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Abstract: In this paper, we derive the conditional characteristic function of the sticky Ornstein-Uhlenbeck (OU)
process and explore bond pricing under this framework. We systematically transform the standard OU process into
the sticky OU process by incorporating the time-varying symmetric local time, thereby establishing the existence
of a unique weak solution for this modified process. Subsequently, leveraging the infinitesimal generator and its
domain, we meticulously compute the conditional characteristic function of the sticky OU process. Following
a similar analytical approach, we incorporate the sharpe ratio into our bond pricing methodology, ensuring
coherence and rigor in our calculations. Notably, all our findings are presented in closed-form expressions,
facilitating straightforward interpretation and application in financial modeling and analysis. This comprehensive
treatment not only advances the theoretical understanding of the stickyOUprocess but also offers practical insights
into bond valuation dynamics under this intricate process.
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1 Introduction
The Ornstein-Uhlenbeck (OU) process refers

to the state variable Xt satisfying the following
stochastic differential equation:

dXt = κ(α−Xt)dt+ σdWt,

where κ, α and σ are constants. In financial
literature, α is often referred to as the long-term
mean of a stochastic process Xt. When κ > 0,
Xt is a stochastic process with the property of mean
regression. Because if Xt > α, Xt is above its
long-term average, then κ(α − Xt) < 0, which Xt

moves towards its long-term averageα; ifXt < α,Xt

is below its long-term average, then κ(α −Xt) > 0,
which Xt moves towards its long-term average α.

The essence of the OU process was proposed by
[1], in his famous paper on Brownian motion. The
authors in [2], initially introduced this process
as a model to describe the velocity changes
of Brownian particles under the influence of
friction. The Ornstein-Uhlenbeck (OU) process,
as a pivotal stochastic process model, has
consistently garnered significant attention for
its rich mathematical properties and diverse
statistical analysis methodologies. Its theoretical
foundations hold immense academic value and
practical relevance, underscoring its enduring appeal
and fostering extensive research endeavors among
scholars globally. Extensive research efforts, both
domestically and internationally, have delved into
various aspects of the OU process, including but not
limited to parameter estimation, model validation,
and comparative analyses with alternative stochastic

process models. These investigations have not only
deepened our understanding of the OU process's
intricacies but also widened its application scope
across various disciplines.

The study, [3], adequately studied the simulation
and estimation of this process. The study, [4],
discussed robust estimation methods for OU
processes that protect against outliers and deviations
from ideal laws, proposed basic M-estimates and
optimal asymptotic linear (AL) estimates. The study,
[5], studied a numerical simulation algorithm that
is accurately applicable to any time step for the OU
process X(t) and its time integration Y (t). The
study, [6], provided a fractional order OU process
through the Lamperti transformation of fractional
Brownian motion. The study, [7], studied and
discussed parameter estimation for fractional order
OU processes. The study, [8], studied the properties
of the reflective OU process and demonstrated that the
reflected OU process exhibits both steady-state and
transient behaviors that are reasonably manageable.
The study, [9], studied the asymptotic behavior of
the first passage time probability density function
(p.d.f.) of the OU process through a constant
boundary under large boundary conditions. The
study, [10], investigated the solutions of first-passage
time equations for both Wiener process and OU
process, specifically considering the general case
of time-dependent threshold functions. The study,
[11], studied in detail the asymptotic properties of
the first passage time p.d.f and its moments of the
OU process under an unconstrained condition and a
constant boundary condition, and obtained an explicit
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expression for any order passage time moment that is
particularly suitable for calculation. The study, [12],
studied the maximum inequality of the OU process.
The study, [13], studied the probability density of
OU processes with jumps. The study, [14], derived
three different expressions for the first hitting time
density of the OU process at a predetermined level.
The study, [15], studied the main characteristics of
the time-varying OU process, such as the covariance
function, and proved the formula for the generalized
fractional Fokker-Planck equation that describes the
one-dimensional probability density function of the
analyzed system. For other theoretical and applied
research on stochastic process, readers may consult,
[16], [17], [18], [19], [20]. These studies not only
enrich the theoretical system of OU processes, but
also provide a solid theoretical foundation for the
application of OU processes in practical problems.

In the realm of finance, the OU process has
emerged as a prominent tool for modeling the
dynamics of interest rates and other financial asset
prices. Distinct from the traditional geometric
Brownian motion, the OU process exhibits a
distinctive mean-reverting characteristic, which
renders it particularly adept at capturing the behavior
of certain financial assets. This attribute has garnered
widespread interest and attention from scholars both
domestically and internationally.

The earliest application of OU process in finance
was [21], who used this model to describe the
dynamic change of instantaneous interest rate.
Therefore it is generally referred to as the Vasicek
model in financial literature. The ease of handling
and interesting randomness of the Vasicek model in
bond pricing make this classic model very popular.
The explicit formula for bond prices was originally
derived by solving PDE regarding to bond pricing.
The study, [22], researched the characteristics of
PDE related to bond pricing. They proved that
if certain Riccati equations have a solution on a
specific maturity date, bond prices will exhibit
exponential affine form. In addition, Vasicek's
model generates a set of solvable equations due to
its specific specifications for drift and volatility,
which is consistent with the theoretical descriptions
of Duffie and Kan, and is therefore classified as an
exponential affine model. Recently, [23], proposed
a new approach to address the issues discussed by
Duffie and Kan. They pointed out that when the
changes in short-term interest rates follow Gaussian
dynamics or square root processes, the price of bonds
will exhibit an exponential affine function. Unlike
before, their technique is to directly determine bond
prices through integral linear ordinary differential
equations, without the need for Riccati equations.
Similarly this method has been successfully applied

to solve the bond pricing problem in the Vasicek
model. Furthermore, [24], discussed three methods
for the closed solution of the Vasicek bond pricing
problem, derived this PDE through the martingale
method, and determined the bond price through the
integral ordinary differential equation. In addition,
under the risk-neutral measure commonly employed
for valuation and pricing, one could hypothesize a
comparable parametrization for an identical process,
albeit incorporating an additional parameter in the
drift component to model the market price of risk. For
instance, refer to [25]. In addition, [26], introduced
several different stochastic processes, including
but not limited to Vasicek models and exponential
Vasicek models, which help to understand the basic
characteristics of risk factors describing different
asset classes or behaviors. The study, [27], studied
the optimal proportional reinsurance and investment
strategies in the stock market with the OU process,
and derived explicit expressions for the optimal
strategy and value function. These expressions are
not only applicable to compound Poisson risk model,
but also to Brownian motion risk model.

However, although the OU process has shown
many advantages in bond pricing, many factors still
need to be considered in its practical application. For
example, according to surveys, negative interest rate
policies are prevalent in developed countries. As
shown in Figure 1, the Bank of Japan has adopted
a zero interest rate policy in Asian financial markets
since February 15, 1999. Furthermore, in response
to the economic environment and achieving monetary
policy goals, the bank further lowered its benchmark
interest rate to −0.1% on January 29, 2016. This
negative interest rate level continued until March 19,
2024.

Fig. 1:    Japan's benchmark interest rate from 1973
to 2023

Similarly, in order to stimulate economic growth
and address the risk of deflation, some countries have
adopted corresponding monetary policies. These
policies include lowering deposit interest rates and
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Fig. 2:     Overnight deposit rates for Swedish banks
from 1995 to 2020

loan benchmark interest rates, and even leading to
negative interest rates. As shown in Figure 2, in
July 2009, the overnight deposit rate of Swedish
banks passively decreased to −0.25%. On February
18, 2015, the interest rate was officially lowered to
−1%. It is worth noting that from February 2016 to
November 2018, Sweden's overnight deposit interest
rate remained at a high negative interest rate level of
−1.25%. In addition, the overnight deposit interest
rate remained at −0.1% from December 2019 until
March 2024. As shown in Figure 3, on December
18, 2014, the Swiss National Bank made a decision to
implement a negative interest rate policy of −0.25%
on the balance of spot deposit accounts. On January
15, 2015, the Swiss National Bank further lowered
the spot deposit rate to −0.75%. It is worth noting
that this negative interest rate level (−0.75%) was
maintained in the following years until June 15, 2021.

Fig. 3:    Swiss bank spot deposit rates from 2001 to
2021

The inflation rate in Switzerland has also shown
some fluctuations in the past few decades. Although
we cannot directly provide annual inflation rate data
that fully corresponds to current deposit interest
rates, we can analyze based on general trends.

Usually, the inflation rate is influenced by various
factors, including monetary policy, economic
growth, international commodity prices, etc. When
comparing the interest rates of Swiss bank demand
deposits with inflation rates, the mutual influence
between the two can be observed. When the inflation
rate is high, banks may raise deposit interest rates
to attract depositors and maintain fund stability;
When the inflation rate is low, banks may lower
deposit interest rates to reduce costs. However, this
relationship is not absolute, as banks' interest rate
decisions are also influenced by various other factors.
At the same time, the inflation rate in theUnited States
has also shown a similar fluctuating trend. According
to data provided by the World Bank, the inflation rate
in the United States has also experienced multiple
fluctuations over the past two decades. These
changes are also influenced by monetary policy,
economic growth, and the international economic
environment. When comparing the inflation rates
of Switzerland and the United States, we can see
that there is a certain difference between the two.
This difference may stem from factors such as the
different economic structures, monetary policies,
and external environments of the two countries.
However, it should be noted that changes in inflation
rates have similar impacts on the economies and
financial markets of both countries, which may lead
to currency depreciation, price increases, and asset
price fluctuations.

Compared to traditional economies, in these
negative interest rate markets, interest rates are no
longer freely moving in the high interest rate range far
from zero, and there is a phenomenon of long-term
interest rate maintenance at a certain level. For
the commonly occurring clustering phenomenon,
we found that the sticky diffusion process can be
used to describe this interest rate dynamics. In
1952, [28], discussed the sticky boundary behavior
of Markov processes, and further investigated the
sticky diffusion process, [29], [30]. In [31], the
author studied the stochastic differential equations
of Markov processes with sticky points and proved
the existence and uniqueness of weak solutions for
the process, but pointed out that there is no strong
solution. The study, [32], discussed and studied the
stickyBrownianmotion, emphasizing that the process
has weak solutions but no strong solutions, verifying
Skorokhod's conjecture. The study, [33], studied the
sticky Brownian motion on a state space of [0,+∞),
discussed its boundary behavior, and calculated its
infinitesimal generator and steady-state distribution.
The authors in [34], studied the sticky diffusion
process as a one-dimensional Markov process with
spatial delay, and provided a path for the delay
process based on SDE and the occupancy formula
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with symmetric local time. In addition, [35], [36],
studied the sticky skew Brownian motion and sticky
skewCIR process, and proved the relevant properties.

It is precisely because of in-depth research on
the sticky diffusion process that many scholars have
found that this model can be applied to the financial
field. The unique characteristics of the sticky
diffusion process can more flexibly characterize the
price clustering phenomenon that occurs in financial
markets. The study, [37], [38], provided some
research on price clustering phenomena.

After comprehensive thoroughly, we found that
the pricing theory under the sticky process is still in
its early stages. Currently, only, [39], have conducted
preliminary discussions on bond pricing under the
sticky Brownian motion. Based on the actual
situation of the international interest rate market, we
have chosen the sticky OU model as the research
object, which not only helps to fill this research gap,
but also provides more scientific decision-making
basis for practical applications. Therefore the purpose
of this study is threefold: (1) By focusing on the
temporal variation of symmetric local time, we reveal
the expression of stochastic differential equations
(SDE) for sticky OU processes. Especially, we
have studied the sticky OU process as the target
model; (2) For the conditional characteristic function
of the sticky OU process, We provide important
results which helps to get the transfer density; (3) We
describe the base interest rate model as a sticky OU
process and calculate valuable bond prices under this
dynamic.

The remaining parts of the paper are organized
as follows. In section 2, sticky OU process and the
properties of its solutions are introduced. In section
3, the conditional characteristic function of sticky OU
process is shown. In section 4, the bond price when
the underlying asset satisfies the sticky OU process
is derived. Finally the conclusions are presented in
section 5.

2 From OU Process to Sticky OU
Process

This section aims to show a display of sticky OU
process as a time change version of OU process,
and the key is to introduce a time change Brownian
motion which serves for the expression of sticky
OU process. To see it, let us refer to [40], [32],
who characterize the sticky Brownian motion as time
change version of the standard Brownian motion.
Similar to their idea, let us provide the time change
OU process (sticky OU process) as follows. Let Bt

be a standard Brownian motion, denote by Yt a OU

process, with initial point y, satisfying

Yt = y +

∫ t

0
κ(θ − Ys)ds+

∫ t

0
σdBs, (1)

and set a new function

r(t) := t+ κL̂Y
t (a),

where L̂Y
t (a) denotes the symmetric local time of Yt

at a. We introduce a time change OU process (i.e.,
sticky OU process) Xt taking the form of

Xt := Yr−1(t),

in which r−1(·) is the functional inverse of the strictly
increasing function r(·). Note that r(·) is strictly
increasing and due to the definition of symmetric
local time, it is evidently to derive L̂X

t (a) =

L̂Y
r−1(t)(a), implying

r−1(t) = t− κL̂X
t (a). (2)

On the other hand, since Yt is an OU process
without sticky point, themeasure of time set staying at
a should be zero, i.e.,

∫ η
0 1{Ys=a}ds = 0 for any η > 0

with respect to Lebesgue measure. We compute∫ t

0

1{Xs=a}ds =

∫ r−1(t)

0

1{Ys=a}dr(s)

=

∫ r−1(t)

0

1{Ys=a}ds+ κ

∫ r−1(t)

0

1{Ys=a}dL̂
Y
s (a)

= 0 + κ

∫ t

0

1{Y
r−1(s)

=a}dL̂
Y
r−1(s)(a)

= κ

∫ t

0

1{Xs=a}dL̂
X
s (a)

= κL̂X
t (a), (3)

where the last equality holds because s 7→ L̂X
s (a)

only increases when Xs = a. In the light of (2) and
(3), the function r−1(·) as well meets

r−1(t) = t−
∫ t

0
1{Xs=a}ds =

∫ t

0
1{Xs ̸=a}ds.

As a result, it follows recalling Xt = Yr−1(t) that

Xt =x+

∫ r−1(t)

0

κ(θ − Ys)ds+

∫ r−1(t)

0

σdBs

=x+

∫ t

0

κ(θ − Yr−1(s))dr
−1(s) +

∫ t

0

σdBr−1(s)

=x+

∫ t

0

κ(θ −Xs)1{Xs ̸=a}ds+

∫ t

0

σ1{Xs ̸=a}dWs.

The last equality holds by the theorem below.
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Theorem 1. Let Bt be a standard Brownian motion
and r−1(·) is defined by (2), then there exists another
standard Brownian motionWt, such that

dBr−1(t) = 1{Xt ̸=a}dWt.

Proof. Let W̃t be Brownian motion independent of
Bt. DefineWt = Br−1(t)+

∫ t
0 I{Xs=a}dW̃s. Because

Bt and W̃t are independent, the quadratic variation of
this object is

⟨W ⟩t = r−1(t)+

∫ t

0

1{Xs=a}ds =

∫ t

0

(I{Xs ̸=a}+1{Xs=a})ds = t.

It is clear that

Br−1(t) =

∫ t

0
1{Xs ̸=a}dWs.

Hence we complete the proof.

Consequently, we can acquire the sticky OU
processXt from standard OU process which satisfies
the following SDEs{

Xt = x+
∫ t

0
κ(θ −Xs)1{Xs ̸=a}ds+

∫ t

0
σ1{Xs ̸=a}dWs,∫ t

0
1{Xs=a}ds = βL̂X

t (a).

(4)

To see the uniqueness in law for sticky OU (sticky
at 0), we cite for two recent work by [41], [42],
respectively. More precisely, it can be seen from
Theorem 1 in [41], that the sticky OU process has a
unique weak solution. However, their sticky point is
at 0, while in this paper the sticky point is at a > 0.
Fortunately, parallel to their idea, we will give the
uniqueness theorem for our model.

Theorem 2. If the sticky OU process satisfies (4),
then it has a unique weak solution.

Proof. To see the uniqueness in law holds for (4),
we will undo the time change from the previous part
starting with the notation afresh. Suppose X and W
solve (4). As part of this hypothesis, we know thatX
andW are defined on a filtered probability space (Ω,
F , Ft, P ), both X and W are Ft-adapted, and W is
not only a standard Brownian motion with respect to
P but also a martingale with respect to Ft. Consider
the additive functional

Tt =

∫ t

0
1{Xs ̸=a}ds, (5)

for t ≥ 0, and obviously Tt ↑ T∞ as t ↑ ∞ where
T∞ ∈ (0,∞]. Since t 7→ Tt is increasing and
continuous it follows that its (right) inverse t 7→ At

defined by

At = inf{s ≥ 0 | Ts > t}, (6)

is finite for all t ∈ [0, T∞). Note that t 7→ At

is increasing and right-continuous on [0, T∞). In
addition, since T = (Tt)t≥0 is adapted toFt it follows
that each At is a stopping time with respect to Ft, so
that At defines a time change with respect to Ft for
t ∈ [0, T∞). Consider the time-changed process

Zt = XAt
,

for t ≥ 0. By (4), we have

Xt = x+

∫ t

0
κ(θ −Xs)dTs +

∫ t

0
σdMs, (7)

whereM = (Mt)t≥0 is a continuous martingale with
respect to Ft taking the form of

Mt =

∫ t

0
1{Xs ̸=a}dWs,

for t ≥ 0. Note that t 7→ ⟨M,M⟩ =
∫ t
0 1{Xs ̸=a}ds =

Tt is constant on each [As−, As] and hence the same is
true for t 7→ Mt whenever s > 0 is given and fixed.
It follows that MAt

is a continuous martingale with
respect to FAt

and we acquire

⟨MA,MA⟩t = ⟨M,M⟩At
= TAt

= t,

for t ∈ [0, T∞). Using Lévy's characterisation
theorem we can therefore conclude that Wt = MAt

is a standard Brownian motion for t ∈ [0, T∞).
Moreover, using that t 7→ Mt is constant on each
[As−, As] for s > 0, we conclude from (7) that

Zt =x+

∫ t

0
κ(θ −XAs

)dTAs
+

∫ t

0
σdMAs

=x+

∫ t

0
κ(θ − Zs)ds+

∫ t

0
σdWs, (8)

for t ∈ [0, T∞). Recalling that the stochastic
differential equation (1) has a unique strong solution,
this shows that Zt for t ∈ [0, T∞) is a Feller
branching diffusion process with drift κθ having
0 as an instantaneously reflecting boundary point.
Moreover, using (4) we see that

t = Tt +

∫ t

0
1{Xs=a}ds = Tt + βL̂X

t (a), (9)

from which we find that

At = TAt
+ βL̂X

At
(a) = t+ βL̂X

At
(a), (10)

for t ∈ [0, T∞). Since t 7→ Tt is constant on each
[As−, As] for s > 0 we see from

L̂X
t (a) = lim

ε↓0

1

m((a, a+ ε])

∫ t

0
I{a<Xs≤a+ε}ds,
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wherem is the speed measure of X , that

L̂X
At
(a) = lim

ε↓0

1

m((a, a+ ε])

∫ At

0
1{a<Xs≤a+ε}ds

= lim
ε↓0

1

m((a, a+ ε])

∫ At

0
1{a<Xs≤a+ε}dTs

= lim
ε↓0

1

m((a, a+ ε])

∫ t

0
1{a<Xs≤a+ε}dTAs

= lim
ε↓0

1

mZ((a, a+ ε])

∫ t

0
1{a<Xs≤a+ε}ds

=L̂Z
t (a),

for t ∈ [0, T∞). Backing into (10), we have

At = t+ βL̂Z
t (a), (11)

for t ∈ [0, T∞). Letting t ↑ T∞ and using that
the diffusion local time process L̂Z

t (a) of the Feller
branching diffusion process Z solving (9) is finite at
every finite time, we see that AT∞ < ∞ while by
(5) and (6) we see that AT∞ = ∞ whenever T∞ <
∞. This shows that T∞ = ∞ almost surely and
consequently the process Z solves (8) for all t ≥ 0.
From (11) we can see that t 7→ At is strictly increasing
(and continuous) and hence

Tt = A−1
t , (12)

is the proper inverse for t ≥ 0 (implying also that t 7→
Tt is strictly increasing and continuous). It follows in
particular that ATt

= t so that

Xt = XATt
= ZTt

, (13)

for t ≥ 0. Since Z is a unique strong solution to
the stochastic differential equation (8), we see from
(11)-(13) that X is a well-determined measurable
functional of the standard Brownian motionW . This
shows that the law of X solving (4) is uniquely
determined and the proof of weak uniqueness is
complete.

It is well known that the occupation time set at a
of the standard Brownian motion has zero Lebesgue
measure. That is, for any T > 0∫ T

0
1{Ws=a}ds = 0,

with probability one. The occupation time set at a of
the standard Brownian motion CY

a = {t ≥ 0 : Yt =
a} is topologically a Cantor set with probability one,
which implies CY

a is a closed nowhere dense set that
is its own boundary. However, the sticky Brownian
motion will spend positive time at the sticky point. Its

occupation time set is still closed and nowhere dense,
but it has positive measure with respect to Lebesgue
measure. In addition, we mention the infinitesimal
generator and its domain of sticky skew process (see,
[34]) as follows:

Af(x) =1

2
σ2f

′′
(x) + κ(θ − x)f

′
(x),

Dom(A) ={f ∈ C(R) ∩ C2(R\{a}) : Af ∈ C(R),
pf

′
(a+)− (1− p)f

′
(a−) = βAf(a)}.

(14)

That is, the domain of definition of A consists
of functions f which are twice continuously
differentiable on R\{a}. The first derivatives
of the functions may be discontinuous at the point in
a, but the first derivatives must have left and right
limits denoted as f ′

(a−) and f ′
(a+) respectively.

Although the first and second derivatives lack
continuity, Af is continuous. Lastly, such f satisfies
the boundary conditions above and we call equality
(14) the sticky boundary condition.

3 Conditional Characteristic Function
of Sticky OU Process

This section intends to calculate the conditional
characteristic function of sticky OU modelXt, which
is defined by

ψ(Xt+τ , u, τ ;Xt) = E[exp(iuXt+τ )|Xt], τ = T−t.

Theorem 3. If Xt satisfies the SDE (4), then

ψ(Xt+τ , u, τ,Xt) =exp{C(τ) + D̃(τ)1{Xt ̸=a}Xt

+D(τ)1{Xt=a}Xt},

where

˜D(τ)1{Xt ̸=a} =

{
D+(τ), Xt > a,
D−(τ), Xt < a,

and with coefficients

C(τ) = iuθ(1− e−κτ ) +
i2u2σ2

4k
(1− e−2κτ ),

D(τ) = iue−κτ ,

D+(τ) =
1

2
D(τ) + β[iuκ(θ − a)e−κτ +

1

2
i2u2σ2e−2κτ ],

D−(τ) =
1

2
D(τ)− β[iuκ(θ − a)e−κτ +

1

2
i2u2σ2e−2κτ ].

Proof. Recalling the definition of the conditional
characteristic function of Xt at the beginning of
this section and applying Tanaka-Meyer formula for
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sticky model, we have for Xt ̸= a,

dψ =

[
− ∂ψ

∂τ
+

∂ψ

∂Xt
κ(θ −Xt) +

1

2

∂2ψ

∂X2
t

σ2
]
dt

+
∂ψ

∂Xt
σdWt.

Evidently, due to the fact that conditional expectation
ψ(Xt+τ , u, τ ;Xt) is a martingale, it means that drift
coefficient in dψ equals to 0, i.e.,

−∂ψ
∂τ

+
∂ψ

∂Xt
κ(θ −Xt) +

1

2

∂2ψ

∂X2
t

σ2 = 0, (15)

subject to the boundary condition ψ(XT , u, 0|XT ) =
exp(iuXT ) when τ = 0 and the sticky boundary
condition. To solve the last equation, we apply the
method of undeterminated coefficients. Suppose that
the display of the solution to (15) takes the form of

ψ(Xt+τ , u, τ,Xt) =exp{C(τ) + D̃(τ)1{Xt ̸=a}Xt

+D(τ)1{Xt=a}Xt},
(16)

with the expression and the boundary condition
˜D(τ)1{Xt ̸=a} = D+(τ)1{Xt>a} +D−(τ)1{Xt<a},

C(0) = 0 andD+(0)1{Xt>a} +D−(0)1{Xt<a} = iu
.

Based on (16), the first and second order partial
derivatives are shown as below

∂ψ

∂τ
= ψ[C

′
(τ) + (D+(τ)1{Xt>a} +D−(τ)1{Xt<a})

′
Xt],

∂ψ

∂Xt
= ψ(D+(τ)1{Xt>a} +D−(τ)1{Xt<a}),

∂2ψ

∂Xt
2 = ψ(D+(τ)1{Xt>a} +D−(τ)1{Xt<a})

2.

Substituting these equations in (15) implies

− C
′
(τ) + κθ[D+(τ)1{Xt>a} +D−(τ)1{Xt<a}] +

1

2

σ2[D+(τ)1{Xt>a} +D−(τ)1{Xt<a}]
2 − [(D+(τ)1{Xt>a}

+D−(τ)1{Xt<a})
′
+ κ(D+(τ)1{Xt>a} +D−(τ)1{Xt<a})]Xt

= 0.

Note that the above equation holds for any Xt, thus
we have

(D+(τ)1{Xt>a} +D−(τ)1{Xt<a})
′
+ κ(D+(τ)1{Xt>a}

+D−(τ)1{Xt<a}) = 0,

−C ′
(τ) + κθ[D+(τ)1{Xt>a} +D−(τ)1{Xt<a}]

+1
2σ

2[D+(τ)1{Xt>a} +D−(τ)1{Xt<a}]
2 = 0.

(17)

For the first equality in (17), we get

d(D+(τ)1{Xt>a} +D−(τ)1{Xt<a})

D+(τ)1{Xt>a} +D−(τ)1{Xt<a}
= −κdτ.

thus

ln[D+(τ)1{Xt>a} +D−(τ)1{Xt<a}] = −κτ + c.

Recalling the boundary condition D+(0)1{Xt>a} +

D−(0)1{Xt<a} = iu,

D+(τ)1{Xt>a}+D
−(τ)1{Xt<a} = iue−κτ := D(τ),

(18)
Obviously, by the boundary condition and the
expression of D(τ), we compute the result for
C(τ).For convenience, we write the infinitesimal
generator as

Aψ(x) := ∂ψ

∂x
κ(θ − x) +

1

2

∂2ψ

∂x2
σ2.

Moreover, the infinitesimal generator and its domain
of sticky OU process provide that

1

2

∂ψ

∂Xt

∣∣∣∣
Xt=a+

−1

2

∂ψ

∂Xt

∣∣∣∣
Xt=a−

= βAψ
∣∣
Xt=a

= β
∂ψ

∂τ

∣∣∣∣
Xt=a

,

where the last equation comes from (15). Thanks to
the sticky boundary condition (14), we derive another
important condition for D+(τ) and D−(τ) by

D+(τ)−D−(τ) = 2β[iuκ(θ−a)e−κτ+
1

2
i2u2σ2e−2κτ ].

(19)
Combining (19) with (18) gives the results of D+(τ)
andD−(τ). At last, after supplementing the result for
Xt = a we finish this proof.

When β = 0, the sticky process reduces to the
standard process without sticky point and the result
will not be piecewise. In addition, from (18) and (19),
we easily derive D+(τ)1{Xt>a} = D−(τ)1{Xt<a}
and D+(τ)1{Xt>a} + D−(τ)1{Xt<a} = D(τ) .
Sometimes it is difficult to obtain the density function
directly. Alternatively, it seems more tractable to gain
the characteristic function and one can compute the
transition density and the conditional moment with
the relationship given by

E[Xn
t ] = (−i)nψ(n)(Xt, 0),

and

f(Xt) =
1

2π

∫ +∞

−∞
exp(−iuXt)ψ(Xt, u)du,

respectively. So far, we have acquired the explicit
expressions of the conditional characteristic function
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of the sticky OU process Xt. Actually, it is not
effortless to get the transition density for this general
process, which, as a result, prompts us to focus on
the characteristic function. Next section, we devote
ourself to the application in bond pricing under sticky
OU process.

4 Bond Pricing under Sticky OU
Process

In this section, we are interested in deriving the
bond price when the underlying asset rt, and suppose
rt is the only variable that affects the price of the
bond. Suppose that the finance market considered in
our paper is arbitrary-free and the default-free bond
price at time t is denoted by P (t, T ) or P (t, τ), where
T is the maturity and τ = T − t is the bond's term.
Let P (rt, τ) be the bond price based on rt with the
maturity T at time t. By Tanaka-Meyer formula, we
have,

dP = [
∂P

∂t
+ κ(θ − r)

∂P

∂r
+

1

2
σ2
∂2P

∂r2
]dt+

∂P

∂r
σdWt

= µp(r, τ)Pdt− σp(r, τ)PdWt,

where

µp(r, τ) := [
∂P

∂t
+ κ(θ − r)

∂P

∂r
+

1

2
σ2
∂2P

∂r2
]/P,

(20)

σP (r, τ) := −∂P
∂r

σ/P. (21)

What follows next is our main result about the bond
price under sticky OU dynamic.
Theorem 4. Suppose that the underlying zero coupon
interest rate satisfies (4) and λ is the sharpe index
in the modern market which is arbitrary-free. Then
the bond price P (t, τ) of the zero coupon interest rate
with the maturity time T is represented by

P (rt, τ) = exp {A(τ) + ˜B(τ)1{rt ̸=a}rt +B(τ)1{rt=a}rt},

where

˜B(τ)1{rt ̸=a} =

{
B+(τ), rt > a,
B−(τ), rt < a,

and with the coefficients

A(τ) =[−B(τ)− τ ](θ + λ
θ

κ
− 1

2

σ2

κ2
)− σ2B2(τ)

4κ
,

B(τ) =
e−κτ − 1

κ
,

B+(τ) =
1

2
B(τ) + β[

1

2
σ2B2(τ) + κ(θ − a)B(τ)],

B−(τ) =
1

2
B(τ)− β[

1

2
σ2B2(τ) + κ(θ − a)B(τ)].

Proof. In the bond pricing theory, if a bond market
is arbitrary-free, the sharpe ratio of trading bonds
with different terms should be equal.Vasicek (1977)
assumed that the market price of the risk is equal to a
constant λ i.e., for any bond term τ

µp(r, τ)− r

σp(τ)
= λ, (22)

in our paper, we introduce the same ratio in (22) .With
the expressions of (20), (21) and (22),and substitute
∂P
∂t = −∂P

∂τ ,we establish

1

2

∂2P

∂r2
σ2+[κ(θ−r)+λσ]∂P

∂r
−∂P
∂τ

−rP = 0. (23)

with the boundary condition P (rt, 0) = 1.
Similar idea to section 3, we naturally suppose that
the solution to (23) takes the form of

P (rt, τ) = exp {A(τ) + ˜B(τ)1{rt ̸=a}rt +B(τ)1{rt=a}rt},
with the boundary condition
˜B(τ)1{rt ̸=a} = B+(τ)1{rt>a} +B−(τ)1{rt<a}

and A(0) = B+(0)1{rt>a} +B−(0)1{rt<a} = 0.
results in,
∂P

∂τ
= P [A

′
(τ) + (B+(τ)1{rt>a} +B−(τ)1{rt<a})

′
rt],

∂P

∂r
= P (B+(τ)1{rt>a} +B−(τ)1{rt<a}),

∂2P

∂r2
= P (B+(τ)1{rt>a} +B−(τ)1{rt<a})

2.

Substitute these equations into (23), thus we get

−A
′
(τ) +

1

2
σ2(B+(τ)1{rt>a} +B−(τ)1{rt<a})

2

+ (κθ + λσ)(B+(τ)1{rt>a} +B−(τ)1{rt<a})

− [κ(B+(τ)1{rt>a} +B−(τ)1{rt<a})

+ (B+(τ)1{rt>a} +B−(τ)1{rt<a})
′
+ 1]rt

= 0,

which holds for arbitrary rt. It suggests that
κ(B+(τ)1{rt>a} +B−(τ)1{rt<a})

+(B+(τ)1{rt>a} +B−(τ)1{rt<a})
′
+ 1 = 0,

−A′
(τ) + 1

2σ
2(B+(τ)1{rt>a} +B−(τ)1{rt<a})

2

+(κθ + λσ)(B+(τ)1{rt>a} +B−(τ)1{rt<a}) = 0.

Parallel to the calculation in section 3 and recalling
the infinitesimal generator and its domain for f , it
follows that
1

2

∂P

∂rt

∣∣∣∣
rt=a+

− 1

2

∂P

∂rt

∣∣∣∣
rt=a−

= βAP
∣∣
{rt=a}

= β

[
− λσ

∂P

∂r

∣∣∣∣
{rt=a}

+
∂P

∂τ

∣∣∣∣
{rt=a}

+ aP
∣∣
{rt=a}

]
,
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where the last equation comes from (23). By
calculation,we get the follows equations

A(τ) = [−B(τ)− τ ](θ + λ
θ

κ
− 1

2

σ2

κ2
)− σ2B2(τ)

4κ
,

B+(τ)1{rt>a} +B−(τ)1{rt<a} =
e−κτ − 1

κ
=: B(τ),

B+(τ)1{rt>a} −B−(τ)1{rt<a}

= 2β[
1

2
σ2B2(τ) + κ(θ − a)B(τ)].

Again, if we let β = 0, the sticky boundary disappears
and the sticky OU process reduces to the OU process.
After supplementing the result for rt = a, we
complete this proof.

5 Numerical Results
In this section, we want to provide the numerical

results for the displays of bond price under sticky OU
process with different sticky coefficients β. More
precisely, we set κ = 1, θ = 0.04, σ = 0.2,
λ = 0.5, r = 0.03, a = −0.04 as the common
parameters. Noted that a = −0.04 is the sticky
point which later causes some interesting analysis for
sticky phenomenon. In addition, in the following
three figures, the bond's τ is considered with respect
to three different conditions, respectively. In each of
three figures, different sticky coefficients are further
discussed.

Fig. 4:     Bond price under sticky OU process with
different sticky coefficients β when τ = 0.3. The
red, blue, green lines represent β = 0, β = 1, β = 2,
respectively.

Figure 4 shows the displays of the bond price in
the case of τ = 0.3. Usually, bond price decreases
as underlying interest rate increases. The red line

Fig. 5:     Bond price under sticky OU process with
different sticky coefficients β when τ = 0.5. The
red, blue, green lines represent β = 0, β = 1, β = 2,
respectively.

Fig. 6:     Bond price under sticky OU process with
different sticky coefficients β when τ = 0.7. The
red, blue, green lines represent β = 0, β = 1, β = 2,
respectively.
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represents the classical bond price with respect to
sticky coefficient β = 0. It is interesting to see that
around sticky point a = 0.04, the bond prices exhibit
different behaviors. With a bigger sticky coefficient
β, the underlying interest rate will spend more time
at a, leading to an aggregation phenomenon and
such phenomenon obviously influences the bond
price which increases weakly with respect to the
``aggregated" interest rate. However, once the
underlying interest rate goes through the sticky point,
the bond price will decrease strongly compared with
the smaller sticky coefficients.

As the study, [31], said that for a corporation
having a takeover offer at 10. The stock price is then
likely to spend a great deal of time precisely at 10
but is not constrained to stay at 10. Thus 10 would
be a sticky point for the solution of the stochastic
differential equation that describes the stock price.
For interest rate, we also take sticky phenomenon into
consideration. Suppose an interest rate is modelled
by the sticky OU process. Then it is possible for
bond price to have more choice at the sticky point
because the underlying interest rate will spend more
time at such fascinating point. But once interest
rate passing sticky point, the bond price will exhibit
normal principle immediately regardless of the sticky
phenomenon. Similar analysis applies to Figure 5 and
Figure 6 for τ = 0.5 and τ = 0, 7, respectively.

For different bond's term τ , it is evidently to
observe the blue lines from Figure 4, Figure 5 and
Figure 6, to see that the bond price decreases as
the bond's term increases. This coincides with the
classical results in bond pricing theory. Also note that
the bond price can be greater than one because of the
negative interest rate under sticky OU model.

6 Conclusion
In this study, we delve into the theoretical

underpinnings and financial applications of sticky
Ornstein-Uhlenbeck (OU) processes. To establish
the existence and uniqueness of solutions for the
sticky OU process, we employ an innovative time
transformation technique that transforms standard
Brownian motion into sticky Brownian motion.
This transformation leverages the properties of
symmetric local time to illuminate the asymptotic
behavior of sticky boundaries, thereby facilitating
the construction of the sticky OU process from its
standard counterpart. In our analysis of conditional
characteristic functions and bond prices, we harness
the power of the martingale property and Sharpe
ratio. By assuming an exponential form for the
solution, we meticulously solve the governing
equations, leading to insightful results. Notably,
our work significantly contributes to expanding
pricing applications leveraging sticky behavior

under generalized conditions, suggesting that sticky
processes may offer a more nuanced representation
of real-world market dynamics. Looking ahead, we
plan to conduct in-depth research on the relationship
between bond prices and sticky components under
other conditions. In addition, we also plan to study
pricing issues for other derivatives, such as options.
These studies will provide us with a deeper market
understanding and pricing strategies.
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