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1 Introduction  

Combinatorial optimization theory of systems [1] 

encompasses various scientific and technological 

fields such as software engineering, algorithm 

theory, operations research, machine learning, 

computational complexity theory, applied 

mathematics, and theoretical computer science. The 

classical combinatorial theory involves 

fundamental concepts of modern algebra and 

geometry, including difference sets in a finite 

group, finite projective planes, Hadamard matrices 

theory, cyclic incidence matrices, and the 

problematic of certain symmetrical balanced 

incomplete block designs, automorphisms of 

groups, and orthogonal Latin squares [2]. In paper 

[3], the study of some permutations helps discover 

unrelated classes. A multinomial function that 

describes a system with multi-input and multi-

output systems has the coefficients for parameters 

[4]. Many original models, concepts, parallel 

algorithms, platforms, applications, and processing 

gears relate to improving the assessment of big data 

technology [5], [6], [7], artificial intelligence [8], 

[9], signal processing [10], [11], and radio 

engineering [12], advanced algorithms [13], [14], 

and cryptography [15]. The objective of this work 

is to test suitable sets of famous classes concerning 

a small subset of such functions based on the 

intelligence of rotational symmetry. The principle 

of symmetry and asymmetry is prevalent in nature 

and artificial environments, so it's crucial to 
consider rotational symmetry for the development 
of optimization systems theory in fundamental and 
applied research. This can be achieved through 

innovative methodologies based on the concept of 

Ideal Ring Bundles (IRBs) [16], which involves the 

idea of "perfect" multidimensional combinatorial 

constructions. This paper deals with techniques for 

improving the quality indices of controllable cyber-

physical systems and vector processing, such as 

transformation speed, resolving ability, minimizing 

machinery memory, and computing resources, 

using designs based on the combinatorial 

optimization systems theory. Theoretical research 

into the combinatorial configuration's properties 

has led to a better understanding of the role of 

rotational symmetries in the theory. Modern 

combinatorial theory and system design connect 

with appropriate constructions such as manifolds 

[17], connecting algebra through geometry [18], 

and the Golden ratio [19], which involve the 

relationships of rotational symmetry spatial 

multidimensional configurations [16]. Symmetries 

and curvature structures are embedded in general 

relativity [20].  

2  Optimum Combinatorial 

Structures 

2.1 Optimum Combinatorial Sequences  

A "well-ordered" sequence of distributed elements 

can be very useful in optimally solving various 

technological problems, leading to high profits.  
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2.1.1 Sums on a chain- ordered numbers 

Let us compute all L sums of ordered-chain 

numbers in the n-stage sequence of positive 

integers {k1, k2, . . ., kn}, where the sums of 

connected sub-sequences of the sequence 

enumerate the set of integers from 1 to L. The 

maximum number of distinct sums on ordered-

chain numbers is  

L = n · (n+1)/2                           (1) 

 

Another type of combinatorial construction is the 

use of ring structures. 

 

2.2  Ring Numerical Structures 
Let's consider a sequence of positive integers {k1, 

k2, ..., kn} arranged in a specific order such that kn is 

followed by k1, forming a chain structure. As we 

continue to add integers to this sequence, it 

eventually turns into a numerical ring structure with 

n stages. In contrast to an ordered chain, a ring 

numerical structure allows for a sum of connected 

sub-sequences to have any length from 1 to n–1 as 

its starting point, with the final sum including all n 

integers. Therefore, the maximum number of 

distinct sums S that can be obtained from the ring 

numerical structure is 

                            S = n (n –1) +1                       (2) 

Comparing the equations (1) and (2), easy to see 

that the number of sums S for connected terms in 

the ring topology is nearly double the number of 

sums L in the daisy-

chain 

topology, 

for the same sequence 

of n terms.  

2.2.1   Ideal Ring Bundles  

Ideal Ring Bundles are cyclic sequences of positive 

integers that form perfect partitions of a finite 

interval [1, S] of integers. The sums of consecutive 

sub-sequences of an Ideal Ring Bundle (IRB) 

enumerate the set of integers [1, S] exactly once. 

Here is an example of an IRB with n=5 and S=5(5–

1) +1=21, namely {1,5,2,10,3}. To see this, we 

observe: 

1=1       6=1+5       11=3+1+5+2       16=2+10+3+1 

2=2       7=5+2       12=2+10             17=5+2+10 

3=3       8=1+5+2   13=10+3             18=1+5+2+10 

4=3+1   9=3+1+5   14=10+3+1        19=10+3+1+5 

5=5      10=10         15=2+10+3        20=5+2+10+3 

                                                     21=1+5+2+10+3 

We understand that each ring sum from 1 to S =21 

occurs exactly once.  

2.2.2 Relative of Ideal Ring Bundles to 

Rotational Symmetry 

For a better understanding of the role of geometric 

structures in the combinatorial optimization 

systems theory, we regard Ideal Ring Bundles with 

informative parameters S and n as cyclic numerical 

relationships followed by equation (2) based on the 

idea of “generative” rotational symmetry of order 

S. Employing 21-fold rotational symmetry, the IRB 

can be configured using complementary 

asymmetries relations of geometric structure. 

 

2.2.3  Two-Dimensional  Ideal Ring Bundles 

Let’s consider a cyclic sequence of n -stages, 

denoted as {K1, K2, …, Ki, …, Kn}, K1= (k11, k12), 

K2 =(k21, k22), ..., Ki=(ki1, ki2), …., Kn=(kn1, kn2). This 

sequence consists of 2-stage (t=2) sub-sequences.  

We require that all two-dimensional modular vector 

sums (mod m1, mod m2) must form a two-

dimensional coordinate grid of sizes m1×m2 over a 

toroidal surface, where m1·m2 = S–1. This 

configuration is known as the two-dimensional 

Ideal Ring Bundle (2-D IRB). Here are four 

variants of 2-D IRBs with parameters  S =7, n = 3, 

m1= n –1 = 2, and m2 = n = 3:   

(a) {(1,0),(1,1),(1,2)};    (b) {(0,1),(0,2),(1,0)};     

(c) {(0,1),(0,2),(1,2)};     (d)  {(0,1),(0,2),(1,1 )}  

 

The group {(1,0),(1,1),(1,2)} in two-dimensional 

IRB allows for addition and multiplication 

operations modulo m1=2, m2=3.  

 

 

 

 

Therefore, two-dimensional IRB {(1,0),(1,1),(1,2)}  

generates a coordinate grid 2×3 over a toroidal 

surface with a common reference point (0,0): 

 

(1,0) (1,1) (1,2) 

(0,0) (0,1) (0,2) 

 

                        

The next we see result of multiplying IRB   

{(1,0),(1,1),(1,2)}  by vector (1,2): 
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  Here we see transformation IRB {(1,0), (1,1), (1,2)}  

into myself. Taking the same conversion for 

variants (b), (c), and (d), we finally obtain the next 

result:  (a) × (1,2)   (a);  (b) × (1,2)  (b);  (c) × 

(1,2)   (d);  (d) × (1,2)  (c). 

Hence, the set of four 2-D IRBs {(a), (b), (c), (d)} 

form both two isomorphic (a, b), and two non-

isomorphic (c, d) modifications of the 2-D IRB. We 

call this the cyclic two-dimensional IRB group. 

Note, that each of these variants makes it possible 

to obtain  m1 ∙ m2 = 2 ∙ 3 = 6 varied 2-D 

IRBs.   
Table 1 demonstrates optimized two-dimensional 

binary code, based on the 2-D IRB {(1,0), (1,1), 

(1,2)} with informative parameters S=7, n=3.  

 

Table 1 

Optimized two-dimensional binary code, based on 

the 2-D IRB {(1,0), (1,1), (1,2)} with informative 

parameters S=7, n=3 

№ 
Vector Digit weights of the 2-D  code 

(1,0) (1,1) (1,2) 

1 (0,0) 0 1 1 

2 (0,1) 1 1 0 

3 (0,2) 1 0 1 

4 (1,0) 1 0 0 

5 (1,1) 0 1 0 

6 (1,2) 0 0 1 

 

Table 1 defines a two-dimensional binary code 

system as a torus surface coordinate grid (n –1) × n 

= 2 × 3 with two (t=2) circle axes m1 =2, and m2= 3.   

Here is an example of code system design, using the 

combinatorial optimization systems theory 

prospected from rotational symmetry of order seven 

(S =7). The example belongs design of an optimized 

data system processing two categories and three 

attributes concurrently (Table 2). 

 

Table 2 

Optimized data system processing two categories 

and three attributes concurrently.  

№ 
Category Digit weights of the 2-D  code 

1 2 (1,0) (1,1) (1,2) 

1 0 0 0 1 1 

2 0 1 1 1 0 

3 0 2 1 0 1 

4 1 0 1 0 0 

5 1 1 0 1 0 

6 1 2 0 0 1 

 

Table  2 contains 6 binary 2-D (t = 2) 3- 3-digit (n = 

3) combinations (n2 –n = 6) for coding two-

dimensional (t = 2) data sets both with two (m1 = 2) 

category of the first, and three (m2 = 3) – the second 

attribute concurrently. More practical examples for 

combinatorial optimization of vector data 

processing are proposed in [16].  

       

2.2.4  Multidimensional  Ideal Ring Bundles 

Multidimensional ideal ring bundles form a t-

manifold coordinate system immersed in (t+1)-

dimensional no real space without self-intersection 

of coordinate axes. A t-dimensional coordinate 

system (t > 2) with t axes is named the manifold 

coordinate system m1×m2 ×…×mt. The principal 

property of coordinate grid  m1  m2 … mt  over a t- 

manifold surface is n-stage sequence {K1, K2, …, 

Ki, …, Kn}, K1= (k11, k12,…, k1t), K2 =(k21, k22,…, 

k2t), ..., Ki=(ki1, ki2, …, kit), …., Kn=(kn1, kn2,…, knt) 

of t-stage sub-sequences of the sequence, where we 

require a set modulo sums taking t- modulo (m1, m2 

,.…, mt ) enumerates all coordinates of the t- 

manifold surface. This is perfect t-manifold 

coordinate system m1  m2 … mt  with information 

parameters S, n, mi  (i = 1, 2, …, t).  It is a t-

dimensional image surface involving spatially 

disjointed reference t-axes.  A planar projection of 

t-dimensional manifold coordinate axes m1, m2, …, 

mt  for grid m1×m2 ×…×mt with common point 

illustrates Fig. 1.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1: A planar projection of t-dimensional manifold 

coordinate axes m1, m2, …, mt  for grid m1×m2 

×…×mt with common point.  

 

Here S is an order of spatial symmetry, n- number of 

t-stage sub-sequences of the n-sequence, and 

 

 

mt 

m1 

 m2 

mi 
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number of basic attribute-categories subsets forming 

a complete set of t-dimensional vector data arrays. 

Hence, the t-dimensional IRB forms a manifold t-

dimensional coordinate system. A t-dimensional 

perfect manifold coordinate system can be designed 

for configuring t-dimensional optimized control 

systems or CAD. Therefore, all information about 

the t-dimensional vector data array of sizes m1  m2 

… mt is embedded into the coordinate system.  

  

3  Glory to Ukraine Stars Ensembles  
Of very exciting property has been discovered in 

“Glory to Ukraine Star” (GUS) ensembles as a new 

type of spatial combinatorial configuration [16].  
Graphic representation one of paired seven-pointed 

(n=7) GUS-configurations {(4,2), (0,2), (1,2), (0,4), 

(2,2), (3,2), (5,2), (4,2)} (black ring line) and 

{(4,2), (1,2), (2,2), (5,2), (3,2), (0,4), (0,2), (4,2)} 

(color broken line) are shown in Fig.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2: Graphic representation of paired seven-

pointed (n=7) GUS-configurations {(4,2), (0,2), 

(1,2), (0,4), (2,2), (3,2), (5,2)} (black ring line) and 

{(4,2), (1,2), (2,2), (5,2), (3,2), (0,4), (0,2)} (color 

broken line).  

 

   The GUS-configuration {(4,2), (0,2), (1,2), (0,4), 

(2,2), (3,2), (5,2)} (black ring line) generates all n 

(n –1)= 42 two-dimensional ring sums, taking 

modulo (mod 6, mod 7) as follows:  

    1.  (0,0) ≡ 

((5,2)+(4,2)+(0,2)+(1,2)+(0,4)+(2,2));  

    2.  (0,1) ≡ ((3,2) +(5,2)+(4,2)+(0,2)); 

 3.  (0,2) ≡ (0,2);  

    4.  (0,3) ≡ ((1,2)+(0,4)+(2,2) +(3,2));  

    5.  (0,4) ≡ (0,4); 

    6.  (0,5) ≡ ((0,2)+ (1,2)+ (0,4)+ (2,2)+ 

(3,2)); 

 7.  (0,6) ≡ ((3,2)+(5,2)+(4,2)); 

    8. (1,0) ≡ 

((3,2)+(5,2)+(4,2)+(0,2)+(1,2)+(0,4));  

 9. (1,1) ≡ ((0,2)+ (1,2)+ (0,4));  

10. (1,2) ≡ (1,2); 

   11. (1,3) ≡ ((3,2)+(5,2)+(4,2) 

+(0,2)+(1,2));  

   12. (1,4) ≡ (0,2)+(1,2)); 

   13. (1,5) ≡ ((4,2)+ (0,2)+ (1,2)+(0,4)+ 

(2,2)); 

14. (1,6) ≡ ((1,2)+(0,4)); 

   15. (2,0) ≡ 

((0,4)+(2,2)+(3,2)+(5,2)+(4,2)+(0,2));  

16. (2,1) ≡ ((2,2)+(3,2)+(5,2)+(4,2)); 

17. (2,2) ≡ (2,2); 

   18. (2,3) ≡ 

((2,2)+(3,2)+(5,2)+(4,2)+(0,2));  

19. (2,4) ≡ ((3,2)+(5,2)); 

20. (2,5) ≡ 

((0,4)+(2,2)+(3,2)+(5,2)+(4,2)); 

   21. (2,6) ≡  ((0,4)+(2,2)); 

   22. (3,0) ≡ ((1,2)+(0,4)+(2,2) 

+(3,2)+(5,2)+(4,2)); 

   23. (3,1) ≡ ((1,2)+(0,4)+ (2,2)); 

   24. (3,2) ≡ (3,2); 

   25. (3,3) ≡ ((0,2)+ (1,2)+ (0,4)+ (2,2)); 

   26. (3,4) ≡ ((5,2)+(4,2));  

27. (3,5) ≡ ((2,2)+(3,2)+(5,2)+(4,2)+ 

(0,2)+ (1,2)); 

28. (3,6) ≡ ((5,2)+(4,2)+(0,2)); 

   29. (4,0) ≡ ((4,2)+(0,2)+ (1,2)+ (0,4)+ 

(2,2)+ (3,2)); 

30. (4,1) ≡ ((5,2)+(4,2) +(0,2)+(1,2)); 

31. (4,2) ≡ (4,2); 

32. (4,3) ≡ ((0,4)+(2,2)+(3,2)+(5,2)); 

33. (4,4) ≡ ((4,2)+(0,2)); 

  

(0,4) 

    (0,2) 

 (2,2)        (3,2) 

     (5,2) 

(1,2) 
     (4,2) 
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   34. (4,5) ≡ 

((5,2)+(4,2)+(0,2)+(1,2)+(0,4));  

35. (4,6) ≡ ((2,2)+(3,2)+(5,2)); 

36. (5,0) ≡ ((0,2)+ (1,2)+ (0,4)+ 

(2,2)+(3,2)+(5,2)); 

37. (5,1) ≡ ((0,4)+ (2,2)+(3,2)); 

38. (5,2) ≡ (5,2); 

39. (5,3) ≡ ((4,2)+(0,2)+(1,2)+(0,4)); 

40. (5,4) ≡ ((2,2)+(3,2)); 

   41. (5,5) ≡ ((1,2)+ (0,4)+ 

(2,2)+(3,2)+(5,2)); 

42. (5,6) ≡ ((4,2)+(0,2)+(1,2)); 
 

The calculation procedures form m1 × m2 = 6×7 

grid, embracing a two-dimensional (t=2) toroid 

surface as being a coordinate system, where each 

point node from (0,0) to (5,6) occurs exactly once 

(R=1).   

   The second of the paired GUS-configurations 

{(4,2), (1,2), (2,2), (5,2), (3,2), (0,4), (0,2)} (color 

broken line) forms the same set of sums, taking 2D 

modulo (mod 6, mod 7):  

   1. (0,0) ≡ 

((0,4)+(0,2)+(4,2)+(1,2)+(2,2)+(5,2));  

   2. (0,1) ≡ ((4,2)+(1,2)+(2,2)+(5,2));  

3. (0,2) ≡ (0,2);  

   4. (0,3) ≡ ((0,2)+(4,2)+(1,2)+(2,2)+(5,2));  

   5. (0,4) ≡ (0,4); 

   6. (0,5) ≡ ((5,2)+(3,2)+(0,4)+(0,2)+(4,2)); 

7. (0,6) ≡ ((0,4)+(0,2)); 

    8. (1,0) ≡ 

((5,2)+(3,2)+(0,4)+(0,2)+(4,2)+(1,2);  

 9. (1,1) ≡  ((0,2)+(4,2)+(1,2)+(2,2)); 

10. (1,2) ≡ (1,2); 

   11. (1,3) ≡ ((3,2)+(0,4)+(0,2)+(4,2)); 

   12. (1,4) ≡ (2,2)+(5,2)); 

   13. (1,5) ≡ 

((0,4)+(0,2)+(4,2)+(1,2)+(2,2)); 

14. (1,6) ≡((4,2)+(1,2)+(2,2)); 

   15. (2,0) ≡ ((2,2)+ 

(5,2)+(3,2)+(0,4)+(0,2)+(4,2));  

16. (2,1) ≡ ((5,2)+(3,2+(0,4)); 

17. (2,2) ≡ (2,2); 

   18. (2,3) ≡  ((5,2)+(3,2)+(0,4)+(0,2));  

19. (2,4) ≡ ((5,2)+(3,2)); 

    20. (2,5) ≡ (3,2)+(0,4)+(0,2)+(4,2)+(1,2);  
………………………………………………… 

 42. (5,6) ≡ ((0,2)+(4,2)+(1,2)).  
 

We observe either of the GUS-configurations 

{(4,2), (0,2), (1,2), (0,4), (2,2), (3,2), (5,2)} (black 

ring line) and {(4,2), (1,2), (2,2), (5,2), (3,2), (0,4), 

(0,2)} (color broken line) forms m1 × m2 = 6×7 grid, 

embracing toroid surface as 2-D coordinate system.  

Here's another example of paired seven-pointed 

(n=7) GUS configurations.{(1,1), (1,3), (1,5), (1,0), 

(1,2), (1,4), (1,6)} (ring cycle), and {(1,1), (1,5), 

(1,2), (1,6), (1,3), (1,0), (1,4)} (star cycle) presents 

in Fig.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

    Fig.3: Paired seven-pointed (n=7) GUS-

configurations, namely the {(1,0), (1,2), (1,4), (1,6), 

(1,1), (1,3), (1,5)} (ring cycle), and {(1,0), (1,4), 

(1,1), (1,5), (1,2), (1,6), (1,3)} (star cycle). 

   GUS-configuration {(1,1), (1,3), (1,5), (1,0), (1,2), 

(1,4), (1,6)} (ring cycle) forms the set of  2-D 

vector sums (clockwise), taking 2-D modulo (6, 7):  

1. (0,0) ≡ 

((1,2)+(1,4)+(1,6)+(1,1)+(1,3)+(1,5));  

2. (0,1) ≡ ((1,1)+(1,3)+ (1,5)+(1,0)+ 

(1,2)+(1,4));  

3. (0,2) ≡ 

((1,0)+(1,2)+(1,4)+(1,6)+(1,1)+(1,3)); 

4.  (0,3) ≡ ((1,6)+ (1,1)+ 

(1,3)+(1,5)+(1,0)+ (1,2)); 

 

  (1,3) 

  (1,5) 

  (1,0) 
  (1,2) 

  (1,4) 

  (1,6) 

  (1,1) 
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5. (0,4) ≡ ((1,5)+(1,0)+ (1,2)+(1,4)+ 

(1,6)+(1,1)); 
………………………………………………… 

…………………………………………………  

41. (5,5) ≡ ((1,4)+(1,6)+ (1,1)+ 

(1,3)+(1,5); 

42. (5,6) ≡ ((1,0)+ (1,2)+(1,4)+ 

(1,6)+(1,1)). 

 

   The second of the paired GUS configuration {(1,1), 

(1,5), (1,2), (1,6), (1,3), (1,0), (1,4)} (star cycle) 

forms the set of  2-D vector sums, taking modulo 

(mod 6, mod 7):   

1. (0,0) ≡ ((1,4)+(1,1)+(1,5)+ 

(1,2)+(1,6)+(1,3));  

2. (0,1) ≡ ((1,3)+ (1,0)+(1,4)+(1,1)+ 

(1,5)+(1,2));  

3. (0,2) ≡ ((1,2)+(1,6)+(1,3) 

+(1,0)+(1,4)+(1,1)); 

4.  (0,3) ≡ ((1,1)+(1,5)+ 

(1,2)+(1,6)+(1,3)+(1,0)); 

5. (0,4) ≡ ((1,0)+(1,4)+ (1,1)+(1,5)+ 

(1,2)+(1,6)); 
………………………………………………… 

…………………………………………………  

41. (5,5) ≡ ((1,0)+(1,4)+ (1,1)+ 

(1,5)+(1,2); 

42. (5,6) ≡ ((1,3)+ (1,0)+(1,4)+ 

(1,1)+(1,5)). 

Each of the paired seven-pointed (n=7) GUS-

configurations, {(1,1), (1,3), (1,5), (1,0), (1,2), (1,4), 

(1,6)} (ring cycle), and {(1,1), (1,5), (1,2), (1,6), 

(1,3), (1,0), (1,4)} (star cycle) forms m1 × m2 = 6×7 

grid, embracing two-dimensional (t=2) toroid 

surface as coordinate system exactly once (R=1). 

The underlying examples of paired seven-pointed 

(n=7) GUS-configurations evident that either of the 

combinatorial configurations {(4,2), (0,2), (1,2), 

(0,4), (2,2), (3,2), (5,2)}, {(4,2), (1,2), (2,2), (5,2), 

(3,2), (0,4), (0,2)}, {(1,1), (1,3), (1,5), (1,0), (1,2), 

(1,4), (1,6)},  {(1,1), (1,5), (1,2), (1,6), (1,3), (1,0), 

(1,4)} forms complete coordinate system m1 × m2 = 

6×7 over toroid surface.  

A graphic representation of a set of paired seven-

pointed (n=7) GUS ensembles is illustrated (Fig.4). 

 

  

 
 

 

Fig. 4: Graphic representation of a set of paired 

seven-pointed (n=7) GUS ensembles. 

   
The cardinal number P of paired 2-D GUS 

configurations depending on the n-pointing cyclic 

structures with m1 × m2  grid sizes for n = 2,3,…7 is 

given in Table 3.      

 

Table 3 

The cardinal number P of paired 2-D GUS 

configurations depending on the n-pointing cyclic 

structures with m1 × m2  grid sizes for n = 2,3,…7  

 

 

 

 

 

 

 

 

 

 

   Table 3 shows an increasing number of paired 2-D 

GUS configurations, arranged by n-pointing cyclic 

structures.   

    4   Conclusion  
The theory of combinatorial optimization systems, 

explored through the lens of rotational symmetry, 

n Grid sizes m1 × m2 P 

2 1×2          1 

3 2×3          4 

4 3×4         24 

5 4×5,    3×7        272 

6 5×6,    3×10 256 

7 6×7,    3×14 360 
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offers a novel way to conceptualize engineering 

devices and technical systems in an optimized 

manner. This approach allows for the optimization 

to be integrated into the model itself, thereby 

enabling the configuration of systems with fewer 

elements than currently used, while still maintaining 

or even improving other characteristics of the 

system. The theoretical connection between cyclic 

groups and IRBs presents significant opportunities 

for the advancement of systems theory in 

configuring innovative devices and process 

engineering. This is due to the exceptional 

mathematical properties and structural perfection of 

IRBs. The use of optimized perfect manifold 

coordinate systems in information technologies 

offers new conceptual techniques to improve the 

quality of technology and management systems. 

This includes improving the transmission and 

compression of vector data and ensuring the 

reliability of vector data coding and processing 

using a minimized basis of manifold coordinates. 

The essence of the technology is processing vector 

information in the database of manifold coordinate 

systems, where the basis is a set of coordinates 

smaller than the total number of coordinates of this 

coordinate system, which generates it by adding the 

latter. The theoretical connection between cyclic 

groups and IRBs presents significant opportunities 

for the advancement of systems theory in 

configuring innovative devices and process 

engineering. This is due to the exceptional 

mathematical properties and structural perfection of 

IRBs. The exceptional mathematical properties and 

structural perfection of IRBs create significant 

opportunities for the advancement of systems theory 

in configuring innovative devices and process 

engineering through their theoretical connection 

with cyclic groups. Multidimensional systems 

engineering can be improved by researching 

combinatorial optimization systems theory, with a 

focus on rotational symmetry. This improvement 

can lead to better quality indices such as 

information capacity, reliability, transmission speed, 

positioning precision, and the ability to reproduce 

the maximum number of combinatorial varieties in 

the system with a limited number of elements and 

bonds. The GUS combinatorial configurations have 

remarkable properties and structural perfection, 

which can be utilized for direct applications in 

information and computational technologies, 

telecommunications, radio and electronic 

engineering, radio physics, and other engineering 

areas, as well as in education. By using these design 

techniques, you can configure optimum two- and 

multidimensional vector data processing, using 

innovative methods based on the underlying 

combinatorial models, which offers ample scope for 

progress in systems engineering, cybernetics, 

computational and applied mathematics, and 

industrial informatics. 
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