The generalization of Fourier-transform and the Peter-Weyl theorem

MYKOLA YAREMENKO Department of Partial Differential Equations, The National Technical University of Ukraine, "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, UKRAINE

Abstract: - This article is devoted to the generalization of the Fourier transform and harmonic analysis on compact Hausdorff groups, we construct the Fourier-Stieltjes calculus, which is associated with the semigroups on the Hilbert space. We obtain that let $U_1 : L^1(G) \to L(H, H)$ be a nondegenerate unitary representation then there exists a unique representation $U: G \to U(H)$ such that $U_1 = U_{st}$. Also, we establish that assume $U: G \to U(H)$ is a unitary representation of the group G and assume $U_{st} : L^1(G) \to L(H, H)$ is a unitary representation of functional space $L^1(G)$ then there is a mapping $\Upsilon: U \to U_{st}$, which is a bijection.

Key-Words: - Fourier transform, Peter-Weyl theorem, Banach algebra, compact group.

Received: September 7, 2021. Revised: May 11, 2022. Accepted: June 9, 2022. Published: July 5, 2022.

1 Introduction

The article is dedicated to the Fourier theory on the compact Hausdorff topological groups, the example of such a group G is the circle group $S^1 = \{z \in C : |z| = 1\}$ of the complex numbers of the unit length with multiplication. The convolutive Hilbert algebra $L^2(G)$ can be presented as a sum $\bigoplus_{\alpha} \Lambda_{\alpha}$ of topologically simple algebras, namely, such that have no two-sided closed nontrivial ideals. Since G is a compact group, for each simple algebra Λ_{α} there exists $n(\alpha)$ -dimensional matrix algebra $L^2(G)$ can be presented in the form of the sum of finite-dimensional matrix algebras.

The first Peter-Weyl theorem states that Hilbert algebra $L^2(G)$ can be considered as a closure of the Hilbert sum of topological simple algebras that is isomorphic to the matrix algebras $M_{n(\alpha)}(C)$ as subspaces $L^2(G)$. Each algebra Λ_{α} consists of elements that are continuous functions on the group G.

The second Peter-Weyl theorem establishes: let G be a compact group, H be a separable Hilbert space, and let $U: G \rightarrow U(H)$ be a unitary representation group G in H then the separable Hilbert space H can be represented as a Hilbert sum of finite-dimensional irreducible representations.

There is extensive literature on harmonic analysis and the Fourier theory as its special case, the revision of which is beyond the scope of the present paper [1-7, 15-21].

Applying the results of the Peter-Weyl theorems, we generalize the definitions of the Fourier transforms and study their basic properties. The Fourier transform F of a function of $L^2(G)$ is a function defined on the set of unitary representations of the group G by the equality

$$F(\psi)(\alpha) = \int \psi(g) M_{\alpha}(g^{-1}) d\mu(g)$$

where μ is a normalized Haar measure on the group G such that $\mu(G) = 1$. So, let M(G) be the space of Haar measures defined on the σ -algebra generated by open subsets of G then we can define the Fourier transform $F: M(G) \rightarrow BC(G)$ by

$$F(\mu)(\alpha) = \int M_{\alpha}(g^{-1}) d\mu(g),$$

where BC(G) is a set of all bounded and continuous functions on G.

We define the Stieltjes algebra $\hat{M}(G)$ as $\hat{M}(G) = \{F(\mu) : \mu \in M(G)\}$. Let $T: G \to LB(H, H)$ be a representation of G in the space LB(H, H) of bounded linear operators on the Hilbert space H and let T be a bounded C_0 semigroup on H. The generalized Fourier-Stieltjes calculus Φ is defined as the morphism $\Phi: \hat{M}(G) \to LB(H, H)$ so that

$$\Phi_T(F(\mu)) = \int T(g) d\mu(g).$$

Generalized Fourier-Stieltjes calculus Φ satisfies the following norm condition

$$\left\|\Phi_{T}\left(F\left(\mu\right)\right)\right\| \leq \sup_{g\in G}\left\|T\left(g\right)\right\|\left\|F\left(\mu\right)\right\|$$

for all $F(\mu) \in \hat{M}(G)$.

2 Some of the Haar measure properties

Let *H* be a Hilbert space with the scalar product (,). Let LB(H, H) be a space of all linear bounded operators from *H* to *H*, and let C(H, H) be a space of all compact operators.

Let us denote a compact separable topological group by G and a compact subgroup of G by \tilde{G} . There exist the projection π from G on $\hat{G} = G/\tilde{G}$, if μ is a Haar measure on G then $\hat{\mu} = \mu \pi^{-1}$ is a Haar measure on the subgroup $\hat{G} = G/\tilde{G}$. Let v be a probabilistic measure on \tilde{G} .

Lemma 1. Let *f* be a nonnegative continuous function on *G* and let

$$\varphi(g) = \int_{\tilde{G}} f(g\lambda) d\nu(\lambda)$$

then φ is a nonnegative continuous function on $\hat{G} = G / \tilde{G}$ and there exists a unique continuous function $\hat{\varphi}$ such that $\varphi = \hat{\varphi}\pi$.

Proof. Continuity of φ easily follows from continuity of f. To show uniqueness, we assume $\pi(g_1) = \pi(g_2)$ so $g_1^{-1}g_2 \in \tilde{G}$ and we have $\varphi(g_1) = \int_{\tilde{G}} f(g_1\lambda) d\nu(\lambda) =$ $= \int_{\tilde{G}} f(g_1(g_1^{-1}g_2\lambda)) d\nu(\lambda) = \varphi(g_2).$

For all $\hat{g} = \pi(g)$, the function $\hat{\varphi}$ is uniquely defined on $\hat{G} = G / \tilde{G}$ so that $\varphi = \hat{\varphi}\pi$. The uniqueness of $\hat{\varphi}$ follows from the surjectivity of mapping π .

Lemma 2. Let *E* be a Borel set in *G* and let there exist a uniquely defined measurable function $\hat{\varphi}_E$ on $\hat{G} = G / \tilde{G}$ such that

$$\hat{\varphi}_{E}(\pi(g)) = \nu(g^{-1}E \cap \tilde{G}) = \varphi_{E}(g)$$

for any $g \in G$, then the equality

$$\int \hat{\varphi}_{E}(g) d\hat{\mu}(g) = \mu(E)$$

holds for all Borel sets in E.
Proof. Assume
$$g_0 \in G$$
, we have

$$\int \varphi_{g_0 E}(g) d\mu(g) = \int v(g^{-1}g_0 E \cap \tilde{G}) d\mu(g) =$$

$$= \int v((g^{-1}g_0)^{-1} E \cap \tilde{G}) d\mu(g) =$$

$$= \int \varphi_E(g^{-1}g_0) d\mu(g) = \int \varphi_E(g) d\mu(g),$$

so, we have that $\int \hat{\varphi}_E(g) d\hat{\mu}(g)$ defines a leftinvariant measure on Borel sets. Let E_C be a compact set then $\int \hat{\varphi}_E(g) d\hat{\mu}(g) = \mu(E_C)$ when E_C is a union of cosets of \tilde{G} . We have that there exists $\varphi_E = \hat{\varphi}_E \pi$ when for each Borel set E, $\varphi_E(g) = \nu(g^{-1}E \cap \tilde{G})$, so, we obtain the statement of the lemma.

3 Representation of the compact group Definition 1. Let H be a Hilbert space and G be a compact group, a group structural preserving endomorphism $\rho: G \times H \rightarrow H$ is called a linear representation of the group G on a Hilbert space H.

Let the compact group G be equipped with a Haar measure μ .

Let U(H) be the group of unitary operators on the Hilbert space H and let L(H,H) be a C^* algebra of all continuous linear mappings $H \to H$. Since for any unitary representation $U_1: L^1(G) \to L(H,H)$, the inequality $||U_1(\varphi)|| \le ||\varphi||_1$ holds for all $\varphi \in L^1(G)$, the representation $U_1: L^1(G) \to L(H,H)$ is a continuous mapping.

Let $M^{1}(G)$ be a space of all regular Borel measures, $M^{1}(G)$ is an unital involution Banach algebra. Since each integrable function $\varphi \in L^1(G)$ corresponds to the regular Borel measure $\varphi d\mu$ we have the embedding $M^1(G) \Rightarrow L^1(G)$.

Now let $U: G \rightarrow U(H)$ be a unitary representation of G in a separable Hilbert space H, we define a weak calculus $\Phi: M^1(G) \rightarrow L(H, H)$ given by

$$\Phi_{\mu} = \int \langle U(g)\psi, \varphi \rangle \ d\mu(g)$$

for all $\psi, \phi \in H$ and where μ is a regular Borel measure. Since U(g) is a unitary we have $\left\|U(g)(\psi)\right\| = \|\psi\|,$ the mapping $g \mapsto \langle U(g)\psi, \varphi \rangle$ is continuous and bounded. Straightforward considerations yield the estimation $\left|\Phi_{\mu}\right| \leq \left\|\mu\right\| \left\|\psi\right\| \left\|\varphi\right\|,$

which guarantees the boundness of the linear form $\Phi_{\mu}(\psi)$.

Statement (Riesz representation) 1. For each continuous linear functional $\psi^* \in H^*$ there exists one and only one vector $\tilde{\psi} \in H$ such that

$$\psi^*(x) = (\psi, \tilde{\psi})$$

holds for all $\psi \in H$.

Combining the definition of the weak calculus $\Phi: M^1(G) \to L(H, H)$ and Reisz representation theorem, we obtain that there exists a unique element $\overline{U}(\mu)(\psi)$ of the Hilbert space H such that equality

 $\Phi_{\mu} = \langle \breve{U}(\mu)(\psi), \varphi \rangle = \int \langle U(g)(\psi), \varphi \rangle \, d\mu(g)$

holds for all $\psi, \phi \in H$. So, we have the following weak equality

$$\widetilde{U}(\mu)(\psi) = \int U(g)(\psi) \ d\mu(g).$$

Lemma 3. Let $U: G \rightarrow U(H)$ be a unitary representation, then the mapping $\check{U}: \mathrm{M}^{1}(G) \to L(H,H)$ is a unitary representation $M^1(G)$ in L(H,H). The restriction $U_{st}: L^1(G) \to L(H,H)$ of \check{U} on

 $L^{1}(G)$ is nondegenerate.

Proof. Let $\psi, \phi \in H$ we write

$$\langle \tilde{U}(\mu * v)(\psi), \varphi \rangle =$$

$$= \int \langle U(g)\psi, \varphi \rangle d(\mu * v)(g) =$$

$$= \int \int \langle U(gh)\psi, \varphi \rangle d\mu(g) dv(h) =$$

$$= \int \int \langle U(g)\psi, U^{*}(h)\varphi \rangle d\mu(g) dv(h) =$$

$$= \int \langle \breve{U}(v)\psi, U^{*}(h)\varphi \rangle d\mu(h) =$$

$$= \langle \breve{U}(\mu)\breve{U}(v)\psi, \varphi \rangle,$$

so, we have $U(\mu * \nu) = U(\mu)U(\nu)$.

From the unitarity of $U: G \rightarrow U(H)$

follows $(U(g))^* = U(g^{-1})$ and we obtain $(\breve{U}(\mu(g)))^* = \breve{U}(\overline{\mu}(g^{-1})).$

The representation \breve{U} is nondegenerate if and only if $\breve{U}(\phi d\mu(g))\psi = 0$ for all $\phi \in L^1(G)$ yields $\psi = 0$. Let the system $\{W_{\varepsilon}\}$ be a neighborhood base of the identity element of the group G such that $W_{\varepsilon_2} \subseteq W_{\varepsilon_1}$ of all $\varepsilon_2 \prec \varepsilon_1$. For each ε , there is a strictly positive function $\phi_c: G \to R$ with a compact support contained in gW_{ε} and such that $\int \phi_{\varepsilon} d\mu(g) = 1$.

For any $\psi \in H$ and any $\theta > 0$, there is some ε such that

$$\left\| U(\tilde{g})(\psi) - U(g)(\psi) \right\| \leq \theta$$

for all $\tilde{g} \in gW_{\varepsilon}$. For all $\varphi \in H$, we have

$$\langle \breve{U}(\phi_{\varepsilon} d\mu)(\psi) - U(g)(\psi), \varphi \rangle =$$

= $\int \langle U(\tilde{g})(\psi) - U(g)(\psi), \varphi \rangle \phi_{\varepsilon}(\tilde{g}) d\mu(\tilde{g}),$
we obtain

so, we obtain

$$\begin{split} \left\| \breve{U}(\phi_{\varepsilon} d\mu)(\psi) - U(g)(\psi) \right\|^{2} &= \\ &= \int \left\langle \begin{matrix} U(\tilde{g})(\psi) - U(g)(\psi), \\ \breve{U}(\phi_{\varepsilon} d\mu)(\psi) - U(g)(\psi) \end{matrix} \right\rangle \phi_{\varepsilon}(\tilde{g}) d\mu(\tilde{g}) \leq \\ &\leq \int \begin{matrix} \left\| U(\tilde{g})(\psi) - U(g)(\psi) \right\| \times \\ \left\| \breve{U}(\phi_{\varepsilon} d\mu)(\psi) - U(g)(\psi) \right\| \phi_{\varepsilon}(\tilde{g}) d\mu(\tilde{g}) \leq \\ &\leq \left\| \breve{U}(\phi_{\varepsilon} d\mu)(\psi) - U(g)(\psi) \right\| \theta, \end{split}$$

so, $\tilde{U}(\phi d \mu(g))\psi = 0$ holds for $\phi = \phi_{\varepsilon}$ and g = e, U(e) = I only if $\psi = 0$, thus the restriction of \check{U} to $L^{1}(G)$ is nondegenerate.

Lemma 4. Let $U_1: L^1(G) \to L(H,H)$ be a nondegenerate unitary representation of $L^1(G)$ in L(H,H) then there exists a unique representation $U: G \to U(H)$ of the group G in the group U(H) of unitary operators on the Hilbert space H such that $U_1 = U_{st}$.

Proof. Assume $U_1: L^1(G) \to L(H, H)$ is a nondegenerate unitary representation. The closure of the span by set $\{U_1(\varphi)\psi: \varphi \in L^1(G), \psi \in H\}$ coincides with whole Hilbert space H. Let us for any taking $g \in G$ determine a set $\{W_\varepsilon\}$ of neighborhoods W_ε of the identity element of G and the set $\{\phi_\varepsilon\}$ of functions $\phi_\varepsilon: G \to R$ with compact support contained in gW_ε and such that $\int \phi_\varepsilon d\mu(g) = 1$. Let δ be a delta-function then we obtain

$$\begin{split} \left\| \phi_{\varepsilon} * \varphi - \delta(g) * \varphi \right\|_{1} &= \\ &= \left\| \delta(g) * \delta(g^{-1}) * \phi_{\varepsilon} * \varphi - \delta(g) * \varphi \right\|_{1} \leq \\ &\leq \left\| \delta(g^{-1}) * \phi_{\varepsilon} * \varphi - \varphi \right\|_{1 \to 0} 0. \\ \text{We have} \\ \left\| U_{1}(\phi_{\varepsilon}) \left(\sum_{k} U_{1}(\varphi_{k}) \psi_{k} \right) - \right\|_{\varepsilon \to 0} \\ &= \sum_{k} U_{1}(\delta(g) * \varphi_{k}) \psi_{k} \\ &\leq \sum_{k} \left\| U_{1}(\phi_{\varepsilon}) \cdot U_{1}(\varphi_{k}) - \right\|_{\varepsilon \to 0} \\ \left\| U_{1}(\phi_{\varepsilon}) \cdot U_{1}(\varphi_{k}) - \right\|_{\varepsilon \to 0} \\ \text{Let } \gamma = \sum_{k} U_{1}(\phi_{k})(\psi_{k}), \text{ we can write} \\ &U(g)(\gamma) = U(g) \left(\sum_{k} U_{1}(\varphi_{k})(\psi_{k}) \right) = \\ &= \sum_{k} U_{1}(\delta(g) * \varphi_{k}) \psi_{k} \end{aligned}$$

thus we obtain morphism U(g) from the spanned $\{U_1(\varphi)\psi: \varphi \in L^1(G), \psi \in H\}$ to H thus $U(g) \qquad \text{maps} \qquad \text{spanned} \\ \left\{ U_1(\varphi)\psi : \quad \varphi \in L^1(G), \quad \psi \in H \right\} \text{ to itself, so} \\ \text{we have} \end{cases}$

 $\left\|U_{1}\left(\varphi_{k}\right)\right\| \leq \left\|\varphi_{k}\right\|_{1} = 1$

thus for all $g \in G$, we have $||U(g)(\gamma)|| \le ||\gamma||$. So, for all $g \in G$ we have $||U(g)|| \le 1$.

For all $g, \tilde{g} \in G$ and all $\varphi \in L^1(G)$, we write

$$U(g\tilde{g}) \cdot U_{1}(\varphi) = U_{1}(\delta(g\tilde{g}) * \varphi) =$$
$$= U_{1}(\delta(g) * (\delta(\tilde{g}) * \varphi)) =$$
$$= U(g) \cdot U_{1}(\delta(g) * \varphi) =$$
$$= U(g) \cdot U(\tilde{g}) \cdot U_{1}(\varphi),$$

so, we have that U maps group identity element to the identity element of the Hilbert space and $U(g\tilde{g})=U(g)\cdot U(\tilde{g})$ in the Hilbert space.

Mapping U is a continuous isometry since the equality

$$\|\psi\| = \|U(g^{-1}g)(\psi)\| =$$

= $\|U(g^{-1})(U(g)(\psi))\| = \|U(g)(\psi)\| = \|\psi\|$

holds for all $g \in G$ and all $\psi \in H$.

Since the dual to the space L^1 is the space isomorphic to L^{∞} , we have

$$\int (\varphi * \zeta)(g) f(g) d\mu(g) =$$

= $\int \varphi(\tilde{g}) \Big(\int (\delta(\tilde{g}) * \zeta)(g) f(g) d\mu(g) \Big) d\mu(\tilde{g})$
for all $\varphi, \zeta \in L^1(G)$ and all $f \in L^{\infty}(G)$.

Let $\psi, \tilde{\psi} \in H$ then the linear form $\varphi \mapsto \langle U_1(\varphi)(\psi), \tilde{\psi} \rangle$ is continuous on $L^1(G)$ thus there exists a function $f \in L^{\infty}(G)$ such that $\langle U_1(\varphi)(U_1(\zeta)(\psi)), \tilde{\psi} \rangle = \langle U_1(\varphi * \zeta)(\psi), \tilde{\psi} \rangle =$ $= \int \varphi(g) \langle U_1(\delta(g) * \zeta)(\psi), \tilde{\psi} \rangle d\mu(g) =$

$$= \int \langle U(g)U_1(\zeta)(\psi), \tilde{\psi} \rangle \varphi(g) d\mu(g) =$$
$$= \langle U_1(\varphi)U_1(\zeta)(\psi), \tilde{\psi} \rangle$$

holds for all $\psi, \tilde{\psi} \in H$. So, since the span by set $\{U_1(\varphi)\psi: \varphi \in L^1(G), \psi \in H\}$ is dense in H, we have obtained $U_1(\varphi) = U_{st}(\varphi)$.

As a corollary of the lemmata 3 and 4, we obtain an important theorem.

Theorem 1. Let $U: G \to U(H)$ be a unitary representation of the group G and $U_{st}: L^1(G) \to L(H,H)$ be a unitary representation of $L^1(G)$ are defined as in the lemmata 3, 4. Then there exists a bijective mapping $\Upsilon: U \to U_{st}$ between the set of unitary representations of the group G and the set of nondegenerate topologically irreducible unitary representations of the Banach algebra $L^1(G)$.

So, we consider a unitary representation $U: G \to U(H)$ of the group G and construct a unitary representation $\breve{U}: M^1(G) \to L(H,H)$ of the unitary Banach algebra $M^1(G)$ then we restrict $\breve{U}: M^1(G) \to L(H,H)$ to Banach algebra $L^1(G)$ (this restriction is denoted by $U_{st}(\varphi)$). Next, we consider a nondegenerate unitary representation $U_1: L^1(G) \to L(H,H)$ and show that $U_1(\delta(g) * \varphi_k) \psi$ tends to $U(g)(\psi)$ for all $g \in G$ and $\psi \in H$.

4 The Generalized Fourier transform

Let G be a compact Hausdorff group equipped with a Haar measure μ .

A complete Hilbert algebra of the squareintegrable functions on the group *G* is denoted by $L^2(G)$. By the Peter-Weyl theorem, algebra $L^2(G)$ can be presented as an orthogonal sum $\bigoplus_{\alpha \in \mathbb{R}} \Lambda_\alpha = L^2(G)$ of topologically simple algebras Λ_α , where Λ_α equals to matrix algebra $M_{n(\alpha)}(C)$ of dimension $(n(\alpha))^2$, where α is a finitedimensional representation. Each function $\Lambda_\alpha : G \to M_{n(\alpha)}(C)$ is continuous on the compact group *G*.

Definition 2. The set of all equivalence classes of an irreducible representation of the group G is called \hat{G} .

Theorem (first Peter-Weyl) 2. The separable Hilbert algebra $L^2(G)$ can be presented as an orthogonal sum $\bigoplus_{\alpha \in R} \Lambda_{\alpha}$, where each simple topological algebra Λ_{α} is isomorphic to a matrix algebra $M_{n(\alpha)}(C)$ of dimension $(n(\alpha))^2$. The unit element of Λ_{α} is a continuous function ϕ_{α} that satisfies the condition $\phi_{\alpha}(g) = \overline{\phi_{\alpha}(g^{-1})}$ for all $g \in G$. For each function $\psi \in L^2(G)$, there exists a representation $\psi = \sum_{\alpha} \psi * \phi_{\alpha}$.

The presentation $\psi = \sum_{\alpha} \psi * \phi_{\alpha}$ follows from $\phi_{\alpha} = \sum_{k=1,..,n(\alpha)} e_k$ and so that $\sum_{k=1,..,n(\alpha)} \psi * e_k = \psi * \phi_{\alpha}$.

Theorem (second Peter-Weyl) 3. Let $U: G \to U(H)$ be a unitary representation of the compact Hausdorff group in a separable Hilbert space H. Then, first, for each finite-dimensional representation α , the mapping $U_{st}(\phi_{\alpha})$ is an orthogonal projection $H \mapsto E(\alpha)$; second, each $E(\alpha) \neq \{0\}$ is invariant relative to U and restriction U_{st}^{α} of U to $E(\alpha)$ can be represented as $U_{st}^{\alpha} = \bigoplus_{\alpha \in \mathbb{R}} M_{\overline{\alpha}}$.

Each element Λ_{α} uniquely corresponds with a continuous function, so that for each finitedimensional representation α there is a decomposition $\Lambda_{\alpha} = \bigoplus_{1 \le k \le n(\alpha)} \Lambda_{\alpha} * m_k$ where m_k is an irreducible idempotent, and so that $\phi_{\alpha} = \sum_{k=1,...,n(\alpha)} m_k$. Let $\{a_k\}_{1 \le k \le n(\alpha)}$ be a Hilbert basis

in $\Lambda_{\alpha} * m_1$ with the condition $a_k \in m_k * \Lambda_{\alpha} * m_1$.

Definition 3. For every finite-dimensional representation α , we define a matrix $M_{\alpha}(g)$ of $n(\alpha) \times n(\alpha)$ -dimension with coefficients

$$a_{ij}(g) = (n(\alpha))^{-1} \left(a_i(g) * \overline{a_j(g^{-1})} \right)$$

for $1 \le i \le n(\alpha)$ and $1 \le j \le n(\alpha)$.

From the definition we have $a_{ii} = m_i$.

Applying the Peter-Weyl theorem we are going to generalize the Fourier transform.

Let $A: G \to U(H)$ be a continuous mapping $g \mapsto A(g)(\psi)$ given by

 $A(g) = M_{\alpha}(g^{-1}h)$

for any element $\psi \in L^1(G)$ of the separable Hilbert space H.

Applying our notations, for any $\psi \in L^2(G)$, we have

$$\psi = \sum_{\alpha} \psi * \phi_{\alpha} = \sum_{\alpha} \sum_{k=1,\dots,n(\alpha)} \psi * m_{kk} (\alpha),$$

next, we write

$$\sum_{k=1,\dots,n(\alpha)} (\psi * m_{kk} (\alpha))(g) =$$

=
$$\sum_{k=1,\dots,n(\alpha)} \int \psi(h) (m_{kk} (\alpha)) (h^{-1}g) d\mu(h) =$$

=
$$n(\alpha) tr (\int \psi(h) M_{\alpha} (h^{-1}g) d\mu(h)).$$

Definition 4. *The Fourier transform* $F(\psi)$

of the function $\psi \in L^1(G)$ is a mapping defined by

$$F(\psi)(\alpha) = \int \psi(h) M_{\alpha}(h^{-1}) d\mu(h)$$

So, the Fourier transform is a mapping defined in the domain of irreducible representations of the compact group *G*. The morphism $F(\psi)(\alpha)$ is automorphism $C^{n(\alpha)} \mapsto C^{n(\alpha)}$ that is represented by matrices.

Example. If we assume $G = S^1$ a circle group then $\hat{G} = \hat{S}^1 = Z$ and $F(\psi)(m) = \hat{\psi}(m)$ are classical Fourier coefficients of the function $\psi \in L^1(S^1)$.

For all $\psi \in L^2(G)$, $h \in G$, the inverse Fourier transform can be defined by

$$\psi(h) = \sum_{\alpha} n(\alpha) tr (F(\psi)(\alpha) M_{\alpha}(h)).$$

Definition 5. The set $\bigcap_{\alpha} M_{n(\alpha)}(C)$ is denoted by $\Theta(\hat{G})$.

Let A be a complex matrix of $n \times n$ dimension, let $\{\lambda_k\}_{1,\dots,n}$ be the set of nonnegative square roots of eigenvalues of A^*A , the Heumann norm $\|A\|_{\varphi(p)}$ of the matrix A is defined by

$$\begin{split} \|A\|_{\varphi(p)} &= \left(\sum_{k=1,\dots,n} \lambda_k^p\right)^{\frac{1}{p}} \quad for \quad 1 \le p < \infty \quad and \\ \|A\|_{\varphi(\infty)} &= \max_{k=1,\dots,n} \lambda_k. \end{split}$$

Definitions 6. The space $L^p(\hat{G})$ is defined

$$L^{p}(\hat{G}) = \left\{ f \in \bigcap_{\alpha} M_{n(\alpha)}(C) : \|f\|_{p} < \infty \right\},$$

where the norm $\|f\|_p$ is defined as

$$\left\|f\right\|_{p} = \left\langle f, \tilde{f}\right\rangle = \left(\sum_{\alpha} \phi_{\alpha} \left\|f(\alpha)\right\|_{\phi(p)}^{p}\right)^{\frac{1}{p}} \quad for \quad any$$

sequence $\{\phi_{\alpha}\}$ of the real numbers such that $\phi_{\alpha} \ge 1$.

Lemma 5. For each set $\{\phi_{\alpha}\}$ of real numbers larger than one, the space $L^{p}(\hat{G})$ is a Banach space. For any fixed $p \in [1, \infty]$, we take $q = \frac{p}{p-1}$ so that for all $f \in L^{p}(\hat{G})$ and all $\tilde{f} \in L^{q}(\hat{G})$ then there is a well-defined value $\langle f, \tilde{f} \rangle = \sum_{\alpha} \phi_{\alpha} tr(\tilde{f}_{\alpha}^{*}, f_{\alpha})$ such that

$$\left\langle \tilde{f}, f \right\rangle = \overline{\left\langle f, \tilde{f} \right\rangle}$$

and the Holder inequality holds in the form

 $\left|\left\langle f,\tilde{f}\right\rangle\right|\leq \left\|f\right\|_{p}\left\|\tilde{f}\right\|_{q}.$

In a special case p = 2, we have the following lemma.

Lemma 6. For each set $\{\phi_{\alpha}\}$ of real numbers larger than one, the space $L^2(\hat{G})$ is a Hilbert space. The inner product is defined by $\langle f, \tilde{f} \rangle = \sum_{\alpha} \phi_{\alpha} tr(\tilde{f}_{\alpha}^*, f_{\alpha})$ and so that $\langle f, f \rangle = ||f||_2^2$.

Theorem 4. Let $\{\phi_{\alpha}\}$ be a fixed set of real numbers larger than one. Then for any $f \in L^{p}(\hat{G})$ and $\tilde{f} \in L^{q}(\hat{G})$ such that $\frac{1}{p} + \frac{1}{q} = 1$, we claim: first, $f \cdot \tilde{f} \in L^{1}(\hat{G})$ so that $\|f \cdot \tilde{f}\|_{1} \leq \|f\|_{p} \|\tilde{f}\|_{q}$; second, if $1 \leq p \leq q \leq \infty$ then $L^{p}(\hat{G}) \subseteq L^{q}(\hat{G})$ so that if $f \in L^{p}(\hat{G})$ then $\|f\|_{q} \leq \|f\|_{p}$; third, $\|f \cdot \tilde{f}\|_{p} \leq \|f\|_{p} \|\tilde{f}\|_{p}$ for all $f \cdot \in L^{p}(\hat{G})$ and $\tilde{f} \in L^{p}(\hat{G})$ so that $f \cdot \tilde{f} \in L^{p}(\hat{G})$.

The proof is straightforward and its schema can be found in E. Hewitt and K. Ross [13].

as

Thus, we formulate the results of the article in the two theorems which are generalizations of the Fourier theory.

Theorem (first theorem) 5. Let G be a compact group then the mapping $F: L^2(G) \rightarrow L^2(\hat{G})$ defined by

$$F(\psi)(\alpha) = \int \psi(g) M_{\alpha}(g^{-1}) d\mu(g)$$

is an isometric isomorphism.

For each element $\psi \in L^2(G)$, we have a representation $\psi =$

$$\sum_{\alpha} n(\alpha) \sum_{i,k=1,\dots,n(\alpha)} \frac{\left\langle \left\langle F(\psi)(\alpha)(e_i(\alpha)), (e_k(\alpha)) \right\rangle \right\rangle \times}{\phi_{ik}(\alpha)}$$

where $\{e_i(\alpha)\}_{i=1,...,n(\alpha)}$ is an orthonormal basis in

$$C^{n(\alpha)}$$
 and coordinate functions ϕ_{ik} are defined as

$$\phi_{ik}(\alpha)(g) = \langle M_{\alpha}(g)e_{i}(\alpha), e_{k}(\alpha) \rangle$$

for all $g \in G$ and $i, k = 1, ..., n(\alpha)$.

Theorem (second theorem) 7. Let G be a compact group then the inverse Fourier transform $F^{-1}: L^2(\hat{G}) \to L^2(G)$ is defined by

$$\psi(g) = \sum_{\alpha} n(\alpha) tr(F(\psi)(\alpha) M_{\alpha}(g))$$

for any Fourier transform $F(\psi) \in L^2(\hat{G})$ of $\psi \in L^2(G)$ and the series converges in L^2 .

Now, we generalize the Fourier-Stieltijes calculus. Let $T: G \to LB(H, H)$ be a continuous and bounded representation of the group G in the space of all linear bounded operators from the Hilbert space H to H. Let $\hat{M}(G)$ be a Stiejes algebra of all Fourier transforms $F(\mu)$ for all $\mu \in M(G)$. We define *the generalized Fourier-Stieltjes calculus* Φ *for* T *as a morphism* $\hat{M}(G) \mapsto LB(H, H)$ *given by*

 $\Phi_T(F(\mu)) = \int T(g) d\mu(g).$

For generalized Fourier-Stieltjes calculus $\Phi\,,\,\,$ we have the following norm inequality

$$\left\|\Phi_{T}\left(F\left(\mu\right)\right)\right\| \leq \sup_{g \in G} \left\|T\left(g\right)\right\| \left\|F\left(\mu\right)\right\|_{\hat{M}(G)}$$

that holds for all $F(\mu) \in \hat{M}(G)$.

5 The Hille-Phillips calculus

We are going to consider a special case of $T: G \to LB(H, H)$ when a continuous and bounded representation $T = T_t$ where $\{T_t, t \ge 0\}$ is a bounded C_0 - semigroup on a separable Hilbert space H. The Fourier-Stieltjes calculus $\Phi: \hat{M}(R_+) \to LB(H, H)$ for the semigroup is given by

$$\Phi_T(F(\mu)) = \int_{[\mathbf{0},+\infty)} T_t d\mu(t).$$

The Laplace transform $Lap(\mu) : \overline{C_+} \to C$ of the measure $\mu \in M(R_+)$ is defined by

$$Lap(\mu)(z) = \int_{[\mathbf{0},+\infty)} \exp(-zt) d\mu(t)$$

for $z \in C$.

We define the set $LAP(C_+)$ as $LAP(C_+) = \{Lap(\mu) : \mu \in M(R_+)\}$ and equip it with its natural norm $\|Lap(\mu)\|_{LAP} = \|\mu\|_{M}$ for all $\mu \in M(R_+)$.

Definition 7. The isomorphism Ψ_T from $Lap(C_+)$ to LB(H,H) given by

$$\Psi_{T}(Lap(\mu)) = \int_{[\mathbf{0},+\infty)} T_{t} d\mu(t)$$

is called a Hille-Phillips calculus for bounded C_0 -semigroup $\{T_t, t \ge 0\}$.

For all $\mu \in M(R_+)$ the Hille-Phillips calculus satisfies the inequality

$$\left\|\Psi_{T}\left(Lap\left(\mu\right)\right)\right\|\leq \sup_{t\in R_{+}}\left\|T_{t}\right\|\left\|\mu\right\|_{M}.$$

The straightforward calculation yields the next theorem.

Theorem (Hille-Phillips) 8. Let Ψ_T be a Hille-Phillips calculus for a bounded C_0 semigroup $\{T_t, t \ge 0\}$ on a separable Hilbert space H. Then there exists a generator $-A: H \to H$ such that $\Psi_T\left((\lambda + z)^{-1}\right) = (\lambda + A)^{-1}$ for all $z \in C_+$. The Hille-Phillips calculus is uniquely defined by its generator as follows $\Psi_T\left(Lap(\delta(t))\right) = \exp(-tA)$ for all $t \ge 0$ where δ notes a delta-function.

References:

- [1] E. Liflyand Functions of Bounded Variation and their Fourier transforms. Springer International Publishing, (2019).
- [2] F. Krien, A.I. Lichtenstein, and G. Rohringer Fluctuation diagnostic of the nodal/antinodal dichotomy in the Hubbard model at weak coupling: A parquet dual fermion approach, Phys. Rev. B 102, 235133 (2020).
- [3] T. Schafer and A. Toschi How to read between the lines of electronic spectra: the diagnostics of fluctuations in strongly correlated electron systems, Journal of Physics: Condensed Matter (2021).
- [4] Wentzell N., Li G., Tagliavini A., Taranto C., Rohringer G., Held K., Toschi A., and Andergassen S. High-frequency asymptotics of the vertex function: Diagrammatic parametrization and algorithmic implementation, Phys. Rev. B 102, 085106 (2020).
- [5] J. Nokkala, R. Martínez-Peña, G. L. Giorgi, V. Parigi, M. C. Soriano, and R. Zambrini, Gaussian states of continuous-variable quantum systems provide universal and versatile reservoir computing, Commun. Physics 4, 53 (2021).
- [6] Arvidsson-Shukur D. R. M., Yunger Halpern N., Lepage H. V., Lasek A. A., Barnes C. H. W., and Lloyd S. Quantum advantage in postselected metrology, Nat. Commun. 11, 3775 (2020).
- [7] D. Vilardi, P. M. Bonetti, and W. Metzner, Dynamical functional renormalization group computation of order parameters and critical temperatures in the two-dimensional Hubbard model, Phys. Rev. B 102, 245128 (2020).
- [8] P. M. Bonetti, Accessing the ordered phase of correlated Fermi systems: Vertex bosonization and mean-field theory within the functional renormalization group, Phys. Rev. B 102, 235160 (2020).
- [9] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and P. Grover, "On the optimal recovery threshold of coded matrix multiplication," IEEE Transactions on Information Theory, vol. 66, no. 1, pp. 278–301, (Jan. 2020).
- [10] A. De Martino, K. Diki, On the quaternionic shorttime Fourier and Segal-Bargamann transforms, Mediterr. J. Math. (110) 18, (2021).
- [11] B. Adcock, S. Brugiapaglia, N. Dexter, and S. Moraga, Deep neural networks are effective at learning high-dimensional Hilbert-valued functions from limited data, arXiv preprint arXiv:2012.06081, (2020).
- [12] F. Bach, On the equivalence between kernel quadrature rules and random feature expansions, The Journal of Machine Learning Research, 18 (2017), pp. 714–751.
- [13] Edwin Hewitt and Kenneth A. Ross. Abstract Harmonic Analysis II. Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, first edition, (1970).

- [14] J. Feliu-Faba, Y. Fan, and L. Ying, Meta-learning pseudo-differential operators with deep neural networks, Journal of Computational Physics, 408 (2020), p. 109309.
- [15] H. Gao, J.-X. Wang, and M. J. Zahr, Non-intrusive model reduction of large-scale, nonlinear dynamical systems using deep learning, arXiv preprint arXiv:1911.03808, (2019).
- [16] M. Geist, P. Petersen, M. Raslan, R. Schneider, and G. Kutyniok, Numerical solution of the parametric diffusion equation by deep neural networks, arXiv preprint arXiv:2004.12131, (2020).
- [17] Y. Korolev, Two-layer neural networks with values in a Banach space, arXiv preprint arXiv:2105.02095, (2021).
- [18] P. G. Ciarlet, Linear and nonlinear functional analysis with applications, Vol. 130, Siam, (2013).
- [19] M. Walschaers, N. Treps, B. Sundar, L. D. Carr, and V. Parigi, Emergent complex quantum networks in continuous-variables non-gaussian states, arXiv:2012. 15608 [quant-ph] (2021).
- [20] Q. Yu and A. S. Avestimehr, "Entangled polynomial codes for secure, private, and batch distributed matrix multiplication: Breaking the "cubic" barrier," CoRR, vol. abs/2001.05101, (2020).
- [21] Z. Chen, Z. Jia, Z. Wang, and S. A. Jafar, "GCSA codes with noise alignment for secure coded multiparty batch matrix multiplication," in 2020 IEEE International Symposium on Information Theory (ISIT). IEEE, (Jun. 2020).
- [22] M.I. Yaremenko Calderon-Zygmund Operators and Singular Integrals, Applied Mathematics & Information Sciences: Vol. 15: Iss. 1, Article 13, (2021).

Creative Commons Attribution License 4.0 (Attribution 4.0 International , CC BY 4.0)

This article is published under the terms of the Creative Commons Attribution License 4.0

https://creativecommons.org/licenses/by/4.0/deed.en US