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Abstract: - The number of users of time management in the world is increasing due to the need for remote work 
(at home), study, teaching, and service. This requires the improvement of time-management models, methods, 
and the development of new optimization algorithms and software tools that will take into account the 
characteristics and needs of new time-management users. This article presents the necessary and sufficient 
conditions for schedule optimality, algorithms, and results of computational experiments conducted on the 
optimal selection and planning of interrelated jobs for two performers (a supervisor and a subordinate). Such an 
optimization problem arises in time management for scheduling the performance of the selected jobs in 
conditions of the uncertainty of the selected jobs to be scheduled and then executed. We develop a scheduling 
algorithm and present computational results for selecting and scheduling interrelated jobs for two employees 
for minimizing the schedule length as the main criterion and minimizing the sum of the weighted completion 
times of the jobs as the second criterion.  
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1  Introduction 
Optimal planning of work performance during work 
and personal time is a complex process that requires 
time resources and human intellectual abilities, [1], 
[2], [3]. Time-management skills can compensate 
for work role overload [4], and effective planning 
and scheduling can reduce wasted time [5], [6]. As a 
result, the use of time management allows an 
employee to save up to 50% of the working time on 
the completion of planned tasks, spending no more 
than 10% of the time on analysis and planning, [7].  

The importance of time management is 
increasing in the modern world when more and 
more people are switching to remote work.  

Organizing work time requires certain skills and 
personal experience, so it is preferable to automate 
the process of selecting and planning jobs using a 

computer, laptop, or smartphone, [1]. Since modern 
people (especially young people) interact a lot with 
smartphones, they will be able to easily control their 
planned work. On the other hand, there is a negative 
relationship between mobile phone addiction and 
time management, [8]. Automatic work scheduling 
can help to overcome this gap.  

The time-management literature focuses on the 
problems of managing the working and personal 
time of an individual employee. Various techniques 
and procedures have been developed to determine 
the optimal sequence of the jobs planned by an 
employee, [1].  

This paper examines the problems of 
constructing optimal schedules for two employees 
with close and related works and positions, e.g., for 
a supervisor and a subordinate.  
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The main objectives of time management are to 
select the most important jobs to construct optimal 
schedules for both employees during their working 
hours. We show how scheduling theory can be used 
for optimal time management of two employees. 
 

 

2  Problem Setting and Preliminaries 
The considered scheduling problem for time 
management has the following characteristics.  

A key feature is the uncertainty of the duration 
of jobs performed by a human. Indeed, for a real 
duration of the selected job, only lower and upper 
bounds can be determined before scheduling, which 
will contain a factual duration of the job. The exact 
(factual) duration of each job is not known until the 
job has been completed.  

Job interruptions should be avoided, if possible, 
as they result in a direct loss of time and the 
additional time needed to prepare the interrupted 
job, [9].  

We assume that the planned jobs have different 
weights that determine different levels of 
importance of the jobs to be fulfilled in the planning 
horizon.  

The selected jobs for two employees can be 
performed by one of them or by both of them in a 
fixed order (fixed sequence). In the latter case, it is 
possible that the superior starts the common job and 
then the subordinate completes it (e.g., the superior 
formalizes a problem, outlines possible ways of its 
solution, and delegates the started job to the 
subordinate).  

An opposite sequence of the common job is also 
allowed in time management, e.g., the supervisor 
checks the results of the common job performed by 
the subordinate. 

The optimality of a schedule for human jobs is 
quite subjective, and employees may consider 
various quantitative and qualitative optimality 
criteria for the desired schedules.  

The following optimality criteria can be 
considered in time management:  

Maximization of the number of completed jobs;  
Minimization of the sum of the weighted job 

completion times; 
Minimization of the weighted number of late 

jobs relative to the given due dates;  
Minimization of the weighted total delay of the 

jobs;  
Minimization of the maximum delay;  
Minimization of the number of scheduled jobs 

that are not completed by the end of the working 
day; 

Ensuring the alternation of easy and difficult 
jobs in the schedule;  

Preference for hard work in the morning or, 
conversely, at the end of the work day;  

Preference for stable schedules (repeatability of 
similar schedules from day to day).  

For example, a scheduling problem for a single 
employee with three criteria (total completion time, 
total lateness, and total earlyness) was considered in 
[10]. 

In this paper, we consider the makespan 
criterion (i.e., minimizing a schedule length) as the 
main criterion. Indeed, a role overload (i.e., 
insufficient time to complete work tasks) leads to a 
decrease in an employee’s productivity [4], which 
affects future work. The second criterion considered 
is a minimization of the sum of the weighted job 
completion times.  

Planning and scheduling problems are treated in 
scheduling theory, [11], [12], where effective 
models and algorithms for constructing optimal 
schedules have been developed for different 
numbers of machines and different classical criteria.  

In the following, we use the terminology of 
scheduling theory [11] and the α|β|γ classification 
from [12] to denote the scheduling problems, where 
α specifies machine environments, β job 
characteristics, and γ objective functions. 

Let  = {J1, J2,…, Jn} denote a set of jobs that 
have to be processed by two workers M = {M1, M2}. 
A weight (importance) wi of the job Ji   is known 
before scheduling. The job Ji in the set  has a fixed 
route (sequence) with one or two stages (operations) 
mi.  

Let the following equality holds: 
 = 121,22,1, where the subset 1,2 
includes all jobs with the route (M1, M2), where 
|1,2| = n1,2. The subset 2,1 includes jobs with the 
opposite route (M2, M1), where |2,1| = n2,1.  

The subset 1 (or subset 2) includes jobs that 
must be processed by employee M1 (by employee 

M2).  
Let the following equalities hold: |1| = n1, 

|2| = n2, n = n1,2 + n2,1 + n1 + n2.  
All jobs are available for processing from the 

same release time t = 0. Preemption of any operation 
Oij of the job Ji   processed by the employee 
Mj  M is not allowed. 

The factual duration of the operation Oij is 
denoted by pij, where Ji   and Mj  M. The lower 
and upper bounds of the possible duration pij are 
denoted by aij and bij, respectively. The probability 
distributions of the random durations are unknown 
before scheduling. In the realization of a schedule, 
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the factual value of the processing time pij can be 
any real number not less than the lower bound aij 
and not greater than the upper bound bij.  

In [11], such a processing system was called a 
two-machine job-shop scheduling with uncertain 
(interval) processing times, where the possible 
duration pij of the operation Oij belongs to the closed 
interval (segment) [aij, bij]. 

Let Ci denote a moment of the completion time 
of the job Ji  . We will consider the following 
two ordered criteria: the minimization of the 
makespan Cmax = max{Ci : Ji  } and the 
minimization of the sum wiCi of the weighted 
completion times of the jobs Ji  . Using the three-
field notation ||, this scheduling problem with 
interval operation durations is denoted as follows:  

J2|aij ≤ pij ≤ bij, mi ≤ 2|Cmax, wiCi. 
 
Two considered criteria are strictly ordered and 

the main criterion is to minimize the schedule length 
Cmax.  

A set of all possible vectors p = (p1,1, p1,2, ..., pn1, 
pn2) of the operation durations is denoted by 
T = {p : aij ≤ pij ≤ bij, Ji  , Mj  M}. Each vector 
p ∈ T of possible durations is called a scenario.  

For a fixed scenario p ∈ T, the uncertain 
scheduling problem J2|aij ≤ pij ≤ bij, mi ≤ 2|Cmax turns out to be the deterministic scheduling problem 
J2|p, mi ≤ 2|Cmax, which is an individual problem 
associated with the fixed scenario p.  

As it is noted in [11], it is sufficient to search 
for the optimal schedule for the deterministic 
problem J2|aij ≤ pij ≤ bij, mi ≤ 2|Cmax among the finite 
set of semi-active schedules.  

The schedule for the scheduling problem 
 ||  is called semi-active if the execution of 

each operation cannot be processed earlier without 
violating the order of operations in this schedule or 
another operation is processed later than in this 
schedule, [11]. 

In [13], it is proved that for any fixed scenario 
p ∈ T there exists a Jackson’s pair of job 
permutations of the form (π', π''). The permutation 
π' = (π1,2, π1, π2,1) determines an optimal schedule 
(an optimal sequence) for processing jobs by 
employee M1 and the permutation

 
π'' = (π2,1, π2, π1,2) 

determines an optimal schedule (an optimal 
sequence) for processing jobs by employee M2.  

Job Ji belongs to the permutation πh, if the 
inclusion Ji  h holds. The permutation π1,2 (the 
permutation π2,1) is the same in the permutations π' 
and π''.  

The optimal order of the jobs from the set 1 
and the jobs from the set 2 can be arbitrary [13], 

[14]. In the Johnson's permutation π1,2 = (…, Jk, …, 
Jm, …) (in the permutation π2,1 = (…, Jk, …, Jm, …), 
respectively), the Johnson's inequalities (see [14]) 
hold for all indices k and m, where 1 ≤ k  ≤ n1,2, 
1 ≤ m ≤ n1,2:  

min{pk,1, pm,2} ≤ min{pm,1, pk,2}, 
(min{pk,2, pm,1} ≤ min{pm,2, pk,1}). 

More general sufficient conditions for the 
permutation optimality have been proved in [15], 
[16]. 
 

 

3 Properties of the Uncertain 

Scheduling Problem 
In most cases, there is no single schedule that is 
optimal for all possible scenarios p ∈ T. Due to this 
fact, the uncertain (interval) scheduling problem 
J2|aij ≤ pij ≤ bij, mi ≤ 2|Cmax is mathematically 
incorrect. In the worst case, any pair of permutations 
(π', π'') may be the only optimal one for some 
scenarios p ∈ T.  

Properties of the makespan-optimal schedule 
with interval processing times have been 
investigated in papers [17], [18]. 

Paper [17] provides sufficient conditions for a 
pair of job permutations (π', π'') to be optimal for the 
deterministic problem J2|p, mi ≤ 2|Cmax with any 
fixed scenario p ∈ T. Such a pair of job permutations 
(π', π'') is optimal for the uncertain scheduling 
problem J2|aij ≤ pij ≤ bij, mi ≤ 2|Cmax. 

Theorem 7 and Corollaries 3 and 4 proved in 
[17] determine sufficient conditions (1) – (4) for the 
optimality of the pair of job permutations (π', π'') 
with an arbitrary order of jobs of the set 1,2 in the 
permutation π1,2 and an arbitrary order of jobs of the 
set 2,1 in the permutation π2,1: 

1,2 2 2,1

1 2
i j

i j

J J

b a
  

  ,  (1) 

1,2 1 2,1

2 1
i j

i j

J J

a b
  

  ,  (2) 

2,1 1 1,2

2 1
i j

i j

J J

b a
  

  ,  (3) 

2,1 2 1,2

1 2
i j

i j

J J

a b
  

  .  (4) 

 
If the conditions (1) and (2) (the condition (1)) 

hold, then the orders of the jobs in the sets 1,2 and 
2,1 (the jobs in the set 1,2) in the optimal pair of 
job permutations (π', π'') can be arbitrary.  

If the conditions (3) and (4) (the condition (3)) 
hold, then the orders of the jobs in the sets 2,1 and 
1,2 (the jobs in the set 2,1) in the optimal pair of 
job permutations (π', π'') can be arbitrary. 
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Theorem 2 given in [17] determines the 
following necessary and sufficient conditions (a) 
and (b) for the existence of the permutation π1,2 that 
is a Johnson's one for the jobs from the set 1,2 for 
any fixed scenario p ∈ T:  

a) for each pair of jobs 1
1,2iJ   and 1

1,2jJ   

(jobs 2
1,2iJ   and 2

1,2jJ  , respectively), either 
the inequality 1 1i jb a  or 1 1j ib a  holds (either 
inequality 2 2i jb a  or 2 2j ib a  holds, respectively); 

b) the inequality *
1,2| | 1   holds and for the job 

*
*
1,2i

J  , the inequalities *
1

1 1,21
max{ | }i ii

a b J  , 

*
2

2 1,22
max{ | }i ii

a b J   hold. 

The equality 1 2 *
1,2 1,2 1,2 1,2     holds, 

where  
1
1,2 1,2 1 2{ | }i i iJ b a    , 
2
1,2 1,2 2 1{ | }i i iJ b a    , 

*
1,2 1,2 1 2 2 1{ | , }i i i i iJ b a b a     . 

 
The conditions of Theorem 2 given in [17] can 

be similarly reformulated for the jobs from the set 
2,1.  

If the above sufficient conditions do not hold, 
one can construct the dominant set of the pairs of 
job permutations for the uncertain (interval) 
scheduling problem J2|aij ≤ pij ≤ bij, mi ≤ 2|Cmax, 
which contains at least one optimal pair (π', π'') of 
job permutations for the deterministic problem 
J2|p, mi ≤ 2|Cmax with any fixed scenario p ∈ T.  

In [18], to reduce the number of such 
permutations, the binary relation 1,2A  on the set 1,2 
(the binary relation 2,1A  on the set 2,1, respectively) 
was constructed and the conflict sets of the jobs 
were identified.  

Two jobs Ju and Jv are in binary relation 1,2A , 
i.e., the inclusion   1,2,u vJ J A  holds, if one of the 
following conditions (5) and (6) holds: 

1 2u vb a  and 1 1u vb a ,   (5) 
 

2 1v vb a  and 2 2v ub a .  (6) 
 

The subset x  1,2 is called a conflict set of 
jobs if, for any job Jy  1,2\x, either the relation 
  1,2,x yJ J A  or the relation   1,2,y xJ J A  holds for 

each job Jx  x; provided that any proper subset of 
the set 1,2 does not have such a property. 

The construction of the above binary relation 
requires no more than n2 elementary operations. The 

set of permutations determined by this binary 
relation contains at least one Johnson’s permutation 
of the jobs from the set 1,2 (from the set 2,1, 
respectively) for each fixed scenario p ∈ T, i.e., it is 
a dominant set of the permutations. 

Let the binary relation 1,2A  on the set 1,2 have 
the following form: 

1,21 1 1... { ,..., } ...k k k r k r nJ J J J J J   
, 

where the jobs 1,...,k k rJ J 
 constitute a conflict set, 

while the remaining jobs are strictly ordered based 
on the dominant relations.  

The sufficient conditions for verifying an 
optimal order for processing jobs in the conflict set 
were proved in [18]; see Theorems 10, 11 and 12.  

If the following conditions (7) of Theorem 10 
hold, then the order of the jobs in the conflict set can 
be arbitrary:  

2 2,1

,1 ,2 ,2
1 1i

k r k

i i j

i J j

b a a


   

   
 

 (7) 

 
To check the conditions of Theorems 11 and 12, 

it is required to construct a permutation of the jobs 
of the conflict set using the algorithms developed in 
[18]. For the permutation of the form 1( ,..., )k k rJ J   
the sufficient conditions of the optimality in the 
Theorems 11 and 12 have the following form (8) 
and (9), respectively:   

 
2 2,1

1

,1 ,2 ,2 ,1
1i

k s

k s i j j

J j

b a a b
 



  

    , (8) 

 
 1,2,...,s r ; 

1

,1 ,2
2 1

r r

k i k j

i r s j r s

a b


 

     

  ,  1,2,...,s r . (9) 

 
If there are multiple conflict sets in the job set 

1,2, the conditions for each such conflict set can be 
checked sequentially.  

Various methods have been developed to select 
the next job when there are no sufficient conditions 
for an optimal job order (see survey papers [19], 
[20]). In our paper, we use ordering based on the 
second criterion, i.e., in the non-increasing order of 
the job weights. 
 

 

4  Illustrative Example  
We assume that eight jobs must be planned for two 
employees for a day. The upper and lower bounds of 
possible job durations and job weights are given in 
Table 1.  
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Table 1. Input data for the Example. 
Ji J1 J2 J3 J4 J5 J6 J7 J8 
ai1 3 3 3 2 - 6 5 5 
bi1 4 4 4 3 - 7 6 6 
ai2 1 1 1 - 2 6 8 7 
bi2 3 3 3 - 3 7 9 9 
wi 3 2 4 1 3 4 3 4 

 
Let the following equalities hold: 1,2 = {J1, J2, 

J3}, 1 = {J4}, 2 = {J5}, 2,1 = {J6, J7, J8}.  
We need to determine the optimal order of the 

jobs for the makespan as the main criterion and the 
sum of the weighted job completion times as the 
second criterion. 

Thus, we need to solve the uncertain job-shop 
scheduling problem J2|aij ≤ pij ≤ bij, mi ≤ 2|Cmax, 
wiCi.  

First, we check the conditions (1)–(4) for a 
single pair of job permutations that is optimal for all 
possible scenarios p ∈ T.  
 
The condition (1) holds: 

4 + 4 + 4 < 2 +6 + 8 + 7, 
while the condition (2) does not hold: 

1 + 1 + 1 < 3 + 7 + 6 + 6. 
 

The condition (3) does not hold: 
7 + 9 + 9 > 2 + 3 + 3 + 3. 

The condition (4) can be left unchecked.  
 
Thus, the order of the jobs in the set 1,2 in the 

optimal pair of the job permutations (π', π'') can be 
arbitrary. We fix an order of the jobs in the 
permutation π1,2 with the decreasing order of their 
weights. We obtain that π1,2 = (J3, J1, J2).  

Since 1 = {J4}, 2 = {J5}, we also obtain the 
equalities π1 = (J4) and π2 = (J5).  

Consider the set 2,1 = {J6, J7, J8}. We obtain 
1
2,1 7 8{ , }J J  , 2

2,1  , *
2,1 6{ }J  . The following 

inequalities b7,1 = 6 > a8,1 = 5 and b8,1 = 6 > a7,1 = 5 
hold. Therefore, the condition (a) does not hold, and 
the permutation π2,1, which is a Johnson's one for the 
jobs from the set 2,1 for any fixed scenario p ∈ T, 
does not exist. 

We determine the binary relation 2,1A  on the set 
2,1 using the conditions (5) and (6). We conclude 
that the conditions (6) hold for the pair of jobs J6 
and J7, and for the pair of jobs J6 and J8.  

This gives us the relations   2,1
6 7,J J A  and 

  2,1
6 8,J J A . For the pair of jobs J7 and J8, 

neither the condition (5) nor the condition (6) holds. 
Therefore, the binary relation 2,1A  on the set 2,1 has 

the following form: 6 7 8{ , }J J J . The job set {J7, 
J8} is a conflict set. 

Next, we check the conditions (7)–(9) for the 
conflict set of jobs. We obtain  

7 + 9 + 9 > 3 + 3 + 3 + 2 + 6.  
 
Thus, the condition (7) does not hold. 

 
To check the condition (8), we must check both 

orders of the conflicting jobs.  
Consider the order (J7, J8). For s = 1, we obtain  

9 < 3 + 3 + 3 + 2 + (6 – 7), 
and for s = 2, we obtain 

9 > 3 + 3 + 3 + 2 + (6 – 7) + (5 – 9). 
 
Therefore, the condition (8) does not hold for 

the order (J7, J8) of the conflicting jobs. 
Analogously, the condition (8) does not hold for 

the order (J8, J9) of the conflicting jobs. 
Note that we do not check the condition (9) 

because the conflict set of jobs {J7, J8} is at the end 
of the partial strict order 2,1A . 

Thus, there is no a pair of job permutations 
(π', π'') of the jobs from the set , which is optimal 
for the makespan criterion for all scenarios p ∈ T.  

We use the second criterion to order the jobs in 
the conflict set, and obtain the following order: (J8, 
J7). Therefore, π2,1 = (J6, J8, J7). 

Thus, to solve Example, one must consider the 
following pair of job permutations: 

(π', π'') = ((π1,2, π1, π2,1), (π2,1, π2, π1,2)) = 
((J3, J1, J2, J4, J6, J8, J7), (J6, J8, J7, J5, J3, J1, J2)). 
 
 

5 An Algorithm for Constructing a 

Daily Schedule for Two Employees 
In [18], the algorithms were developed to test a set 
of schedule dominance conditions for the uncertain 
job-shop scheduling problem. When sufficient 
conditions hold for all conflict sets, the algorithms 
construct a pair of job permutations (π', π'') that is 
optimal for all possible scenarios p ∈ T of the 
uncertain problem J2|aij ≤ pij ≤ bij, mi ≤ 2|Cmax. 
Otherwise, the developed algorithms stop at the 
construction of the binary relations 1,2A  and 2,1A . 
The jobs from the sets 1 and 2 were arranged in 
increasing order of their indices. 

Next, we propose a modification of the 
algorithms developed in [18] for the case of the 
following two-criteria uncertain job-shop scheduling 
problem: J2|aij ≤ pij ≤ bij, mi ≤ 2 |Cmax, wiCi.  
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Algorithm 1 

Input: Set  = 1 2 1,2 2,1 of the 
selected jobs; lower bounds aij and upper bounds bij, 
0 < aij < bij, job weights wi, where Ji  , Mj  M. 

Output: A pair of job permutations (π', π''), 
with the optimality proof or without an optimality 
proof. 

Step. 1. Arrange the jobs of the sets 1 and 2 in 
the permutations π1 and π2 in the non-increasing 
order of their weights wi. 

Step 2. IF the condition 
1,2 2 2,1

1 2
i j

i j

J J

b a
  

   

holds, arrange the jobs in the permutation π1,2 in the 
non-increasing order of their weights wi. The 
permutation π1,2 is optimal. IF the condition 

1,2 1 2,1

2 1
i j

i j

J J

a b
  

   holds, arrange the jobs in the 

permutation π2,1 in the non-increasing order of the 
weights wi. The permutation π2,1 is optimal ENDIF 

ENDIF. 
Step 3. IF both permutations π1,2 and π2,1 are 

optimal, GOTO Step 18 ENDIF. 
Step 4. IF the condition 

2,1 1 1,2

2 1
i j

i j

J J

b a
  

   

holds, arrange the jobs in the permutation π2,1 in the 
non-increasing order of the weights wi. The 
permutation π2,1 is optimal.  

IF the condition 
2,1 2 1,2

1 2
i j

i j

J J

a b
  

   holds, 

arrange the jobs in the pemutation π1,2 in the non-
increasing order of the weights wi. The permutation 
π1,2 is optimal ENDIF ENDIF. 

Step 5. IF both permutations π1,2 and π2,1 are 
optimal GOTO Step 18 ENDIF. 

Step 6. IF the permutation π1,2 is not optimal, 
divide the set 1 2 *

1,2 1,2 1,2 1,2     as follows:  
1
1,2 1,2 1 2{ | }i i iJ b a    , 

2
1,2 1,2 2 1{ | }i i iJ b a    , 

*
1,2 1,2 1 2 2 1{ | , }i i i i iJ b a b a     . 

Step 7. Test the following conditions: 
a) for each pair of jobs 1

1,2iJ   and 1
1,2jJ   

(jobs 2
1,2iJ   and 2

1,2jJ  , respectively), either 

1 1i jb a  or 1 1j ib a  (either 2 2i jb a  or 2 2j ib a , 
respectively); 

b) the inequality *
1,2| | 1   holds and for the job 

*
*
1,2i

J   (if any) both inequalities 

*
1

1 1,21
max{ | }i ii

a b J  , *
2

2 1,22
max{ | }i ii

a b J   
hold; 

IF both conditions a) and b) hold, construct the 
permutation  *

1 2
1,2π π , ,π

i
J  such that in the 

permutation 1π , jobs from the set 1
1,2  are located in 

the increasing order of the values bi1, while in the 
permutation 2π , jobs from the set 2

1,2  are located 
in the decreasing order of the values bi2. The 
resulting permutation π1,2 is optimal.  

Step 8. ELSE construct a binary relation 1,2A  on 
the set 1,2 by pairwise comparing all jobs in this set 
as follows:   1,2,u vJ J A , if 1 2u vb a  and 1 1u vb a , 
or 2 1v vb a  and 2 2v ub a ; identifying all conflict 
sets of the jobs. 

Step 9. FOR each conflict set DO: 
Assume that k is the number of the last job 

before the conflict set in the binary relation 1,2A  and 
r is the cardinality of this conflict set. 

Step 10. IF the condition  

2 2,1

,1 ,2 ,2
1 1i

k r k

i i j

i J j

b a a


   

     

holds, arrange the jobs of this conflict set in the non-
increasing order of the weights wi; now the conflicts 
are resolved. 

Step 11. ELSE FOR each job Ji in the conflict 
set  

IF ,2 ,1 0i ia b   THEN 1
iJ   ELSE 2

iJ  .  
ENDIF ENDFOR. 

Construct the permutation 1 2( , )  , arrange the 
jobs in the permutation 1  in the non-decreasing 
order of the upper bounds bi1 and arrange the jobs in 
the permutation 2  in the  non-increasing order of 
the lower bounds ai2. 

Step 12. IF the condition 

 
2 2,1

1

,1 ,2 ,2 ,1
1i

k s

k s i j j

J j

b a a b
 



  

     

holds for  1,2,...,s r , the conflicts are resolved. 
Step 13. ELSE  
FOR each job Ji in the conflict set  
IF ,1 ,2 0i ia b   THEN 1

iJ   ELSE 2
iJ  . 

ENDIF ENDFOR. 

Construct the permutation 2 1( , )  , arrange the 
jobs in the permutation 1  in the non-increasing 
order of the upper bounds bi2, and arrange the jobs 
in the permutation 2  in the non-decreasing order 
of the lower bounds ai1. 
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Step 14. IF the condition 
1

,1 ,2
2 1

r r

k i k j

i r s j r s

a b


 

     

   holds for  1,2,...,s r , 

the conflicts are resolved. 
Step 15. ELSE arrange the jobs of the conflict 

set in the non-increasing order of the weights wi, the 
conflict is not resolved ENDIF ENDIF ENDIF 

ENDFOR ENDDO.  
IF all conflicts are resolved, the permutation π1,2 

is optimal. ENDIF ENDIF ENDIF. 
Step 16. IF the permutation π2,1 is optimal, 

GOTO Step 18  ENDIF. 
Step 17. Repeat steps 6–15 by replacing the set 

1,2 with the set 2,1, employee M1 with employee 
M2, the binary relation 1,2A  with the binary relation 

2,1A , and the permutation π1,2 with the permutation 
π2,1. 

Step 18. Construct the desired pair of job 
permutations (π', π'') = ((π1,2, π1, π2,1), (π2,1, π2, π1,2)).  

 
It is easy to see that the asymptotic complexity 

of Algorithm 1 is О(n2) elementary operations.  
As a result of executing the developed 

Algorithm 1, a pair of job permutations (π', π'') is 
constructed, which can be either optimal for all 
possible scenarios (with the proof of the optimality, 
if the sufficient conditions hold), or optimal for the 
factual scenario without proof of the optimality, or 
non-optimal for the makespan criterion of the 
uncertain (interval) job-shop scheduling problem 
J2|aij ≤ pij ≤ bij, mi ≤ 2|Cmax.  

Note that arranging the jobs from the set 1 and 
the set 2, and in some cases arranging the jobs 
from the set 1,2 and the set 2,, in some conflict 
sets, were located in the non-decreasing order of 
their weights (see steps 1, 2, 4, 10 in Algorithm 1).  

If the sufficient conditions do not hold, 
Algorithm 1 does not construct a permutation with a 
proof of its optimality. In such a case, we will 
arrange the jobs in the non-decreasing order of their 
weights in step 15 of Algorithm 1 in order to 
improve the achieved value of the second criterion. 
 
 
6 Computational Experiments and 

 Results 
The developed Algorithm 1 was coded in MATLAB 
and tested on a large number of randomly generated 
instances of the two-criterion uncertain job-shop 
scheduling problem J2|aij ≤ pij ≤ bij, mi ≤ 2|Cmax, 
wiCi.  

The total number of jobs (the total number of 
jobs that employees chose to complete during the 

day) in the set  was equal to 20. The number of 
jobs in each of the four subsets 1, 2, 1,2, 2,1 can 
be different in different series of the conducted 
computational experiment. Each series of the tests is 
characterized by the ratio: n1,2 : n1 : n2 : n2,1. There 
were 100 trials (instances) in each series. 

The experiments consisted of two parts. In the 
first part of the experiments, the equality n1 = n2 
holds for each value from 1 to 5, and the values n1,2 
and n2,1 take all possible combinations keeping the 
total number of jobs equal to 20. 

In the second part of the computational 
experiment, either the equality n1 = 0 holds or the 
equality n2 = 0 holds, and the other three values 
were equal to all possible numbers with keeping the 
total number of jobs equal to 20.  

The generation of the lower bounds aij and the 
upper bounds bij for possible values of the durations 
pij of the operations Oij, pij ∈ [aij, bij], was organized 
as follows. A value of the upper bound bij was 
randomly chosen from the segment [1, 100] based 
on the uniform distribution. With the given value of 
the relative length δ of the segment [aij, bij], the 
lower bound aij was calculated using the following 
equality: aij = bij (1 – δ).  

The maximum relative length δ of the segment 
of possible durations of the operations Oij was equal 
to the following values: 0.05, 0.1, 0.15, 0.2, 0.25, 
0.3, 0.35, 0.4, 0.45, 0.5. The bounds aij and bij were 
decimal fractions with the maximum possible 
number of digits after the decimal point.  

The strict inequality aij < bij was guaranteed for 
each job Ji   and each employee Mj  M.  

The weights wi were randomly generated from 
the integers from 1 to 5. 

For each tested instance, we used Algorithm 1 
to construct a pair of job permutations (π', π''). The 
jobs were processed with respect to the constructed 
pair of the permutations (π', π''). 

After all jobs were completed, the factual 
durations of all operations were known. In the 
experiment, the components of the random scenario 
p* of the factual durations were generated using the 
uniform distribution from the segments [aij, bij]. 
Therefore, it was possible to calculate the factual 
value of both tested criteria. 

For the constructed pair of permutations, we 
found the values of the criteria Cmax(π', π'') and 
wiCi(π', π'') based on the factual durations of the 
operations. On the other hand, one can construct a 
Jackson’s pair of the job permutations  π ,πJ J

   for 
the factual scenario p* and calculate the optimal 
values of the makespan  max π ,πJ JC    and the 
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weighted sum of the job completion times 
 π ,πi i J JwС   . 

We say that the instance is solved optimally, if 
Algorithm 1 ends with the statement that the 
permutations π1,2 and π2,1 are optimal. This means 
that the above sufficient conditions are satisfied for 
all conflict sets (if any).  

We say that the instance is solved optimally 
without a proof of optimality if the value of the 
criterion turns out to be optimal for the factual 
scenario of job durations, while not all conflict sets 
had sufficient conditions met.  

In both cases, the relative makespan error was 
equal to zero, i.e., the following equality holds: 
Cmax = 0.  

In other cases, the tested instances were not 
solved optimally. Therefore, we compared the 
values of both criteria for the computed job 
permutation pairs and factually optimal Jackson’s 
job permutation pairs calculated after all jobs were 
completed.  

We calculated the relative errors of the job 
permutations constructed by Algorithm 1 using the 
following formulas: 

   

 
max max

max
max

π',π" π ,π
,

π ,π
J J

J J

C C
C

C

 
 

 
 

   

 

π',π" π ,π
π ,π

i i i i J J

i i

i i J J

wС wС
wС

wС

  
 

 
. 

 
Since we consider minimizing the schedule 

length as the main criterion, the criterion value for 
the constructed pair of job permutations 

 π',π"i iwС  is compared with the criterion value 

 π ,πi i J JwС    calculated for the pair of Jackson’s 
permutations that is optimal for the scenario with 
the factual operation durations according to the 
main criterion. For the tested instances with equality 
Cmax = 0, we assume that wiCi = 0. 

In the experiments, we estimated the average 
improvement and the maximal improvement of the 
weighted sum of job completion times.  

We also found the number of jobs that were 
completed after the end of the workday in the 
constructed schedule.  

We limited the size of an 8-hour workday to 
800. 

Table 2 and Table 3 present the computational 
results obtained for the first part of the experiments 
and for the second part of the experiments, 
respectively, for all tested instances.  

The tables are organized as follows. In the first 
column, the value of the relative length δ of the 

segment of possible durations of the operations Oij 
is presented, columns from 2 to 9 represent some 
indicator values.  

 
We consider the following indicators:  

Opt_Pr (in percentages, %) is the average value 
of tested instances solved optimally for the 
makespan criterion with the proof of the optimality; 

Opt_Not_Pr (in %) is the average value of 
tested instances solved optimally for the makespan 
criterion without proof of the optimality;  

Not_Opt (in %) means the average value of 
tested instances solved non-optimally for the 
makespan criterion,  

Late_Job is the average number of jobs 
completed after the end of the working day;  

Av_Cmax (in %) is the average relative 
makespan error;  

Max_Cmax (in %) is the maximum makespan 
error;  

Av_impr (in %) is the average improvement (for 
all instances tested) of the weighted sum of the 
weighted total completion time criterion for the non-
optimally solved instances for the makespan 
criterion;  

Max_impr (in %) is the maximum improvement 
of the weighted sum of the job completion times for 
the non-optimally solved instances for the makespan 
criterion. 

The percentage of instances solved optimally 
for the makespan criterion with the proof of 
optimality decreases with increasing the value of δ, 
and for the experiment with n1 = n2 this value is 
larger than for the second part of the experiments.  

In the individual cases, the value of the 
improvement of the second criterion for the factual 
scenario could be up to 48%. 

 
Table 2. Average indicators for the experiments, 

where n1 = n2 

δ 

O
pt

_P
r, 

%
 

O
pt

_N
ot

_P
r, 

%
 

N
ot

_O
pt

, 
%

 

La
te

_J
ob

 

A
v_

C
m

a
x,

 %
 

M
ax

_C
m

ax
, %

 
A

v_
im

pr
, %

 
M

ax
_i

m
pr

, %
 

0.05 98.5 1.5 0.025 4.5 0.000 0.14 0.02 0.62 
0.10 96.2 3.8 0 3.9 0 0 0 0 
0.15 92.5 7.5 0.03 3.27 0.000 0.76 0.46 18.22 
0.20 85.8 14.1 0.15 2.71 0.002 3.67 1.60 25.4 
0.25 78.3 21.6 0.125 2.2 0.003 5.56 2.04 32.03 
0.30 65.5 34.3 0.15 1.73 0.006 9.43 1.53 32.5 
0.35 54.6 45.1 0.35 1.31 0.007 8.23 1.9 23.9 
0.40 41.7 57.9 0.4 0.97 0.012 12.06 2.27 37.7 
0.45 28.6 71.0 0.425 0.64 0.011 7.94 2.45 32.5 
0.50 16.8 82.6 0.7 0.39 0.023 12.21 3.01 37.81 
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Table 3. Average indicators for the experiments, 
where either n1 = 0 or n2 = 0 

δ 

O
pt

_P
r, 

%
 

O
pt

_N
ot

_P
r, 

%
 

N
ot

_O
pt

, %
 

La
te

_J
ob

 

A
v_

C
m

a
x,

 %
 

M
ax

_C
m

ax
, %

 
A

v_
im

pr
, %

 
M

ax
_i

m
pr

, %
 

0.05 97.02 2.93 0.06 5.40 0.00 8.22 0.29 37.24 
0.10 92.94 6.89 0.16 4.91 0.00 5.77 0.83 34.12 
0.15 87.93 11.82 0.25 4.40 0.00 8.31 1.23 35.44 
0.20 81.00 18.64 0.36 3.87 0.00 8.14 1.54 40.04 
0.25 72.81 26.72 0.47 3.32 0.01 10.15 1.77 40.28 
0.30 63.55 35.83 0.63 2.77 0.01 11.98 2.08 41.71 
0.35 53.66 45.49 0.85 2.24 0.01 8.76 2.91 39.82 
0.40 43.11 55.94 0.95 1.78 0.02 9.69 3.37 48.33 
0.45 33.41 65.42 1.17 1.32 0.03 13.34 3.59 43.07 
0.50 24.58 74.18 1.23 0.93 0.03 18.07 3.85 42.59 

 
The constructed schedule is optimal for the 

makespan criterion with proof of the optimality if 
sufficient conditions are met, in particular, if all 
conflicts are resolved. The percentage of resolved 
conflicts relative to the total number of conflicts is 
shown in Figure 1 and Figure 2 as a function of the 
δ value. Figure 1 and Figure 2 present separate 
graphs for different values of n1,2 and n2,1 for the 
first and second part of the experiments, 
respectively. The percentage of resolved conflicts 
can be close to 100%. There is a clear tendency for 
the percentage of resolved conflicts to decrease with 
increasing the value of δ. However, even with the 
maximum δ tested of 0.5, on average at least 25% of 
the conflicts were resolved in the experiments with 
n1 = n2. 

 
 

 
Fig. 1: Average percentage of the resolved conflicts 
for the experiments with n1 = n2 

 
The total number of the tested instances for 

which the constructed pair of job permutations 
provides the optimal value of the makespan criterion 
consists of the optimally solved instances with or 
without the proof of the optimality. Table 4 and 
Table 5 show the number of optimally solved 

instances in the first and in second part of the 
experiments, respectively.  

 

 
Fig. 2: Average percentage of the resolved conflicts 
for the experiments, where either n1 = 0 or n2 = 0 

 
It can be seen that despite of the uncertainty of 

the operation durations, the proposed Algorithm 1 
allows to find the optimal value of the makespan 
criterion for more than 93–95% of the tested 
instances, even with a large relative error δ = 0.5 of 
the input data, i.e., the relative error was 50%. 

 
Table 4. The average percentage of the tested 
instances solved optimally for the makespan 

criterion, with or without the proof of the optimality, 
for the instances with n1 = n2 

δ 
n12 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

0 99.8 100 99.8 99 99.4 98.8 97.6 97.6 97.8 95.8 
1 100 100 100 99.8 99.6 100 99.6 99.2 98.8 98.6 
2 100 100 100 100 100 100 100 100 100 100 
3 100 100 100 100 100 100 100 100 100 100 
4 100 100 100 100 100 100 100 100 100 100 
5 100 100 100 100 100 100 100 100 100 100 
6 100 100 100 100 100 100 100 100 100 100 
7 100 100 100 100 100 100 100 100 100 100 
8 100 100 100 100 100 100 100 100 100 100 
9 100 100 100 100 100 100 100 100 100 100 

 
Table 5. An average percentage of tested 

instances solved optimally for the makespan 
criterion, with or without the proof of the optimality 

for the experiments, where either n1 = 0 or n2 = 0 
δ 

n12 
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

0 99.8 100 100 100 100 100 99.4 100 99.8 99.9 
1 100 99.2 99.9 100 99.6 99.8 99.9 100 98.6 100 
2 100 99.1 100 100 98.5 99.8 100 100 98.7 99.8 
3 100 100 96.9 100 100 99.3 98.9 99.9 100 100 
4 96 99.4 100 100 98 98.8 99.9 100 100 96.2 
5 99.1 99.8 100 100 97.3 98.3 99.7 100 100 100 
6 93.6 98.2 99.8 99.9 99.9 100 97.1 97.2 98.8 99.5 
7 99.9 100 100 100 99.7 91.7 97.8 99.9 99.2 99.8 
8 100 100 100 100 94.1 95.9 98.4 98.4 99.3 99.7 
9 99.8 99.8 99.8 100 100 100 100 100 100 100 

10 100 100 100 100 100 100 100 100 100 100 
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For the same series of experiments as in Figure 
1 and Figure 2, Figure 3 and Figure 4 show graphs 
of the average relative improvements in the values 
of the weighted sum of job completion times for the 
instances that were not optimal due to the main 
makespan criterion.  

 

 
Fig. 3: Average improvements (in %) of the 
weighted sum of the job completion times for the 
experiments with n1 = n2 

 

 
Fig. 4: Average improvements (in %) of the 
weighted sum of the job completion times for the 
experiments, where either n1 = 0 or n2 = 0 

 
Figure 3 and Figure 4 show that on average the 

achieved improvements were up to 12–22%, and in 
general this value increases with increasing relative 
length δ of the segment [aij, bij] of possible operation 
durations. 
 
 
7   Concluding Remarks 
We investigated the uncertain problems of 
scheduling the selected jobs for two employees. 

Only the lower and upper bounds for the possible 
duration of each selected job were assumed to be 
known before scheduling. For the dominant set of 
active schedules with the fixed orders in the pair of 
job permutations, the binary relation was 
constructed. 

Based on the presented results, an efficient 
(polynomial) algorithm was developed to solve the 
uncertain job-shop scheduling problems either 
exactly or heuristically.  

In order to test the effectiveness of the 
developed algorithm used for time management, the 
computational experiments were conducted on a 
personal computer for the evaluation of a day period 
for drawing up daily schedules for two employees.  

Every day, 20 jobs were received for the 
execution. To schedule the jobs, the uncertain job-
shop scheduling problem was solved. In the 
considered scheduling problem, two criteria were 
optimized in the fixed priority order. The 
minimization of the schedule length was the main 
criterion, while the minimization of the sum of the 
weighted completion times of the jobs was a second 
criterion.  

A personal computer was used to select the 
most important jobs for two employees and to 
generate optimal schedules for their execution. 

The computational experiments were conducted 
on randomly generated uncertain (interval) 
scheduling problems showed that the use of the job 
permutations constructed by the developed 
algorithm provides optimal schedules in more than 
93–95% of the cases when the maximum relative 
length of the job duration interval [aij, bij] does not 
exceed 50%. At the same time, the improvement of 
the received values of the second criterion amounted 
to 12–22%.  

In future research, it will be promising to 
consider more than two ordered criteria for the 
uncertain (interval) job-shop scheduling problem 
arising in time management for two employees.  
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