0. 

 
In the system (10) we have the following 

triangular structure,  

𝐯𝑡 = (
∂𝑧𝑧 + 𝑐 ∂𝑧 𝑒−𝜅

0 𝜖 ∂𝑧𝑧 + 𝑐 ∂𝑧 − 𝜅𝑒
−𝜅)𝐯 + 𝐻(𝐯). 

Let 
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𝐿1 = ∂𝑧𝑧 + 𝑐 ∂𝑧,                            (16) 
𝐿2 = 𝜖 ∂𝑧𝑧 + 𝑐 ∂𝑧 − 𝜅𝑒

−𝜅 ,             (17) 
and for 𝑖 = 1,2 , let ℒ𝑖 be the operators on 𝐻1(ℝ) 
defined by 𝑣𝑖 ↦ 𝐿𝑖𝑣𝑖 , the domain of ℒ𝑖  on 𝐻1(ℝ) 
is the set of 𝑣𝑖 where 𝑣𝑖 ∈  𝐻3(ℝ). 
 
Lemma 3.4. Consider the operators ℒ , ℒ1  and 

ℒ2 associated with the differential expressions (14), 

(16), and (17), respectively, 

1) The operator ℒ1  generates a bounded 

semigroup on 𝐻1(ℝ); 
2) the operator ℒ2  on 𝐻1(ℝ)  satisfies 

𝑠𝑢𝑝{Re 𝜆: 𝜆 ∈ 𝜎(ℒ2)} < 0; 

3) the following is true on 𝐻1(ℝ): 
(a) 𝑠𝑢𝑝{Re 𝜆: 𝜆 ∈ 𝜎(ℒ1)} ≤ 0; 

(b) 𝑠𝑢𝑝{Re𝜆: 𝜆 ∈ 𝜎(ℒ)} ≤ 0; 

(c) there exist 𝜌 > 0  and 𝐾 > 0  such that 

||𝑒𝑡ℒ2||𝐻1(ℝ)→𝐻1(ℝ) ≤ 𝐾𝑒
−𝜌𝑡  for 𝑡 ≥ 0. 

 

Proof. We claim that the semigroups generated by 
the operators ℒ𝑖 , 𝑖 = 1,2, on 𝐿2(ℝ) and 𝐻1(ℝ) are 
similar (this gives yet another way to prove that ℒ𝑖 
has the same spectrum on 𝐿2(ℝ) and 𝐻1(ℝ) for 𝑖 =
1,2 ). We denote ℒ𝑖  on 𝐿2(ℝ)  as ℒ𝑖𝐿2  and ℒ𝑖  on 
𝐻1(ℝ) as ℒ𝑖𝐻1.  

Recall that the Fourier transform is an 
isomorphism of 𝐻1(ℝ)  onto 𝐿𝑚2 (ℝ) , where the 
weight function is 𝑚(𝜃) = (1 + |𝜃|2)1/2for 𝜃 ∈ ℝ. 
The operator of multiplication by the function 𝑚(𝜃) 
is an isomorphism of 𝐿𝑚2 (ℝ) onto 𝐿2(ℝ). Under the 
Fourier transform followed by this isomorphism of 
𝐻1(ℝ) onto 𝐿2(ℝ), the operator of differentiation 
on 𝐻1(ℝ) is similar to the operator of multiplication 
by 𝑖𝜃  on 𝐿2(ℝ). Using this, we have 𝑚ℱ1ℒ𝑖𝐻1 =
𝑀(𝜃)𝑚ℱ1 , where 𝑀(𝜃)  is defined in (13). The 
operator of multiplication by 𝑖𝜃 on 𝐿2(ℝ) is similar 
to the operator of differentiation on 𝐿2(ℝ) via the 
Fourier transform, and thus we have ℱ2ℒ𝑖𝐿2 =
𝑀(𝜃)ℱ2. It follows that  

ℒ𝑖𝐻1 = (𝑚ℱ1)
−1𝑀(𝜃)𝑚ℱ1

= (𝑚ℱ1)
−1(ℱ2ℒ𝑖𝐿2ℱ2

−1)(𝑚ℱ1),
  

and thus the operators on 𝐻1(ℝ)  and 𝐿2(ℝ) 
associated with the same constant-coefficient 
differential expression are similar. Therefore the 
semigroups they generate are similar, proving the 
claim. 

The operator ℒ1  generates a bounded semigroup 
on 𝐿2(ℝ) by Proposition A.1(1) of [6]. Thus, 1) is 
proved because ℒ1  on 𝐻1(ℝ)  is similar to ℒ1  on 
𝐿2(ℝ). 

Using the Fourier transform, we can find that the 
spectrum of ℒ1 on 𝐿2(ℝ) is the curve 𝜆1  = −𝜃2 +
𝑐𝑖𝜃  and the spectrum of ℒ2  on 𝐿2(ℝ) is the curve 

𝜆2 = −𝜖𝜃
2 + 𝑐𝑖𝜃 − 𝜅𝑒−𝜅 . Thus 𝑠𝑢𝑝{Re 𝜆: 𝜆 ∈

𝜎(ℒ1)} ≤ 0  and 𝑠𝑢𝑝{Re 𝜆: 𝜆 ∈ 𝜎(ℒ2)} < 0  on 
𝐿2(ℝ). It is also true on 𝐻1(ℝ), proving statements 
2) and 3) (a), (b). 

Statement 3)(c) is a direct consequence of 2), see 
[5, Lemma 3.13].                                                    □ 
 
3.2 Lipschitz Property of the Nonlinear Term 
In this subsection, we will mainly focus on the 
nonlinear term 𝐻(𝐯) in (10) and will show that the 
nonlinear term yields a locally Lipschitz mapping 
on the intersection space ℰ. This exposition is quite 
elementary by nature, and we present it here 
because it is a necessary condition for proving the 
existence of solutions of (10). In particular, we 
substitute 𝐮− = (1/𝜅, 0)  into the nonlinear term 
𝐻(𝐯) to obtain  
𝐻(𝐯) = 𝑓((

1/𝜅
0
) + (

𝑣1
𝑣2
)) − (

0 𝑒−𝜅

0 −𝜅𝑒−𝜅
) (
𝑣1
𝑣2
)

= (
𝑣2𝑒

−
1

𝑣1+1/𝜅

−𝜅𝑣2𝑒
−

1

𝑣1+1/𝜅

)− (
𝑣2𝑒

−𝜅

−𝜅𝑣2𝑒
−𝜅)

= (
𝑣2(𝑒

−
1

𝑣1+1/𝜅 − 𝑒−𝜅)

−𝜅𝑣2(𝑒
−

1

𝑣1+1/𝜅 − 𝑒−𝜅)

) .

 

 
We introduce the notation 𝐤 = ( 1

−𝜅
), then 𝐻(𝐯) can 

be written as  
𝐻(𝐯) = 𝐤(𝑔(

1

𝜅
+ 𝑣1) − 𝑔(

1

𝜅
))𝑣2,          (18) 

where 𝑔(⋅) is defined as in the equation (3). 
 
In order to prove that 𝐻(𝐯) is a locally Lipschitz 

mapping on an appropriate space, we will use below 
the inclusion 𝑔(𝑢) ∈ 𝐶∞(ℝ) when 𝑢 ∈ ℝ. To prove 
this inclusion, we first show that 𝑙𝑖𝑚

𝑢→0+
𝑔(𝑛)(𝑢) = 0 

for 𝑛 ∈ ℕ.  Indeed, by L'Hospital's rule for 𝑛 ∈ ℕ, 
𝑙𝑖𝑚
𝑢→0+

𝑢−𝑛𝑒−1/𝑢 = 𝑙𝑖𝑚
𝑥→∞

𝑥𝑛𝑒−𝑥 = 0.        (19)  
 
On the other hand, if 𝑢 > 0 then 𝑔(𝑢) = 𝑒−

1

𝑢 and it 
follows that  

𝑔′(𝑢) = 𝑒−
1

𝑢𝑢−2, 
𝑔″(𝑢) = 𝑒−

1

𝑢(𝑢−4 − 2𝑢−3),⋯ 

𝑔(𝑛)(𝑢) = 𝑒−
1

𝑢(𝑢−2𝑛 + 𝑐−2𝑛+1𝑢
−2𝑛+1 +⋯

+ 𝑐−𝑛−1𝑢
−𝑛−1) 

are all continuous functions for 𝑢 > 0. Using (19), 
we can conclude that 𝑔(𝑛)(𝑢) approaches 0 as 𝑢 →
0+ for all 𝑛 ∈ ℕ and thus 𝑔(𝑛)(⋅) is continuous for 
all 𝑢. The required inclusion 𝑔(𝑢) ∈ ℂ∞(ℝ)follows. 
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We recall notation (12), that is, ℰ = 𝐻1(ℝ) ∩
𝐻𝛼
1(ℝ) with the norm ∥ 𝑢 ∥ℰ= 𝑚𝑎𝑥{∥ 𝑢 ∥0, ∥ 𝑢 ∥𝛼}. 

In order to prove the Lipschitz property of 𝐻(𝐯) on 
ℰ , we will also need the following elementary 
proposition. 

 
Proposition 3.5. 

(1) If 𝑢, 𝑣 ∈  𝐻1(ℝ) , then 𝑢𝑣 ∈  𝐻1(ℝ) ; 

furthermore, there exists a constant 𝐶 > 0 such 

that ||𝑢𝑣||0 ≤ 𝐶||𝑢||0||𝑣||0. 

(2) If 𝑢, 𝑣 ∈ ℰ , then 𝑢𝑣 ∈  𝐻𝛼
1(ℝ) ; furthermore, 

there exists a constant 𝐶 > 0  such that 

||𝑢𝑣||𝛼 ≤ 𝐶||𝑢||0||𝑣||𝛼. 

(3) If 𝑢, 𝑣 ∈ ℰ , then 𝑢𝑣 ∈ ℰ ; also there exists a 

constant 𝐶 > 0  such that ||𝑢𝑣||ℰ ≤
𝐶||𝑢||ℰ||𝑣||ℰ . 

 

Proof. Assertion (1) is a well-known result of 
Sobolev spaces, see [1, Theorem 5.23]. Assertion 
(2) can be proved by 

||𝑢𝑣||𝛼 = ||𝛾𝛼𝑢𝑣||0 ≤ 𝐶||𝑢||0||𝛾𝛼𝑣||0
= 𝐶||𝑢||0||𝑣||𝛼 . 

To show assertion (3), let 𝑢, 𝑣 ∈ ℰ . Then by 
assertion (1),  

||𝑢𝑣||0 ≤ 𝐶||𝑢||0||𝑣||0 ≤ 𝐶||𝑢||ℰ||𝑣||ℰ , 
and by assertion (2), ||𝑢𝑣||𝛼 ≤ 𝐶||𝑢||0||𝑣||𝛼 ≤
𝐶||𝑢||ℰ||𝑣||ℰ . Therefore 𝑢𝑣 ∈ ℰ   and ||𝑢𝑣||ℰ ≤
𝐶||𝑢||ℰ||𝑣||ℰ .                                                          □ 
 

Let 𝒰 ⊂ ℝ  and let 𝐶0(𝒰)  denote the space of 
bounded 𝐶^0   functions 𝑚:𝒰 → ℝ  with the sup 
norm, which we now denote || ⋅ ||𝐶0 . More 
generally, let 𝐶𝑘(𝒰)  denote the space of 𝐶𝑘 
functions 𝑚:𝒰 → ℝ such that 𝑚, 𝜕𝑚 , ⋯, 𝜕𝑘𝑚  are 
all bounded functions, with the 𝐶𝑘-norm: 
||𝑚||𝐶𝑘 = ||𝑚||𝐶0 + || ∂𝑚||𝐶0 +⋯+ || ∂

𝑘𝑚||𝐶0 . 
 
Proposition 3.6. Let 𝑚(⋅) ∈ 𝐶2(ℝ) . Then the 

formula 𝑣(𝑧) ↦  𝑚(𝑣(𝑧)) defines mappings from 

𝐻1(ℝ)  to 𝐻1(ℝ)  and from ℰ  to ℰ . The first is 

Lipschitz on any set of the form {𝑣: ||𝑣||0 ≤ 𝐾}; the 

second is Lipschitz on any set of the form 

{𝑣: ||𝑣||ℰ ≤ 𝐾}. 
 
Proof. We have 
𝑚(𝑣(𝑧) + 𝑣(𝑧)) − 𝑚(𝑣(𝑧))

= ∫ ∂𝑣𝑚(𝑣(𝑧) + 𝑡𝑣(𝑧))𝑑𝑡
1

0

𝑣(𝑧). 

(20) 
Therefore, ∥ 𝑚(𝑣 + 𝑣) − 𝑚(𝑣) ∥𝐿2≤ ||𝑚||𝐶1||𝑣||𝐿2 , 
and  
||𝛾𝛼(𝑚(𝑣 + 𝑣) − 𝑚(𝑣))||𝐿2 ≤ ||𝑚||𝐶1||𝛾𝛼𝑣||𝐿2 . 

Also, differentiating the equation (20) we have 

∂𝑧(𝑚(𝑣(𝑧) + 𝑣(𝑧)) − 𝑚(𝑣(𝑧)))

= ∫ ∂𝑣
2𝑚(𝑣(𝑧) + 𝑡𝑣(𝑧))(∂𝑧𝑣

1

0

+ 𝑡 ∂𝑧𝑣)𝑑𝑡 𝑣(𝑧)

+ ∫ ∂𝑣𝑚(𝑣(𝑧) + 𝑡𝑣(𝑧))𝑑𝑡
1

0

∂𝑧𝑣. 

Thus 
∥ ∂𝑧(𝑚(𝑣(𝑧) + 𝑣(𝑧)) − 𝑚(𝑣(𝑧))) ∥𝐿2

≤ ||𝑚||𝐶2|| ∂𝑧𝑣||𝐿2||𝑣||𝐿∞

+
1

2
||𝑚||𝐶2|| ∂𝑧𝑣||𝐿2||𝑣||𝐿∞

+ ||𝑚||𝐶1|| ∂𝑧𝑣||𝐿2 , 
and since 𝑣 ∈ 𝐻1(ℝ) ⊂ 𝐿∞(ℝ)  by the Sobolev 
embedding theorem, we have 
|| ∂𝑧(𝑚(𝑣(𝑧) + 𝑣(𝑧)) −𝑚(𝑣(𝑧)))||𝐿2

≤ ||𝑚||𝐶2|| ∂𝑧𝑣||𝐿2𝐶||𝑣||𝐻1

+
1

2
||𝑚||𝐶2|| ∂𝑧𝑣||𝐿2𝐶||𝑣||𝐻1

+ ||𝑚||𝐶1|| ∂𝑧𝑣||𝐿2 , 
similarly, 
||𝛾𝛼 ∂𝑧(𝑚(𝑣(𝑧) + 𝑣(𝑧)) − 𝑚(𝑣(𝑧)))||𝐿2

≤ ||𝑚||𝐶2|| ∂𝑧𝑣||𝐿2𝐶||𝛾𝛼𝑣||𝐻1

+
1

2
||𝑚||𝐶2|| ∂𝑧𝑣||𝐿2𝐶||𝛾𝛼𝑣||𝐻1

+ ||𝑚||𝐶1||𝛾𝛼 ∂𝑧𝑣||𝐿2 . 
If ||𝑣||0  and ||𝑣 + 𝑣||0  are both bounded by the 
constant 𝐾 , then ||𝑣||0 ≤ 2𝐾 , and due to the 
equation (20) there exists a constant 𝐶𝐾 > 0 
depending on 𝐾, such that   
||𝑚(𝑣(𝑧) + 𝑣(𝑧)) −𝑚(𝑣(𝑧))||0 ≤ 𝐶𝐾||𝑣(𝑧)||0. 
Similarly, if ||𝑣||ℰ , ||𝑣 + 𝑣||ℰ are bounded by the 

constant 𝐾, then ||𝑣||ℰ ≤ 2𝐾,  
||𝑚(𝑣(𝑧) + 𝑣(𝑧)) − 𝑚(𝑣(𝑧))||0 ≤ 𝐶𝐾||𝑣||0 

 and  
||𝑚(𝑣(𝑧) + 𝑣(𝑧)) − 𝑚(𝑣(𝑧))||𝛼 ≤ 𝐶𝐾||𝑣||𝛼, 

thus  
||𝑚(𝑣(𝑧) + 𝑣(𝑧)) − 𝑚(𝑣(𝑧))||ℰ ≤ 𝐶𝐾||𝑣||ℰ. 

□ 
 

Proposition 3.7. Let 𝑚(⋅) ∈ 𝐶2(ℝ). Consider the 

formula 

(𝑢(𝑧), 𝑣(𝑧)) ↦ 𝑚(𝑢(𝑧))𝑣(𝑧).           (21) 

  

(1) Formula (21) defines a mapping from 𝐻1(ℝ)2 

to 𝐻1(ℝ) that is locally Lipschitz on any set of 

the form {(𝑢, 𝑣): ||𝑢||0 + ||𝑣||0 ≤ 𝐾}. 
(2) Formula (21) defines a mapping from ℰ2 to ℰ 

that is locally Lipschitz on any set of the form 

{(𝑢, 𝑣): ||𝑢||ℰ + ||𝑣||ℰ ≤ 𝐾}. 
 

Proof. See Proposition 5.6 in [4].                           □ 
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Proposition 3.8. Let 𝑚(𝑣1) = 𝑔(1/𝜅 + 𝑣1) −
𝑔(1/𝜅) with 𝑔 from (3). 

(1) The formula 𝑣1(𝑧) ↦ 𝑚(𝑣1(𝑧))  defines a 

mapping from 𝐻1(ℝ)  to 𝐻1(ℝ)  that is 

Lipschitz on any set of the form {𝑣1: ||𝑣1||0 ≤
𝐾} and there is a constant 𝐶𝐾 > 0  depending 

on 𝐾 such that ||𝑚(𝑣1)||0 ≤ 𝐶𝐾||𝑣1||0 . 

(2) If 𝒗 = (𝑣1, 𝑣2) ∈ 𝐻
1(ℝ)2 , and 𝐻(𝒗) =

𝒌(𝑔(1/𝜅 + 𝑣1) − 𝑔(1/𝜅))  is given by the 

equation (18), then 𝐻(𝒗)  defines a mapping 

from 𝐻1(ℝ)2  to 𝐻1(ℝ)2  that is Lipschitz  on 

any set of the form {𝒗: ||𝒗||0 ≤ 𝐾}  and 

||𝐻(𝒗)||0 ≤ 𝐶𝐾 ∥ 𝑣1 ∥0∥ 𝑣2 ∥0≤ 𝐶𝐾||𝒗||0
2. 

 

Proof. (1) The Lipschitz property follows from 
Proposition 3.6. Since the mapping is Lipschitz, and 
𝑚(0) = 𝑔(1/𝜅 + 0) − 𝑔(1/𝜅) = 0 , we then have 
that ∥ 𝑚(𝑣1) ∥0⩽ 𝐶𝐾 ∥ 𝑣1 ∥0. 

(2) Since 𝐻(𝐯) = 𝐤𝑚(𝑣1)𝑣2 , assertion (2) 
follows from assertion (1) and Proposition 3.7. (2).              

□ 
Proposition 3.9. Consider the formula  

 𝐯 = (𝑣1(𝑧), 𝑣2(𝑧)) ↦ 𝐻(𝑣1(𝑧), 𝑣2(𝑧)),  (22) 

where 𝐻(⋅) is given by the equation (18). 

(1) If 𝐯 ∈ ℰ2 , then 𝐻(𝐯) ∈ 𝐻𝛼
1(ℝ)2 , also 𝐻(⋅) is 

Lipschitz on any set of the form {𝐯: ||𝐯||ℰ ≤ 𝐾} 
and there exists a constant 𝐶𝐾 > 0 depending 

on 𝐾 such that ||𝐻(𝐯)||𝛼 ≤ 𝐶𝐾||𝐯||0||𝐯||𝛼. 

(2) Formula (18) for 𝐻(𝑣1, 𝑣2) defines a mapping 

from ℰ2 to ℰ2 that is Lipschitz on any set of the 

form {𝐯: ||𝐯||ℰ ≤ 𝐾} and ||𝐻(𝐯)||ℰ ≤ 𝐶𝐾||𝐯||ℰ
2. 

 

Proof. To prove assertion (1), we use the following 
inequality: 

||𝐻(𝐯)||𝛼 = ||𝛾𝛼𝐻(𝐯)||0
= ||𝛾𝛼𝐤𝑣2(𝑔(𝑣1 + 1/𝜅)
− 𝑔(1/𝜅))||0
≤ ||𝐤𝑚(𝑣1(𝑧))||0||𝛾𝛼𝑣2||0
≤ 𝐶𝐾||𝑣1||0||𝑣2||𝛼
≤ 𝐶𝐾||𝐯||0||𝐯||𝛼 

for some 𝐶𝐾 > 0 depending on 𝐾. Assertion (2) can 
be proved similarly to Proposition 3.8. (2) by using 
Proposition 3.7. (2).                                                □ 
 
3.3 Nonlinear Stability Analysis 
In this subsection, we prove the stability of the right 
end state 𝐮− of the system (5) on ℰ2. The operator 
ℒℰ  generates a strongly continuous semigroup on 
ℰ2 . The nonlinear term yields a locally Lipschitz 
mapping on ℰ2  by Proposition 3.9. Therefore we 
can apply the following standard result. 
 
Lemma 3.10. Let 𝒳 be a Banach space. Consider 

the system 

 𝐯𝑡 = ℒ𝐯(𝑡) + 𝐻(𝐯(𝑡)), 𝑡 ≥ 0, 
where 𝐻(𝐯) is locally Lipschitz continuous in 𝐯 and 

the operator ℒ: 𝑑𝑜𝑚(ℒ) ⊂ 𝒳 ↦ 𝒳  generates a 𝐶0 

semigroup 𝑇(𝑡) on 𝒳. 

For any 𝐯0 ∈ 𝒳  the system has a unique mild 

solution 𝒗 with the initial value 𝐯0. The solution is 

defined for the time 𝑡 in the maximal interval 0 ≤
𝑡 < 𝑡𝑚𝑎𝑥(𝐯

0) where 0 < 𝑡𝑚𝑎𝑥(𝐯
0) ≤ ∞. 

 

Proof. See [8, Theorem 6.1.4].                               □ 
 

Next, we recall yet another standard fact. 
Consider a system of the form 𝐯𝑡 = 𝐿𝐯 +
𝐻(𝐯(𝑡)),where the operator ℒ  is defined by the 
formula 𝐯 ↦ 𝐿𝐯 with the domain 𝑑𝑜𝑚(ℒ) ⊂ ℰ  and 
generates a 𝐶0-semigroup on ℰ, and 𝐻(⋅) is a locally 
Lipschitz mapping from ℰ into ℰ.  

Let 𝐸 be given by 
𝐸 = {(𝐯0, 𝑡) ∈ ℰ × ℝ+: 0 ≤ 𝑡 < 𝑡𝑚𝑎𝑥(𝐯

0)}; 
so that the set 𝐸  is open in ℰ  × ℝ+ , and the map 
(𝐯0, 𝑡) ↦ 𝐯 from 𝐸 to ℰ is continuous. We have the 
following lemma. 
Lemma 3.11. For each 𝛿 > 0, if 0 < 𝛾 < 𝛿, then 

there exists 𝑇 depending on 𝛾 and 𝛿, with 0 < 𝑇 ≤
∞, such that the following holds: if 𝐯0 ∈ ℰ satisfies 

 ||𝐯0||ℰ ≤ 𝛾                                       (23) 

and 0 ≤  𝑡 < 𝑇 , then the solution 𝐯(𝑡) ∈ ℰ  of the 

system (10) is defined and satisfies  

 ||𝐯(𝑡)||ℰ ≤ 𝛿.                                          (24) 

Proof. The proof is the same as the proof in [9, 
Theorem 46.4].                                                       □ 
If 𝛿, 𝛾 > 0  are fixed, let 𝑇(𝛾, 𝛿)  denote the 
supremum of all 𝑇 such that (24)  holds for all 0 ≤
 𝑡 < 𝑇  whenever (23) is satisfied. In addition, we 
obtain the following results by Proposition 3.3: 
 
Lemma 3.12. Let ℒ𝛼: 𝑑𝑜𝑚(ℒ𝛼) ⊂ 𝐻𝛼

1(ℝ)2 ↦
𝐻𝛼
1(ℝ)2  be the operator defined in subsection 3.1. 

There exists 𝜈 > 0 which satisfies  

 𝑠𝑢𝑝{Re𝜆: 𝜆 ∈ 𝜎(ℒ𝛼)} < −𝜈.                  (25) 

Moreover, there exists a constant 𝐾 > 0 such that ∥
𝑒𝑡ℒ𝛼 ∥𝐻𝛼1(ℝ)2→𝐻𝛼1(ℝ)2≤ 𝐾𝑒

−𝜈𝑡 for 𝑡 ≥  0. 

 

Proof. Recall equation (11): 
 𝐿 = (1 0

0 𝜖
) ∂𝑧𝑧 + (

1 0
0 1

) 𝑐 ∂𝑧 + (
0 𝑒−𝜅

0 −𝜅𝑒−𝜅
) . 

The operator ℒ𝛼  generates an analytic semigroup 
provided 𝜖 > 0  and a strongly continuous 
semigroup provided 𝜖 = 0. As shown in [4], in both 
cases the differential operator ℒ associated with the 
differential expression 𝐿 in (11) enjoys the spectral 
mapping property, that is, the boundary of the 
spectrum of the semigroup operator 𝑒𝑡ℒ𝛼  is 
controlled by the boundary of the spectrum of the 
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semigroup generator ℒ𝛼  for any 𝜖 ≥ 0 . By 
Proposition 3.3 we  can choose 𝜈 > 0  such that 
𝑠𝑢𝑝{Re 𝜆: 𝜆 ∈ 𝜎(ℒ𝛼)} < −𝜈 . Furthermore, by the 
above mentioned semigroup property, see, e.g. 
Proposition 4.3 in [4], there exists 𝐾 > 0 such that  
||𝑒𝑡ℒ𝛼||𝐻𝛼1(ℝ)2→𝐻𝛼1(ℝ)2 ≤ 𝐾𝑒

−𝜈𝑡.                            □ 
We are ready to start the stability analysis. We 

will first show that the solution of (10) is 
exponentially decaying in the || ⋅ ||𝛼 norm. 

 
Proposition 3.13. Let 𝜈 > 0  satisfies (25). Then 

there exist 𝛿1 > 0  and 𝐾1 > 0 such that for every 

𝛿 ∈ (0, 𝛿1)  and every 𝛾  with 0 < 𝛾 < 𝛿 , the 

following holds for the mild solution 𝐯 = 𝐯(𝑡)  of 

(10) with the initial value  𝐯0: If  𝐯0 ∈ ℰ2 satisfies 

(23) such that 𝐯(𝑡)  satisfies (24) for 0 ≤  𝑡 <
𝑇(𝛿, 𝛾) , then 

||𝐯(𝑡)||𝛼 ≤ 𝐾1𝑒
−𝜈𝑡||𝐯0||𝛼 , 0 ≤ 𝑡 < 𝑇(𝛿, 𝛾).   (26) 

Proof. Since 𝐯(𝑡) is a mild solution of (10) on ℰ2, it 
satisfies the integral equation 

𝐯(𝑡) = 𝑒𝑡ℒℰ𝐯0 + ∫ 𝑒(𝑡−𝑠)ℒℰ𝐻(𝐯(𝑠))𝑑𝑠
𝑡

0
.    (27) 

Since 𝐯0 ∈ ℰ2  by assumption, it is clear that 
𝐻(𝐯(𝑠)) is in 𝐻𝛼1(ℝ) by Proposition 3.9, so we have  

𝑒𝑡ℒℰ𝐯0 = 𝑒𝑡ℒ𝛼𝐯0; 
𝑒(𝑡−𝑠)ℒℰ𝐻(𝐯(𝑠)) = 𝑒(𝑡−𝑠)ℒ𝛼𝐻(𝐯(𝑠)). 

Next, we replace ℒℰby ℒ𝛼 in (27) and choose 𝜈 >
𝜈 > 0  such that 𝑠𝑢𝑝{Re𝜆: 𝜆 ∈ 𝜎(ℒ𝛼)} < −𝜈 < 𝜈 <
0 and define 𝑘 = 𝜈/𝜈 > 1. 

By Lemma 3.12, there exists 𝐾1 > 0  such that 
||𝑒𝑡ℒ𝛼|| ≤ 𝐾1𝑒

−𝜈𝑡  for all 𝑡 ≥  0 . Pick any 𝛿′ > 0 , 
for 0 < 𝛾 < 𝛿′, and notice that if ||𝐯0||ℰ < 𝛾, then 
||𝐯(𝑠)||ℰ < 𝛿

′  for all 𝑠 ∈ (0, 𝑇(𝛿′, 𝛾))  by Lemma 
3.11. 

With the aid of Propostion 3.9. (1), there exists a 
constant 𝐶𝛿′ > 0 depending on 𝛿′ such that for all 
𝑡 ∈ [0, 𝑇(𝛿′, 𝛾)), using that ||𝐯(𝑠)||ℰ ≤ 𝛿′ when 𝑠 ∈
(0, 𝑇(𝛿′, 𝛾)), it follows that 

||𝐯(𝑡)||𝛼
≤ 𝐾1𝑒

−𝜈𝑡||𝐯0||𝛼

+∫ 𝐾1𝑒
−𝜈(𝑡−𝑠)𝐶𝛿′||𝐯(𝑠)||0||𝐯(𝑠)||𝛼𝑑𝑠

𝑡

0

. 

For each 𝛿 < 𝛿′, and 0 < 𝛾 < 𝛿 , if ||𝐯0||ℰ < 𝛾 , 
then ||𝐯(𝑠)||ℰ < 𝛿  for all 𝑠 ∈ (0, 𝑇(𝛿, 𝛾))  by 
Lemma 3.1. Then, for all 𝑡 ∈ [0, 𝑇(𝛿′, 𝛾)), we have 
||𝐯(𝑡)||𝛼 ≤ 𝐾1𝑒

−𝜈𝑡||𝐯0||𝛼

+ 𝐾1𝐶𝛿′𝛿∫ 𝑒−𝜈(𝑡−𝑠)||𝐯(𝑠)||𝛼𝑑𝑠
𝑡

0

. 

Applying Gronwall's inequality for 𝑒𝜈𝑡 ∥ 𝐯(𝑡) ∥𝛼 , 
we conclude that the inequality 

𝑒𝜈𝑡||𝐯(𝑡)||𝛼 ≤ 𝐾1||𝐯
0||𝛼

+ 𝐾1𝐶𝛿′𝛿∫𝑒
𝜈𝑠||𝐯(𝑠)||𝛼𝑑𝑠

𝑡

0

, 

implies, by Gronwall's inequality, that 
 𝑒𝜈𝑡||𝐯(𝑡)||𝛼 ≤ 𝐾1||𝐯

0||𝛼𝑒
𝐾1𝐶𝛿′𝛿𝑡 , 

so that 
 ||𝐯(𝑡)||𝛼 ≤ 𝐾1||𝐯

0||𝛼𝑒
𝐾1𝐶𝛿′𝛿𝑡−𝜈𝑡.  

By choosing 𝛿1 < 𝑚𝑖𝑛{𝛿′, (𝑘 − 1)
𝜈

𝐾1𝐶𝛿′
} , we can 

conclude that (26) holds for all 𝛿 ∈ (0, 𝛿1).         □ 
 

We now show that the solution of (10) is bounded 
in the || ⋅ ||0  norm, and the component 𝑣2(𝑡)  is 
exponentially decaying in the || ⋅ ||0 norm. 

 
Proposition 3.14. Let 𝜌 > 0 be chosen as in Lemma 

3.4. (3), and 𝛿1  be given by Proposition 3.13. 

Assume that 𝜈 < 𝜌 , where 𝜈  satisfies (25). Then 

there exist constants 𝛿2 ∈  (0, 𝛿1) and 𝐶1 > 0  such 

that for every 𝛿 ∈ (0, 𝛿2) and every 𝛾 with 0 < 𝛾 <
𝛿 , the following holds: If 0 ≤  𝑡 < 𝑇(𝛿, 𝛾) , and 
𝐯0 ∈ ℰ2 satisfies  (23) such that 𝐯(𝑡) ∈ ℰ2 satisfies 

(24), then the following estimates hold:  
||𝑣1(𝑡)||0 ≤ 𝐶1||𝐯

0||ℰ ,                        (28) 
||𝑣2(𝑡)||0 ≤ 𝐶1𝑒

−𝜌𝑡||𝐯0||ℰ .                (29) 
 

Proof. We write (10) as a non-autonomous linear 
system on 𝐻1(ℝ)2: 
𝑣1𝑡 = 𝐿1𝑣1 + 𝑒

−𝜅𝑣2 +𝐻1(𝑣1(𝑡), 𝑣2(𝑡)),         (30) 
𝑣2𝑡 = 𝐿2𝑣2 +𝐻2(𝑣1(𝑡), 𝑣2(𝑡)),                        (31) 

where 𝐿1 , 𝐿2  are defined in (16) and (17), 𝐯(𝑡) =
(𝑣1, 𝑣2)(𝑡) is a fixed solution of (10), and  

𝐻1(𝐯) = 𝑣2(𝑔(𝑣1 + 1/𝜅) − 𝑔(𝑣1)), 
 𝐻2(𝐯) = −𝜅𝑣2((𝑔(𝑣1 + 1/𝜅) − 𝑔(𝑣1)).    
Note that (𝑣1, 𝑣2) is the solution of (30)-(31) with 
the value (𝑣10, 𝑣20)  at 𝑡 = 0 , that is (𝑣1, 𝑣2)(𝑡) =
(𝑣1, 𝑣2)(𝑡, 𝑣1

0, 𝑣2
0). 

With the help of  Proposition 3.8. (2), we can find 
a constant 𝐶𝛿1 > 0 such that  

||𝐻1(𝑣1, 𝑣2)||0 ≤ 𝐶𝛿1||𝑣1||0||𝑣2||0,           (32) 
and 
||𝐻2(𝑣1, 𝑣2)||0 =∥ −𝜅𝐻1(𝐯) ∥0≤ 𝐶𝛿1||𝑣1||0||𝑣2||0 

(33) 
if ||𝐯||0 ≤ 𝛿1. 

The solution of (31) in 𝐻1(ℝ) can be written as  

𝑣2(𝑡) = 𝑒
𝑡ℒ2𝑣2

0 +∫ 𝑒(𝑡−𝑠)ℒ2𝐻2(𝑣1(𝑠), 𝑣2(𝑠))
𝑡

0

𝑑𝑠. 

We then choose some 𝜌 > 𝜌 > 0 and 𝑘 = 𝜌/𝜌 > 1 
such that 
 𝑠𝑢𝑝{Re𝜆: 𝜆 ∈ 𝜎(ℒ2)} < −𝜌:= −𝑘𝜌. 
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By Lemma 3.4. (3), there exists 𝐾2 > 0 such that 
||𝑒𝑡ℒ2||𝐻1(ℝ)→𝐻1(ℝ) ≤ 𝐾2𝑒

−𝜌𝑡 .For each 𝛿 ∈ (0, 𝛿1 ) 
and 𝛾 ∈ (0, 𝛿), if ||𝐯0||ℰ ≤ 𝛾 then  

||𝑣1(𝑠)||0 ≤ ||𝑣1(𝑠)||ℰ ≤ ||𝐯(𝑠)||ℰ ≤ 𝛿. 
By Lemma 3.11, we can use (33) to obtain the 
following estimate for 𝑣2(𝑡): 

||𝑣2(𝑡)||0
≤ 𝐾2𝑒

−𝜌𝑡||𝑣2
0||0

+∫ 𝐾2𝑒
−𝜌(𝑡−𝑠)𝐶𝛿1||𝑣1(𝑠)||0||𝑣2(𝑠)||0

𝑡

0

𝑑𝑠

≤ 𝐾2𝑒
−𝜌𝑡||𝑣2

0||0

+∫ 𝐾2𝑒
−𝜌(𝑡−𝑠)𝐶𝛿1𝛿||𝑣2(𝑠)||0

𝑡

0

𝑑𝑠. 

We then compute  
𝑒𝜌𝑡||𝑣2(𝑡)||0 ≤ 𝐾2||𝑣2

0||ℰ

+ 𝐾2𝐶𝛿1𝛿∫ 𝑒𝜌𝑠||𝑣2(𝑠)||0

𝑡

0

𝑑𝑠

≤ 𝐾2||𝐯
0||ℰ

+ 𝐾2𝐶𝛿1𝛿∫ 𝑒𝜌𝑠||𝑣2(𝑠)||0

𝑡

0

𝑑𝑠. 

Applying Gronwall's inequality to 𝑒𝜌𝑡||𝑣2(𝑡)||0, we 
infer that 
 ||𝑣2(𝑡)||0 ≤ 𝐾2||𝐯

0||ℰ𝑒
𝐾2𝐶𝛿1𝛿𝑡−𝜌𝑡. 

Let 𝛿2 < 𝑚𝑖𝑛(𝛿1,
(𝑘−1)𝜌

𝐾2𝐶𝛿1
).  Then for 𝛿 < 𝛿2  it 

follows that 
||𝑣2(𝑡)||0 ≤ 𝐾2||𝐯

0||ℰ𝑒
−𝜌𝑡 for  𝑡 ∈ [0, 𝑇(𝛿, 𝛾)),  

(34) 
which proves (29).  

We now give the proof of equation (28). The 
solution of (30) in 𝐻1(ℝ) satisfies 

𝑣1(𝑡) = 𝑒
𝑡ℒ1𝑣1

0 +∫ 𝑒(𝑡−𝑠)ℒ1(𝑒−𝜅𝑣2(𝑠)
𝑡

0

+𝐻1(𝑣1(𝑠), 𝑣2(𝑠)) 𝑑𝑠. 
First, since ℒ1  generates a bounded semigroup by 
Lemma 3.4. (1), there exists a constant 𝐾3 > 0, such 
that ||𝑒𝑡ℒ1||𝐻1(ℝ)→𝐻1(ℝ) ≤ 𝐾3. Using equation (32) 
and the fact that ||𝑒−𝜅𝑣2(𝑠)||0 ≤ ||𝑣2(𝑠)||0 for 𝜅 >
0, we infer that 
||𝑣1(𝑡)||0 ≤ 𝐾3||𝑣1

0||0

+∫ (
𝑡

0

𝐾3𝐶𝛿1||𝑣2(𝑠)||0||𝑣1(𝑠)||0

+ 𝐾3||𝑣2(𝑠)||0)𝑑𝑠. 
Also, using the fact that  ||𝑣1(𝑠)||0 ≤ ||𝐯(𝑠)||0 ≤
||𝐯(𝑠)||ℰ < 𝛿 < 𝛿2 , we have, for a constant 
𝐶𝛿1,𝛿2 > 0 independent of 𝛿, that  

||𝑣1(𝑡)||0 ≤ 𝐾3||𝑣1
0||ℰ +∫ (

𝑡

0

𝐾3𝐶𝛿1,𝛿2||𝑣2(𝑠)||0

+ 𝐾3||𝑣2(𝑠)||0)𝑑𝑠
≤ 𝐾3||𝑣1

0||ℰ

+∫ 𝐾3𝐶𝛿1,𝛿2||𝑣2(𝑠)||0

𝑡

0

𝑑𝑠. 

Then we use (34) to obtain 
||𝑣1(𝑡)||0 ≤ 𝐾3||𝐯

0||ℰ

+∫ 𝐾2𝐾3𝐶𝛿1,𝛿2𝑒
−𝜌𝑠||𝐯0||ℰ

𝑡

0

𝑑𝑠

≤ 𝐾3||𝐯
0||ℰ

+ 𝐾2𝐾3𝐶𝛿1,𝛿2||𝐯
0||ℰ∫ 𝑒−𝜌𝑠

𝑡

0

𝑑𝑠

≤ 𝐶2||𝐯
0||ℰ 

for some 𝐶2 > 0 . In conclusion, there exists a 
constant 𝐶1 > 0  such that for 𝛿 ∈ (0, 𝛿2)  and 𝛾 ∈
(0, 𝛿),  the inequalities (28) and (29) hold if 𝑡 ∈
[0, 𝑇(𝛿, 𝛾)).                                                            □ 
 

We now complete the proof of the nonlinear 
stability of the end state 𝐮−.  

 
Remark 3.15. We claim that the end state 𝐮− of (5) 

is stable in || ⋅ ||ℰ. The proof of the stability of  𝐮− 

is, in fact, contained in the next theorem and relies 

on on the following bootstrap argument based on 

Proposition 3.13 and Proposition 3.14. Indeed, 

these propositions yield the existence of constants 

𝛿0 > 0 and 𝐶𝛿0 > 0 such that for every 𝛿 ∈ (0, 𝛿0) 

and every 𝛾 ∈ (0, 𝛿), there exists 𝑇(𝛿, 𝛾) such that 

for every 𝑡 ∈ [0, 𝑇(𝛿, 𝛾)) the inequalities  

∥ 𝐯(𝑡) ∥ℰ< 𝛿 and ∥ 𝐯(𝑡) ∥ℰ≤ 𝐶𝛿0 ∥ 𝐯
0 ∥ℰ     (35) 

hold for the solution 𝐯(𝑡) of (10) with initial value 
𝐯0 ∈ ℰ as long as ∥ 𝐯0 ∥ℰ< 𝛾. Let us show that for 

each 𝛿 ∈ (0, 𝛿0) , there exists an 𝜂  such that if 
∥ 𝐯0 ∥ℰ< 𝜂 then ∥ 𝐯(𝑡) ∥ℰ< 𝛿 for all 𝑡 ≥  0, that is, 

the end state 𝐮−  of (5) is stable in ℰ . Indeed, 

assuming 𝐶𝛿0 > 1 with no loss of generality, set 𝜂 =
𝛿

2𝐶𝛿0
 and assume ∥ 𝐯0 ∥ℰ< 𝜂 . Then ∥

𝐯(𝑇(𝛿, 𝛾)) ∥ℰ< 𝛿/2  by using (35), and thus the 

solution 𝐯 with the initial value 𝐯(𝑇(𝛿, 𝛾))) satisfies 

(35) again for 𝑡 ∈ [𝑇(𝛿, 𝛾),2𝑇(𝛿, 𝛾)) , again by 

Propositions 3.13 and 3.14. So, these propositions 

can be applied for all 𝑡 ≥  0, proving the stability. 

In addition, as long as these propositions are 

applicable, we obtain a more refined information 

about the behavior of the solution, such as its 

boundedness in ∥⋅∥0  norm and the exponential 

decay in ∥⋅∥𝛼  norm, see items (3)-(4) of the next 

theorem. We now proceed  with a more formal 

exposition of the stability statement. 
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Given an initial value 𝐯0 ∈ ℰ2 , let 𝐯(𝑡) =
𝐯(𝑡, 𝐯0) be the solution of (10) in ℰ2  with 𝐯(0) =
𝐯0 , which we have shown to exist on 0 ≤ 𝑡 <
𝑡𝑚𝑎𝑥(𝐯

0)  by Lemma 3.10. We shall show that 
𝐯(𝑡) ∈ ℰ2 is defined and bounded in ∥⋅∥ℰ  norm, and 
exponentially decaying in  ∥⋅∥𝛼 norm for all time 
𝑡 > 0. We note that the small constant in the next 
theorem can be chosen as 𝛿0 = 𝛿2  where 𝛿2  is 
chosen as in Proposition 3.14. 
 
Theorem 3.16. There exist  constants 𝐶 > 0  and 

𝜈 > 0 such that for each 0 < 𝛿 < 𝛿0 , we can find 

𝜂 > 0 such that  if ||𝐯0||ℰ ≤ 𝜂, then for all 𝑡 > 0 

the following holds: 

(1) 𝐯(𝑡) is defined; 
(2) ||𝐯(𝑡)||ℰ ≤ 𝛿; 
(3) ||𝐯(𝑡)||𝛼 ≤ 𝐶𝑒−𝜈𝑡||𝐯0||𝛼; 
(4) ||𝑣1(𝑡)||0 ≤ 𝐶||𝐯0||ℰ; 
(5) ||𝑣2(𝑡)||0 ≤ 𝐶𝑒−𝜈𝑡||𝐯0||ℰ . 
 
Proof. Choose 𝜈 as in Lemma 3.12. Choose 𝛿0 = 𝛿2 
as indicated in Proposition 3.14. Let 𝐶 be a constant 
satisfying 𝐶 > 𝑚𝑎𝑥{1, 𝐾1, 𝐶1} with 𝐾1  and 𝐶1  given 
as in Propositions 3.13 and 3.14. Let 0 < 𝛾 < 𝛿 <
𝛿0  and set 𝜂 = 𝐶−1𝛾 . Assume 𝐯0 ∈ ℰ  satisfies 
∥ 𝐯0 ∥ℰ≤ 𝜂 . Since ∥ 𝐯0 ∥ℰ< 𝜂 < 𝛿 , the solution 
𝐯(𝑡)  exists and satisfies statements (2)-(5) in the 
theorem for 𝑡 ∈ [0, 𝑇(𝛿, 𝜂))  by Propositions 3.13 
and 3.14. We claim that 𝑇(𝛿, 𝜂) = ∞, so that the 
proof is finished as soon as the claim is justified. To 
do this, for any 𝑇 ∈ (0, 𝑇(𝛿, 𝜂))  we consider the 
solution with the initial data 𝐯(𝑇) . Note that 
staments (3)-(5) for 𝑡 = 𝑇  yield ∥ 𝐯(𝑇) ∥ℰ≤
𝐶 ∥ 𝐯0 ∥ℰ≤ 𝐶𝜂 ≤ 𝛾  and thus Lemma 3.11 applies 
and gives ∥ 𝐯(𝑇 + 𝑡) ∥ℰ≤ 𝛿  for 𝑡 ∈ (0, 𝑇(𝛿, 𝛾)) . 
Therefore, we proved that if ∥ 𝐯0 ∥ℰ< 𝜂  then 
||𝐯(𝑡)||ℰ ≤ 𝛿  for all 𝑡 ∈ [0, 𝑇(𝛿, 𝛾) + 𝑇) . This 
shows that 𝑇(𝛿, 𝜂) ≥  𝑇(𝛿, 𝛾) + 𝑇 and therefore 
implies 𝑇(𝛿, 𝜂) ≥  𝑇(𝛿, 𝛾) + 𝑇(𝛿, 𝜂)  and thus 
𝑇(𝛿, 𝜂) = ∞ as claimed. 

□ 
 
4 Conclusion 
We now generalize the above results to a more 
general system with the general nonlinearity 𝑓(⋅) 
and the coefficient matrix 𝐷 given by 

𝐮𝑡(𝑡, 𝐱) = 𝐷Δ𝐱𝐮(𝑡, 𝐱) + 𝑓(𝐮(𝑡, 𝐱)),            (36) 
where 𝐮 ∈ ℝn, 𝐱 ∈ ℝd, 𝑡 ≥ 0, 𝐷 = 𝑑𝑖𝑎𝑔(𝑑1, … , 𝑑𝑛) 
with all 𝑑𝑖 ≥  0 , and the function 𝑓:ℝ𝑛 → ℝ𝑛  is 
smooth, see Hypothesis 4.1 below. We will present 
here the stability result of an 𝐱 -independent 
stationary solution 𝐮− = 0  to the system (36) and 

its perturbation depending only on 𝑧 = 𝐱 ⋅ 𝐞 − 𝑐𝑡 
from summarizing the stability analysis of the 
model system (5). 
 
Hypothesis 4.1.  

(a) In appropriate variables 𝐮 = (𝐮1, 𝐮2), 𝐮1 ∈
ℝ𝑛1 , 𝐮2 ∈ ℝ

𝑛2 , 𝑛1 + 𝑛2 = 𝑛 , we assume that 

for some constant 𝑛1 × 𝑛1 matrix 𝐴1, 
𝑓(𝐮1, 0) = (𝐴1𝐮1, 0)

𝑇 . 
Moreover,  

𝐷 = (
𝐷1 0
0 𝐷2

) , 𝑓(𝐮) = (
𝑓1(𝐮1, 𝐮2)

𝑓2(𝐮1, 𝐮2)
) 

where each 𝐷𝑖  is a nonnegative diagonal 

matrix of size 𝑛𝑖 × 𝑛𝑖 , and 𝑓𝑖: ℝ
𝑛1 × ℝ𝑛2 →

 ℝ𝑛𝑖 for 𝑖 = 1,2. 

(b) The function 𝑓 is 𝐶3 from ℝ𝑛 to ℝ𝑛. 

(c) For the linear operator ℒ𝛼 associated with the 

differential expression 

𝐿 = 𝐷𝜕𝑧𝑧 + 𝑐𝜕𝑧 + 𝜕𝒖𝑓(0,0), 
there exists 𝛼 > 0  such that 𝑠𝑢𝑝{Re 𝜆: 𝜆 ∈
𝜎(ℒ𝛼)} < 0 on 𝐻𝛼

1(ℝ)𝑛. 

(d) The operator ℒ1 associated with the differential 

expression  

𝐿1 = 𝐷1𝜕𝑧𝑧 + 𝑐𝜕𝑧 + 𝐴1 

generates a bounded semigroup on 𝐿2(ℝ)𝑛1 
and 𝐻1(ℝ)𝑛1. 

(e) The operator ℒ2 associated with the differntial 

expressin  

𝐿2 = 𝐷2𝜕𝑧𝑧 + 𝑐𝜕𝑧 + 𝜕𝒖2𝑓2(0,0) 

 satisfies 𝑠𝑢𝑝{Re 𝜆: 𝜆 ∈ 𝜎(ℒ2)} < 0  on 

𝐿2(ℝ)𝑛2 and 𝐻1(ℝ)𝑛2. 
 

By the discussion in Section 2, replacing the 
spatial variable 𝐱 = (𝑥1, … , 𝑥𝑑)  by the moving 
variable 𝑧 = 𝐱 ⋅ 𝐞 − 𝑐𝑡 ∈ ℝ in (36), we obtain  
𝐮𝑡(𝑡, 𝑧) = 𝐷𝐮𝑧𝑧(𝑡, 𝑧) + 𝑐𝐮𝑧(𝑡, 𝑧) + 𝑓(𝐮(𝑡, 𝑧)),  (37) 
We will now rewrite the equation for the 
perturbation 𝐯(𝑡, 𝑧) of the stationary solution 𝐮− in 
the form amenable for the subsequence analysis. We 
seek a solution to (37) of the form 𝐮(𝑡, 𝑧) = 0 +
𝐯(𝑡, 𝑧), with this notation, 𝐯(𝑡, 𝑧) satisfies 

𝐯𝑡 = 𝐷𝐯𝑧𝑧 + 𝑐𝐯𝑧 + ∂𝐮𝑓(0)𝐯 + 𝑓(𝐯) − 𝑓(0)
− ∂𝐮𝑓(0)𝐯.                            

(38) 
 
We can show that for the system (36) satisfying 
Hypothesis 4.1, if the initial values of the 
perturbation of the stationary solution 𝐮−  are 
sufficiently small in both the weighted and 
unweighted norms, the perturbation will converge 
exponentially in the global time domain in the 
weighted norm and remain bounded in the 
unweighted norm. Note that the hypotheses we have 
given are sufficient to cover the conditions we need 
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in the proof, so this proof will be very similar to the 
one in Section 3, and we will not repeat it here. 

In summary, in this paper we have discussed the 
stability of the stationary solution of a class of 
reaction-diffusion equations in multidimensional 
space and have summarized the characteristics of 
this class of equations. Although the approach of 
this discussion is essentially similar to the one in [5] 
for equations in one-dimensional space, it can be 
constituted together with the discussion in [7] for 
the stability of the stationary solution of this class of 
reaction-diffusion equations in multidimensional 
space with respect to two types of perturbations. It is 
worth noting that there are still many unsolved 
problems in this type of nonlinear stability analysis, 
such as the stability analysis of traveling wave 
solutions 𝐰(𝐱)  for this class of equations in 
multidimensional space, which we mentioned in 
Section 2, is still a difficult problem, and this is a 
direction that may need to be covered in future 
studies. 
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