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Abstract: - This article is devoted to the generalization of the Fourier transform and harmonic analysis on compact
Hausdorff groups, we construct the Fourier-Stieltjes calculus, which is associated with the semigroups on the

Hilbert space. We obtain that let U, : L (G) —>L ( H,H ) be a nondegenerate unitary representation then there
exists a unique representation U:G —U(H) such that U, =U . Also, we establish that assume
Uu:G-U (H ) is a unitary representation of the group G and assume U, : L* (G) - L(H ,H ) is a unitary

representation of functional space L' (G) then there is a mapping Y :U —U_, which is a bijection.
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1 Introduction space, and let U:G—>U(H) be a unitary

representation group G in H then the separable
Hilbert space H can be represented as a Hilbert sum
of finite-dimensional irreducible representations.

There is extensive literature on harmonic
St= { zeC: |Z| = 1} of the complex numbers of the analysis and the Fourier theory as its special case, the
revision of which is beyond the scope of the present
paper [1-7, 15-21].

Applying the results of the Peter-Weyl
@, A, of topologically simple algebras, namely, theorems, we generalize the definitions of the Fourier
transforms and study their basic properties. The

The article is dedicated to the Fourier theory on the
compact Hausdorff topological groups, the example
of such a group G is the circle group

unit length with multiplication. The convolutive
Hilbert algebra L° (G) can be presented as a sum

such that have no two-sided closed nontrivial ideals. _ _ ) .
Since G is a compact group, for each simple algebra Fourier transform F of a function of L (G) 1S a

A, there exists N (a) -dimensional matrix algebra function defined on the set of unitary representations
of the group G by the equality

F(y)(e)=[w(9)M,(g7)du(q)
where £ is a normalized Haar measure on the group
finite-dimensional matrix algebras.

The first Peter-Weyl theorem states that G such that x (G) =1.So, let M(G) be the space

Hilbert algebra L° (G) can be considered as a of Haar measures defined on the o -algebra
generated by open subsets of G then we can define

Mn(a)(C) isomorphic to A,_, so the algebra

L (G) can be presented in the form of the sum of

closure of the Hilbert sum of topological simple

algebras that is isomorphic to the matrix algebras the Fourier transform F :M(G) —BC (G) by
2 _

M. (C) as subspaces L*(G). Each algebra A, F(u)(a) :J-Ma (g 1) du(g),

consists of elements that are continuous functions on

where BC(G) is a set of all bounded and

the group G . _ ,
continuous functions on G .

The second Peter-Weyl theorem establishes:
let G be a compact group, H be a separable Hilbert
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We define the Stieltjes algebra M (G) as
M(G)z{F(,u) ,ueM(G)}. Let
T:G—>LB ( H,H ) be a representation of G in the
space LB( H, H ) of bounded linear operators on the
Hilbert space H and let T be a bounded C,;-

semigroup on H . The generalized Fourier-Stieltjes
calculus @ is defined as the morphism

®:M(G)—>LB(H,H) so that

=[T(9)du(g

Generalized Fourier-Stieltjes calculus @ satisfies
the following norm condition
IF ()

oo (F (w))] < supT (0

forall F(u)eM(G).

2 Some of the Haar measure properties
Let H be a Hilbert space with the scalar product (,)

Let LB(H, H) be a space of all linear bounded
operators from H to H, and let C(H , H) be a

space of all compact operators.
Let us denote a compact separable
topological group by G and a compact subgroup of

G by G . There exist the projection 7 from G on
G=G/G, if M is a Haar measure on G then

-1
[ =pur is a Haar measure on the subgroup

G =G/G.Let v be a probabilistic measure on G .
Lemma 1. Let f be a nonnegative

continuous functionon G and let

o(9)=] f(g2)dv(2)
G
then ¢ is a nonnegative continuous function on

G=G/G and there exists a unique continuous
function ¢ such that ¢ = ¢ .

Proof. Continuity of ¢ easily follows from
continuity of f . To show uniqueness, we assume

7(9,)=

72'(92) s0 0,70, €G and we have

(gl):J (9,4)dv ()=
—I ( g, 0, ))dv(ﬂ):(o(gz)'

For all §= ﬂ(g ) , the function ¢ is
uniquely definedon G =G /G so that @ =@r . The
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uniqueness of ¢ follows from the surjectivity of
mapping 7.

Lemma 2. Let E be a Borel setin G and
let there exist a uniquely defined measurable

function ¢, on G=G/G such that

P (ﬁ(g))=v(g‘1Eﬂ(§)=
forany g € G, then the equality

I@E(g)d/u(g)

holds for all Borel setsin E.
Proof. Assume ¢, € G, we have

[ye (9)du(g)=[v(a"g,ENG)du(g)=
=[v (g d) Eﬂé)du(g)=

)=[e(9)

d ,u(g) defines a left-
invariant measure on Borel sets. Let E_
)dix(g) = (Ec) when
E. is a union of cosets of G . We have that there
E,

=y ( g “EN G) , S0, we obtain the statement

§0E(g)

= u(E)

_I(PE g go d/U
so, we have that I(DE
be a

compact set then I(f)E (g

exists @ =@, when for each Borel set

?:(9)
of the lemma.

3 Representation of the compact group
Definition 1. Let H be a Hilbert space and G be a
compact group, a group structural preserving
endomorphism p:GxH — H is called a linear

representation of the group G on a Hilbert space
H.

Let the compact group G be equipped with
a Haar measure 1.

Let U (H ) be the group of unitary operators
on the Hilbert space H and let L(H ,H ) bea C"-

algebra of all continuous linear mappings H —> H .
Since for any unitary representation

Ulle(G)—>L(H,H), the
HUl ((D)H < ||g0||1 holds for all @el' (G) , the
U, : Ll(G)—> L(H,H) is a
continuous mapping.

Let M* (G) be a space of all regular Borel

inequality

representation

1 . . . .
measures, M (G) is an unital involution Banach
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algebra. Since each integrable function ¢ e L' (G)
corresponds to the regular Borel measure @du we
have the embedding M* (G) =L (G)

Now let U:G—->U (H) be a unitary
representation of G in a separable Hilbert space H,
we define a weak calculus @ : M* (G) - L( H,H )

given by
®, = [{U(9)w. ) du(g)
for all w,@eH and where y is a regular Borel

measure. Since U (g) is a unitary we have

U (9)(w)]=lw

g <U (g)l//, (0> is continuous and bounded.

, the mapping

Straightforward considerations yield the estimation

@[ <ledv e
which guarantees the boundness of the linear form
®,(v).

Statement (Riesz representation) 1. For
each continuous linear functional * e H™ there
exists one and only one vector 7 € H such that

v () =(v.y)
holds forall weH .

Combining the definition of the weak
calculus @ :M* (G)—) L(H, H)
representation theorem, we obtain that there exists a
unique element u ( ,u)(l// ) of the Hilbert space H

b

and Reisz

such that equality

®, =(U(u)(w).0)=[(U(9)(¥)0) du(9)

holds for all 7, pe H. So, we have the following
weak equality

U (u)(w)=[U(9)(y) du(9).

Lemma3.LetU :G —U (H) beaunitary

representation, then the mapping
U:M'(G)—L(H,H) is a unitary
representation  M'(G) in  L(H,H). The

restriction Uy :L'(G)—>L(H,H) of U on
L' (G) is nondegenerate.
Proof. Let 7, € H we write
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so, we have U(y*v)zU(,u)lj(V).
From the unitarity of U:G—>U (H)
follows (U (g))* =U (gfl) and we obtain

(U(u(9))) =U ((a™)).

The representation U is nondegenerate if
and only if U (¢d(g))y =0 for all e L*(G)
} be a

neighborhood base of the identity element of the
group G such that W, cW, ofall &, <¢ . For

yields =0. Let the system {W

&

each &, there is a strictly positive function
¢.:G —> R with a compact support contained in

gW. and such that J.(zﬁ& du(g)=1.

For any w eH and any >0, there is
some & such that

[u(8)(w)-U(e)(w)<o

forall §€gW,. Forall ¢ € H, we have

(U(4. du)(y)-U (9)(w).0) =
= [{U(8)(¥)-U(9)(w).0)4(8) du(9).

S0, we obtain

|
(@]
~—
—_~~
<
N
Il
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so, U(¢d,u(g))l// =0 holds for g =¢, and g =e,
U (e) =1 only if w =0, thus the restriction of U
to L' (G) is nondegenerate.

Lemma4. LetU,:L'(G)—L(H,H) be
a nondegenerate unitary representation of Ll(G)
in L(H,H) then there exists a unique
representation U :G —U (H) of the group G in
the group U(H) of unitary operators on the
Hilbert space H such that U, =U

Proof. Assume U, :L'(G)— L(H,H) is

a nondegenerate unitary representation. The closure
of the span by set

{Ul((D)l/li Qe Ll(G), VES H}
with whole Hilbert space H . Let us for any taking
g € G determine a set {W} of neighborhoods W,

&

coincides

of the identity element of G and the set {¢,} of
functions ¢, :G—>R with compact support
contained in gW, and such that j¢5 d ,u(g) =1.
Let & be a delta-function then we obtain

L x9—05(9)*¢|, =
(9)*5(97)*4, *0-5(g)*g| <

<|o(a7)*4 o-0| 0.

We have

0. (6)( S0

_Zk:U1(5(g)*¢’k)V/k .
U1(¢g)'ul(¢k)

<3 e [l

U(g)(r)=U (Q)LZUl((/)k)(z//k)J:

=;U1(5(g)*¢k)v/k

thus we obtain morphism U (g) from the spanned
{Ul((p)l/li pel(G), ye H} to H thus

E-ISSN: 2769-2477
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spanned

U(g) maps
{Ul(¢)(//: Qe Ll(G), l/IEH} to itself, so

we have

Ve (e <l =1
thus for all g € G, we have HU (g)(y)” < ||}/|| So,
for all g € G we have ”U (g)” <1.

For all g,§€G and all @€ Ll(G), we

U (99) U, (p)=
U, (5(9)*((9 *(0)):
=U(9)-U,(5(9)*¢)=
=U(9)-U(9) V(o)

so, we have that U maps group identity element to
the identity element of the Hilbert space and

) (gq)zU (g)-U (g) in the Hilbert space.

Mapping U is a continuous isometry since
the equality

vl=Ju (g70)(w)| =
=Ju (a)(U () (w))|=[u (9)(

holds forall g€ G andall w e H.
Since the dual to the space L' is the space

v =lvl

isomorphic to L, we have

J(0*¢)(9) T (9)du(g)=
= [(8)([(5(8)*¢)(9) f (9)du(g))du(q)

forall ¢, € L'(G) andall f eL”(G).
Let y,yeH

then the linear form
P <Ul ((p)(!//), !/7> is continuous on L' (G) thus

there exists a function f € L”(G) such that
Vi) (UL(O)W)-7)=(Ui(0*<)(w).77) =
=Jo(g ( (6(9)*¢)(w).v)du(9)=

= J{U(9)U:()(¥). 7)o (9)du(g)=

=(U. (o ) (é)(l//) )
holds for all w, 7 € H . So, since the span by set

{Ul(go)l//: (peLl(G), 1//eH} is dense in
H, we have obtained U, (¢) = Ust((p).
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As a corollary of the lemmata 3 and 4, we
obtain an important theorem.

Theorem 1. Let U:G—U(H) be a
unitary representation of the group G and
U, :L'(G)>L(H,H) be a unitary
representation of L'(G) are defined as in the
lemmata 3, 4. Then there exists a bijective mapping
Y:U—>U, between the set of unitary

representations of the group G and the set of
nondegenerate topologically irreducible unitary

representations of the Banach algebra L' (G).
So, we consider a unitary representation
Uu:G-U (H) of the group G and construct a

unitary representation U : M* (G) - L( H,H ) of
the unitary Banach algebra M* (G) then we restrict
u:M! (G) - L(H ,H ) to Banach algebra L' (G)

(this restriction is denoted by U ((o) ). Next, we
consider a nondegenerate unitary representation
U,:L'(G)—>L(H,H) that
U, (5(g)*qok )l// tends to U (g)(l//) forall geG

and yeH.

4 The Generalized Fourier transform
Let G be a compact Hausdorff group equipped with
a Haar measure 4.

A complete Hilbert algebra of the square-
integrable functions on the group G is denoted by
L* (G) . By the Peter-Weyl theorem, algebra L* (G)
be presented as
® A, =L (G) of topologically simple algebras

aeR

and show

can an orthogonal sum

A, , where A, equals to matrix algebra M (@) (C)

. . 2 . .
of dimension (n(a)) , where «a is a finite-
dimensional Each
A, :Go>M, (C) is continuous on the compact

representation. function

group G .
Definition 2. The set of all equivalence
classes of an irreducible representation of the group

G iscalled G .
Theorem (first Peter-Weyl) 2. The
separable Hilbert algebra L*(G) can be presented

as an orthogonal sum @, _, A, where each simple

aeR

topological algebra A, is isomorphic to a matrix
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algebra Mn(a)(C) of dimension (n(a))z. The

unit element of A_ is a continuous function ¢,

that satisfies the condition ¢, (9)=¢, (g’l) for all
g € G. For each function y € L*(G), there exists
a representation y = > w*g, .

The presentation W = Zl// *¢  follows
from Z‘ ek and so that
k=1,..n(a
D e =y ¢a :
k=l,..,n(a)

Theorem (second Peter-Weyl) 3. Let
U:G —U(H) be a unitary representation of the

compact Hausdorff group in a separable Hilbert
space H . Then, first, for each finite-dimensional

representation « , the mapping Ust(¢a) is an
orthogonal projection H > E(«); second, each
E(a)#{0} is invariant relative to U and
restriction U,
as U, =@, ;M-

aeR

“of U to E(a) can be represented

Each element Aa uniquely corresponds with

a continuous function, so that for each finite-
dimensional representation « there is a
A, *m, where m, is

decomposition A, @1<k<n (a)

an irreducible idempotent, and so that
Z m . Let { } Leken(a) be a Hilbert basis
k=1,...n(a o

in A, *m, w1th the condition a, em, * A *m, .
Definition 3. For every finite-dimensional
representation o, we define a matrix M_(g) of

n(e)xn(a)-dimension with coefficients

3,(9)=(n()"(a(9)*a, (7))
for 1<i<n(e)and 1< j<n(a).

From the definition we have a, =m,.

Applying the Peter-Weyl theorem we are
going to generalize the Fourier transform.

Let A:G—>U (H) be a continuous
mapping g A(g)(l//) given by
A(9)=M,(g7h)
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for any element i € L' (G) of the separable Hilbert

space H .
Applying our notations, for any i € L2 (G ) ,
we have

V= Zl//*¢ Z Z ‘//*mkk

a k=1,. n
next, we write

Y. (wrmy(a))(9)=

k=l,.,n(a)

= Z( )j(//(h)(mkk(a))(h‘lg)dy(h)=
k=1,..,n(a
a)tr([y ()M, (hg)du(h)).
Definition 4. The Fourier transform F (/)
of the function y € L' (G) is a mapping defined by
= [y (MM, (h)du(h).

So, the Fourier transform is a mapping
defined in the domain of irreducible representations

of the compact group G . The morphism F (l//)(a)

is automorphism C"* — C"®
by matrices.

that is represented

Example. If we assume G=S" a circle

group then G=8'=Z and F (w)(m)=y(m)
are classical Fourier coefficients of the function
well(sh).
For all y el? (G), heG, the inverse
Fourier transform can be defined by
w(h)=2n(a)tr (F(w) ()M, ().
Definition 5. The set (1) M, (C) is
denoted by @(é)

Let A be a complex matrix of nxn
dimension, let {4} be the set of nonnegative

.....

square roots of eigenvalues of A"A, the Heumann
norm ||A|| of the matrix A is defined by

.....

.....

Definitions 6. The space L” (é) is defined

as
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(){feﬂl\/l

the norm

It <),

where If || . is defined as

1
~ p

I, (1.7} Zalr @l | or o

sequence {¢, } of the real numbers such that ¢, >1.

Lemma 5. For each set {(Iﬁa} of real numbers

larger than one, the space L° (é) is a Banach space.

For any fixed pe [1, oo] , we take ( = so that

forall f el (é) andall f el (é) then there is

) =2t (5.1,
(1.0)-{7.7

and the Holder inequality holds in the form

SRy ELNL

p=2, we have the

a well-defined value <

such that

In a special case
following lemma.

Lemma 6. For each set {g,}of real

numbers larger than one, the space L° (é) is a

Hilbert space. The inner product is defined by
(f.1)=2gtr(f,.1,) that
(f.£)=1f[;-

Theorem 4. Let {¢,} be a fixed set of real

and SO

numbers larger than one. Then forany f e L° (é)

such that l+l=1, we claim:
P qg

first, f-feLl(é) so that Hf-f”lsnf”pufuq;

and f el (é)

second, if 1< p<g<oo then Lp(é)g L (G) SO
that if fel®(G) then |f| <|f] ;
[t <Nfl,|F] for an fel?(G) and

third,

fe Lp(é) sothat f-f e Lp(é).
The proof is straightforward and its schema
can be found in E. Hewitt and K. Ross [13].
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Thus, we formulate the results of the article
in the two theorems which are generalizations of the
Fourier theory.

Theorem (first theorem) 5. Let
compact group then the

F:L*(G)—L*(G) defined by

F(y)(a)=]v(e)M,(97)du(g)
is an isometric isomorphism.
For each element y € L*(G), we have a

Gbe a
mapping

representation
l// =

o) 3 (FOIEE@) )
a ik=1...n(@) (a),

where {e (oz)}i is an orthonormal basis in

n(a)
C" and coordinate functions ¢, are defined as

#(@)(9)=(M, (9)e ()& («))
forall geG and i,k =1,...n(a).

Theorem (second theorem) 7. Let G be a
compact group then the inverse Fourier transform

F1.12 (G) — L?(G) is defined by

v(9)=2n(a)tr (F(y)(2)M, (9))

o

=1,

for any Fourier transform F(w)eLz(é) of

w € L”(G) and the series converges in L* .

Now, we generalize the Fourier-Stieltijes
calculus. Let T :G — LB(H ,H ) be a continuous

and bounded representation of the group G in the
space of all linear bounded operators from the Hilbert

space H to H . Let M(G) be a Stiejes algebra of

all Fourier transforms F ( ,u) forall e M(G) . We
define the generalized Fourier-Stieltjes calculus ®
for T as a morphism M(G) — LB(H,H) given

by
@ (F(u))=]T(g9)du(9).

For generalized Fourier-Stieltjes calculus @, we
have the following norm inequality

or () < splT (@[

that holds for all F (u) € M(G)
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5 The Hille-Phillips calculus

We are going to consider a special case of
T:G— LB(H ,H ) when a continuous and
t>0}
is a bounded C, - semigroup on a separable Hilbert
space H. The Fourier-Stieltjes
(I):M(R+) - LB(H, H) for the semigroup is
given by

bounded representation T =T, where {T,,

calculus

o (F(u)= |

[0, +oo)

Tdu(t).

The Laplace transform Lap( ,u) :C_Jr —-C

of the measure ¢ e M ( R+) is defined by
Lap (u)(z)= I exp(—zt)du(t)
[0, +0)
for zeC.
We the LAP (C+)

LAP (C+):{Lap (,u):yeM(RJ} and equip it

define set as

with its natural norm ” Lap ( ,u)”LAP = || y”M for all
1HeM(R,).

Definition 7. The isomorphism ¥, from
Lap(C,) to LB(H,H) given by

¥, (Lep()= | Tau()
[0.+)

is called a Hille-Phillips calculus for bounded C, -
semigroup {T,, t>0}.

For all xeM(R,) the Hille-Phillips
calculus satisfies the inequality

['r (Lap ()] < sup| el

The straightforward calculation yields the
next theorem.

Theorem (Hille-Phillips) 8. Let ¥, be a

C,-
semigroup {T,, t>0} on a separable Hilbert

Then

Hille-Phillips calculus for a bounded

space H.
-A:H—>H

¥, ((l+z)7l)=(ﬂ+A)fl for all zeC,. The
Hille-Phillips calculus is uniquely defined by its
generator as follows P (Lap(&(t))) = exp(—tA)

for all t >0 where o notes a delta-function.

there exists a generator
such that
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