
Network systems have become one of the most popular
approaches to engineering in recent years. Consequently,
ensuring accurate tracking in an uncertain environment is
transformed into a recent problem. [1], [2] in a network
environment usually the measurement taken by the sensors
suffer from random perturbations or limited communications
which let random phenomena or packet errors such as delays,
packet dropouts, and lost data, among others [3], [4]. In
conventional estimation strategies, deteriorated performance
may be produced if the measurement vector which arrives at
the processor is adopted. In this sense, new strategies should be
designed to improve the accuracy of estimations in unreliable
data.

Generally, estimation methodologies depict in an accurate
sense the current behavior of the measurements is hard work.
In recent decades, many methods have been investigated to
characterize this random success. the Bernoulli distribution is
the regular model used to describe these phenomenons [5].
One-step random delays and multiple time delays have been
studied in which the Kalman filter, H∞, distributed filter,
and others [6]–[8] are been developed by random Bernoulli
variables. In [9] the UFIR filter approach was developed using
consecutive random variables to depict the real behavior of the
measurement; notable robustness was determined compared
with other filters.

In relation to transmission losses, The most general com-
pensation framework consists of the zero input and the Hold-
input mechanisms [10], [11]. Nothing or the last successfully
transmitted measurement is used to compensate when noth-

ing arrives at the processor. However, notables damages are
obtained in network congestion. in order to avoid this, new
methodologies are used to improve it, such as processing the
multiple packet data [12] , predictive compensation, or using
the time stamp information [13]–[15].

Motivated by the above discussion and avoiding real mis-
takes with system knowledge, this paper considers the unbi-
ased FIR filter in network systems with uncertain measure-
ment [16]–[18]. The predictive compensation and time stamp
methodology are compared and analyzed by the UFIR filter
to improve the accuracy and robustness of state estimation,
also expose crucial advantages bounding input bounded output
stability, higher robustness than KF, and ignoring zero-mean
noise and initial values. Experimental testing based on the
Global Positioning System (GPS) is also provided.

The network system and the sensor measurement of the
process may be expressed by the following linear model in
discrete time:

xn = Fxn−1 + wn , (1)
yn = Hxn + vn , (2)

where F ∈ RK×K , H ∈ RK×M are known matrices with
appropriate size; xn ∈ RK and yn ∈ RM are the state
vector and the measurement vector at time n respectively.
wn ∼ N (0, Q) ∈ RK and vn ∼ N (0, R) ∈ RM are mea-
surement and model noise vectors with zero mean and non-
correlation between other vectors. The covariance matrices sat-
isfy Q = E{wnw

T
n } ∈ RK×K and R = E{vnvTn } ∈ RM×M .

In order to update the filter with the sensor measurement
transmitted at most one time, two approaches are handled to
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reflect the stochastic and unpredictable delays and multiple
packet dropouts during the communication in accordance with
the time stamp.

Attempting to express the real behavior during the signal
transmission is defiance, the estimation from measurements
that are assumed valid is a common failure at estimating
accurately. When a measurement is not accurate, compensating
it with the latest measurement transmitted successfully, is an
efficient compensation strategy. However, in the case that it
can not fall, another compensation strategy is needed.

Employing all the information at the packet sensor, as the
time stamp, is a physical strategy to make a balance at the
signal receiving. Based on [13], when the sensor data is
time-stamped the filter perceives if no data or only noise is
taken. In accordance, a flag triggers a predictive algorithm.
The packet dropout compensation consists of replacing each
lost observation with a predictive algorithm based on the last
estimation. The following observation model is proposed to
address the estimation problem.

{
zn = (αnyn + (1− αn) yn−1) ifβn = 1

zn = ŷn ifβn = 0
(3)

where yn is the measurement vector, ŷn is the predictive
vector, and zn ∈ RM is the transmitted measurement vector.
αn is a binary random variable with known probabilities
P{αn = 1} = αn and P{αn = 0} = 1 − αn and βn is
a scalar loss data factor. the predictive observation is defined
as:

ŷn = HFx̂n−1 , (4)

In (3), βn select which information may arrive at each time
n. We assume that βn is independent of αn. Under βn = 1
denote the received measurement output, a currently packet
data zn = yn if αn = 1 with probability ᾱ, a delay-step data
zn = yn−1 if αn = 0 with probability (1− ᾱ).

In contrast to the time step approach, According to [14]
when the processor does not have the knowledge of delays
and lost data at the arrival signal, but the probability of
this occurring is distinguished, The packet dropout compensa-
tion scheduling incorporates the probabilistic information by
Bernoulli variables to express the unreliable effects of delays
and lost data.

zn = α0,nyn + (1− α0,n)
{
(1− α0,n−1)α1,nyn−1

+(1− (1− α0,n−1)α1,n) ŷn
}
, (5)

where α0,n and α1,n are binary random variables with known
probabilities P{α0,n = 1} = α0,n and P{α0,n = 0} = 1 −
α0,n and P{α1,n = 1} = α1,n and P{α1,n = 0} = 1− α1,n.

Following (5) the measurement is received at time n with
probability ᾱ0 when α0,n = 1 in contrast delay step data or
nothing is received; following the inaccurately data variable

α1,n, one-step delay data with probability (1− ᾱ0)
2ᾱ1 is ob-

tained if α0,n−1 = 0 and α1,n = 1 in other wise, a predictive
compensation is used with probability (1− ᾱ0)−(1− ᾱ0)

2ᾱ1.
Our aim is to design the UFIR filter x̂n based on the

optimum variance sense to analyze and compare the significant
influence of time stamps to generate an accurate estimation of
lost information appears. It is achieved using the observation
models (3) and (5).

In the unbiased estimation problem as in many other linear
estimators, the observation model of the signal to be estimated
should not depend on the previous states; thus, based on the
stochastic equations (3) and (5), a system transformation and
a FIR filter in sens of the unbiased condition will be derived.

To provide an unify general model, assume that for each n
the state evolution in terms of the previous time as xn−kn

=

F−kn

(
xn −

∑kn−1
j=0 wn−j

)
, Hence for a one-step delay kn =

1, kn = 1 xn−1 = F−1 (xn − wn).
for (1)-(3), We can obtain the transformed system zn =

H̄nxn + v̄n, with the parameter matrices

H̄n = αnH + (1− αn)HF−kn , (6)

v̄n = αnvn + (1− αn)vn−1 − (1− αn)Hwn , (7)

and the covariance measurement noise matrix is

R̄n = ᾱnRn + (1− ᾱn)Rn−1 − (1− ᾱn)HQn−1H
T , (8)

Now, for (1)-(5), the one-step predictor is designed assum-
ing that the estimation has minimum mean estimated error
E [en] = 0 to guaranty an unbiased estimation [19]. Note that,
when the expectation E [x̂n] satisfied as the mean state signal
E [xn], the predictive algorithm for stationary signals can be
expressed as ŷn = Hxn; Hence, the observation equation
provides a unified context to delay a one-step delay and lost
packets without delays as follows:

yn = α0,n (Hxn + vn) + (1− α0,n) (1− α0,n−1)α1,n

(Hxn−1 + vn) + (1− α0,n) (1− (1− α0,n−1)α1,n)

Hxn , (9)

without loss of observation, the parameter matrices can be
accessed in a compact form as:

H̄n = α0,nH + (1− α0,n) (1− α0,n−1)α1,nHF−kn

+(1− α0,n) (1− (1− α0,n−1)α1,n) , (10)

v̄n = α0,nvn + (1− α0,n) (1− α0,n−1)α1,nvn−1

− (1− α0,n) (1− (1− α0,n−1)α1,n)HF−knwn ,
(11)

3. Unbiased Estimator Problem 

3.1 System Transformation 
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and the covariance R = E
{
v̄nv̄

T
n

}
of noise vn is given by

R̄n = α0,nRn + (1− α0,n) (1− α0,n−1)α1,nRn−1

− (1− α0,n) (1− (1− α0,n−1)α1,n)

HF−knQnH
TF−knT , (12)

By setting the new measurement noise as v̄n, we
can noting at the both models, a correlation between
the new measurement noise and the modeling noise
as E{v̄nwT

n } = −(1 − αn)H and E{v̄nwT
n } =

− (1− α0,n) (1− (1− α0,n−1)α1,n)HF−kn

In the estimation method, the processor produces a linear
estimation based on the consideration of withe and uncorre-
lated noise, for this reason, the derivation of the filter with
correlated matrices will be deduced.

Referring to linear estimators as the Kalman filter which is
dependent on the noise covariance a new gain may be defined
in accord with the mean square error and the correlated noise.

The estimation error at the step-time n is defined as
en = xn − x̂n where x̂n is the estimation. Taking in to
account that a recursive estimation has the unify structure
x̂n = Fx̂n−1+Kn(zn−H̄nFx̂n−1), the estimation covariance
may be expressed as Pn = E{eneTn} as follow:

Pn = E{(xn − Fx̂n−1 −Kn(zn − H̄nFx̂n−1))

(xn − Fx̂n−1 −Kn(zn − H̄nFx̂n−1))
T }

=
(
In −KnH̄n

)
P−
n

(
In −KnH̄n

)T
+KnR̄nK

T
n

−
(
In −KnH̄n

)
ϕnk

T
n − knϕn

(
In −KnH̄n

)T
.(13)

where ϕn = E{wnv̄
T
n } and P−

n = FPn−1F
T +Q

The innovation gain filter should be obtained according to
the robustness criteria as an optimal estimation. Then, the gain
filter computing by minimizing the mean-squares estimation
error is given by

∂trPn

∂Kn
= −2

(
P−
n H̄

T

n + ϕn

)
+ 2Kn(H̄nP

−
n H̄

T

n

+R̄n + H̄nϕn + ϕT
n H̄

T

n ) . (14)

and

Kn =
(
P−
n H̄

T

n + ϕn

)
(Γn)

−1
. (15)

Finally, The covariance matrix at (13) is modified to the cross-
covariance as

P−
n = P−

n −Kn

(
H̄nP

−
n + ϕT

n

)
. (16)

where Γn = H̄nP
−
n H̄

T

n + R̄n + H̄nϕn + ϕT
n H̄

T

n

In a conclusion, we can observe the significance of the noise
covariance matrices at the filter derivation. In contrast, we will
be shown next as the UFIR filter will be computed to avoid
the use of the noise covariance matrices.

As has been already indicated, our aim is to design an
unbiased estimation based on a measurement vector with
uncertain failures, considering the different model approaches.

Let xn at the horizon [m,n], the state vector, the observation
vector and the matrices are calculated by an extended system
equation on the horizon as Xm,n = Am,nXm + Bm,nWm,n

and Ym,n = Cm,nxm + Dm,nwm,n + vm,n where Xm,n =[
xT
m xT

m+1 . . . xT
n

]T
and Ym,n =

[
yTm yTm+1 . . . yTn

]T
AN =

[
I FT . . . FN−1T

]T
, (17)

BN =


I 0 · · · 0 0
F I · · · 0 0
...

...
. . .

...
...

FN−2 FN−3 · · · I 0
FN−1 FN−2 · · · F I

 . (18)

Cm,n =


H̄m

H̄m+1F
H̄m+1F

2

...
H̄nF

n−1

 , (19)

Dm,n =


H̄m 0 0 . . . 0

H̄m+1F H̄m+1 0 . . . 0
H̄m+2F

2 H̄m+2F H̄m+2 . . . 0
...

...
. . .

...
...

H̄nF
N−1 H̄nF

N−2 H̄nF
N−3 . . . H̄n

 .(20)

In many practical applications, knowing the progressive
system parameters depend on many conditions and may be-
come in a laborious assignment if initial qualities or noise
statistics are undistinguished. In the iterative unbiased FIR
filter in contrast to many other filters, the initial states are not
an essential requirement for the estimation. The UFIR filter
is designed in two stages; at first, a previous estimation is
obtained by a batch algorithm based on a convolution theory.
Then, this estimation is computed as the initial parameters
of an iterative algorithm where the last estimation Is updated
based on the measurements and known probabilities.

The UFIR filter has the feature to neglect the zero mean
noise, in this sense the uncorrelated matrices are not required
and the filter can be derived in a direct form. Let X̂m,n =[
x̂T
m x̂T

m+1 . . . x̂T
n

]T
as the estimation vector,and the unbiased

condition E{xn} = E{x̂n} a computational procedure of the
UFIR filter considering the two possibles scenarios with a
observation equations such as 3 and 5 can be summarised
as follow [16]. The estimation is summarized in the following
steps: Note that, only if the time step approach is implemented,
in the case of the observation equation (3), the predictive step
is applied.

• Predictive value: if βn = 0 which indicate that some data
is lost, the observation vector is replaced by the predictive
value obtained by (4)

3.2 Correlated Matrices at the Filter 

3.3 UFIR Filter Algorithm 
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• Matrices definition: The algorithm convert the original
data yn to two signals zn given by (3) or (5) respectively,
and the observation matrix can be calculated according
to the system model information, from (3) and (5) in (6)
and (10).
Then the filter operates as follows:

• Filter algorithm
– The batch algorithm at the time-step n can be com-

puted by

x̂s = (HT
m,sHm,s)

−1HT
m,sYm,s , (21)

where the matrix gain Gs is calculated as Gs =
(HT

m,sHm,s)
−1, it is known as the generalized noise

power gain (GNPG). The matrix Hm,s is obtained
as

Hm,s =


H̄F−N+1−km

...
H̄F−1−ks−1

H̄F−ks

 . (22)

– Then a previous batch estimation, a iterative form of
the UFIR filter is applied to reduce the computational
effort and complexity,

x̂l = Fx̂l−1 +KUF
l (yl − H̄F x̃l−1) , (23)

where the gain matrix is Gl = [H̄T H̄ +
(FGl−1F

T )−1]−1 and KUF
l = GlH̄

T ;
Note that x̂l−1 = x̂s

• Optimal horizon: The tuning parameter N is an essential
criterion to achieve a minimum estimated error. Nopt

is calculated by an optimal condition, minimizing the
square error according to N , Nopt = argmin

N
[trPn(N)]

The error covariance matrix of the filter is defined by
Pn = E{(xn − x̂n) (xn − x̂n)

T }. For the batch algo-
rithm, a previous error covariance is given by

P−
n = (B(N)

n −Hm,nYm,n)Q̄n(B
(N)
n −Hm,nYm,n)

T

+Hm,nRnHT
m,n , (24)

and for the iterative algorithm, the covariance matrix is
given by

Pn = (I − GnH̄
T
n H̄n)(FPn−1F

T −BnQnB
T
n )

(I − GnH̄
T
n H̄n)

T + GnH̄
T
n R̄nGT

n H̄n , (25)

In this section, a simulation example is illustrated to show
the implication of the current signal model in the estimation
process by two different kinds of models and inspect the
advantages of the unbiased FIR filter between other algorithms
as the Kalman filter when it is influenced by uncertain mea-
surements. The observation signal consists on GPS coordinates
of a Beijing’s vehicle transmitted via wireless communication
to a central station [21]. Consider the vehicle dynamics such
as distance and velocity in the north and east directions as the

state vector xn =
[
x1n x2n x3n x4n

]T
, where x1n = xn,

x2n = ẋn, x3n = yn and x4n = ẏn.
The vehicle trajectory in the north-east direction in coordi-

nates x and y is shown in Fig.1.
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Fig. 1. GPS-measured vehicle trajectory in the north y and east x coordinates.

We assume the following discrete systems

xn =


1 τ 0 0
0 1 0 0
0 0 1 τ
0 0 0 1

xn−1 + wn ,

zn =

[
1 0 0 0
0 0 1 0

]
xn + vn

where the measurement output arrived at the processor with
known probabilities, delays, and losses. The data can be
delayed by no more than one step and only the first data packet
can be processed. Multiple lost packet data may appear as a
consequence of the delays or sensor issues.

To unify these examples, the additive noises are defined
as a zero-mean white process; due to the severe assignment
to have the appropriate noise statistics development, we do
it based on general knowledge. A vehicle in the residen-
tial district moves with an average speed of 11m/s. Based
upon, we have found that the optimal filter mode will be
obtained with the standard deviation in the acceleration noise
of σ3w = 0.2m/s by neglecting noise in the first and second
states, σ1w = σ2w = 0m/s. The GPS navigation service
produces an error of about 15 meters with a probability of
95%. Accordingly, we assign σv = 3.75m and form the noise
covariance matrices as

Q = σ2
w2


τ2

4
τ
2 0 0

τ2

2 1 0 0

0 0 τ2

4
τ
2

0 0 τ2

2 1

 , R =

[
σ2
v 0
0 σ2

v

]
.

According to the observation models used at the theoretical
definitions and assuming that the values of the packet arrival

4. Experimental Example 

4.1 State Estimation 
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probabilities are ᾱ0 = 0.7 and ᾱ1 = 0.9, and the lost event
variable is the independent random variable β, the accuracy of
the proposed estimation algorithm by the model (3) and (5) is
showed in Figure 2 and 3 respectively. Figure 2 displays the
trajectory signal in the north direction, the UFIR estimation,
and the Kalman estimation by the first scenario with the output
equation ( 3). A satisfactory estimation performance has been
obtained. The UFIR filter archive a large overshoot but a short
transient compared with the KF development. Note that when a
loss appears the predictive compensation is activated and a suc-
cessful estimation is obtained. In Figure 3 the trajectory signal
in the north direction, the UFIR estimation, and the Kalman
estimation by the second scenario with the output equation (
5) are shown. opposite to the first scenario development, the
filters lost the capability to track the trajectory when lost data
appear, largest overshoot and transitory are obtained.

The error signal development of the proposed filter and
Kalman filter are compared for each observation model. In
Figure 5 the estimated error using the first observation model
with the time-stamp approach (3) is depicted. Big error values
can be observed in contrast to the estimation error obtained
in Figure 4. The losses increase the variations and uncertain
estimations.
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Fig. 2. GPS-based vehicle tracking estimation in the y,m direction by the
UFIR filter and KF, using the observation model (3).

In order to show the influence of the missing measurements
and uncertain noise parameters at the veracity estimations, an
error factor is introduced in the algorithms. The actual matrices
Q and R are substituted in the algorithms with α2Q and β2R,
where α = 1

β and β indicates an error in the noise standard
deviation. In Figure 6 and Figure 7 the effect of errors in the
noise covariance is shown, α and β is variate from 0.1 to 10.
From these figures, we can observe that better performance
of the filters is obtained when the covariance matrices have
a minimum error. The Kalman filter is influenced by the
error variables but the UFIR filter is not indeed influenced
by unreliable noise.
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Fig. 3. GPS-based vehicle tracking estimation in the y,m direction by the
UFIR filter and KF, using the observation model (5).
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Fig. 4. Estimation error produced by by the UFIR filter and Kalman filter
using the observation model (3) in the y direction; (a) full scale and (b)
720 ≤ n ≤ 920 .
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Fig. 5. Estimation error produced by by the UFIR filter and Kalman filter
using the observation model (5) in the y direction; (a) full scale and (b)
720 ≤ n ≤ 920 .
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Fig. 6. Effect of the data transmission probability α and covariance matrices
on the RMSEs produced by the UFIR filter and Kalman filter using the
observation model (3).
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Fig. 7. Effect of the data transmission probability α and covariance matrices
on the RMSEs produced by the UFIR filter and Kalman filter using the
observation model (5).

In this paper, a comparison of the UFIR and Kalman filter
development using the most conventional models to describe
the uncertain measurement with random delays and losses
was presented. The time-stamp approach and the predictive
compensation were used. Considering the resulting estimation
performance, a considerable influence of the lost data model
was observed. An increase in the estimation error was obtained
when a Bernoulli distribution model was proposed to describe
the multiple lacks of information, in contrast, a better estima-
tion performance was achieved when a predictive algorithm
determined the value at the vector which is not valid. To
achieve these results, the system state-space model has been
reformulated in a way such that the delay factor was removed
from the state to matrices. An experimental vehicle tracking
was presented to compare the effectiveness of the UFIR filter
with the KF.
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