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Abstract: In this paper, we introduce a biological model employing delay differential equations to explore the
evolution of malaria within a host undergoing drug treatment. Our analysis focuses on the stability of equilibrium
points, leveraging the critical case theorem, an extension of the Lyapunov-Malkin theorem, which is particularly
useful for scenarios involving zero roots in the characteristic equation. By determining equilibrium points and
assessing their stability through the eigenvalues of the linearized system, we ensure the applicability of the the-
orem via translations to zero. The results highlight the significant influence of treatment-induced delays on the
stability of malaria dynamics, offering valuable insights for optimizing control strategies and improving disease
management.
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1 Introduction
Malaria, a potentially deadly disease caused by the
Plasmodium parasite, is transmitted through the bites
of Anopheles mosquitoes, which primarily feed on
humans. Infected individuals often experience se-
vere symptoms such as high fever, chills, cough, fa-
tigue, and flu-like illness, typically manifesting 10-15
days post-infection. The mild initial symptoms make
malaria difficult to diagnose, and without prompt
treatment, the disease can escalate rapidly, potentially
becoming fatal within 24 hours, [1].

For those residing in or traveling to high-risk re-
gions -such as Africa, Central and South America, the
Caribbean, Eastern Europe, South Asia, and South-
east Asia- it is crucial to seek medical attention at the
onset of symptoms, particularly fever. Severe cases
demand immediate emergency care.

Malaria remains a significant global health chal-
lenge, with hundreds of thousands of deaths reported
annually. In 2020, the World Health Organization es-
timated 241 million clinical cases, resulting in ap-
proximately 627,000 deaths, predominantly among
African children. This disease exacerbates the cycle
of poverty, significantly impacting already struggling
economies, [2].

The lack of an effective malaria vaccine is at-
tributed to the parasite’s ability to frequently alter its
surface proteins, complicating vaccine development.
Currently, antimalarial medications are the primary
means of treatment and prevention, [3].

Incorporating mathematical models to study
malaria’s progression is vital for approximating the
blood-stage infection dynamics and the associated
erythropoietic processes. Delay differential equations
(DDEs) have emerged as powerful tools for modeling
biological systems where delays are inherent. These
delays could be due to the incubation period of the
pathogen, the time taken for the immune response to
activate, or the delayed effect of treatment. The sta-
bility of equilibrium points in such systems is crucial
for understanding the long-term behavior of the dis-
ease and the effectiveness of treatment strategies.

A stability theorem addressing the equilibria of
delay differential equations in critical scenarios is
presented, along with a model for cell evolution in
malaria treatment that focuses on the immune sys-
tem’s role in [4]. Moreover, a delay differential equa-
tion model for cell evolution in Chikungunya is intro-
duced, emphasizing the significance of delays in the
disease’s dynamics in [5].
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A broader range of models relevant to the biologi-
cal and biomedical sciences can be explored in works
such as [6], [7], [8], [9], [10], [11], [12], [13]. These
sources provide valuable insights for understanding
the formulation of delay differential equation models
and conducting detailed stability analysis. By study-
ing these references, one can gain a deeper compre-
hension of the mathematical frameworks and meth-
ods used to evaluate the stability of various biological
systems.

Furthermore, recent advancements in fractional
calculus have significantly enhanced our understand-
ing of complex biological systems. Fractional dif-
ferential equations, especially those involving frac-
tional calculus and hybrid fractional models, offer a
comprehensive framework for analyzing the stabil-
ity and dynamics of malaria infection models. These
equations have proven effective in capturing the com-
plexities of biological processes, providing critical in-
sights into stability and solution behaviors. Future
research could explore fractional delay models to ex-
tend these findings, while theoretical analysis of so-
lutions could follow approaches similar to those out-
lined in, [14], [15], [16], [17], [18], [19].

The mathematical model of malaria is essential
as it captures both the blood stage of the infection
and the process of erythropoiesis, which is crucial for
addressing the anemia linked with the disease. Ini-
tially, we enhanced the basic DDE model by intro-
ducing an equation to represent EPO concentration
and another to account for cell cycle loss. Our goal
is to deepen our understanding of malaria infection
dynamics during treatment by examining the stability
of equilibrium points through delay differential equa-
tions. We apply a critical case theorem after trans-
lating the problem to a zero state. This methodol-
ogy will help us in future to identify conditions under
which treatment strategies can effectively manage the
infection and offer insights into the long-term pro-
gression of malaria with ongoing treatment.

2 Model under Study
In this section, we adopt the notation yτ = y(t − τ)
to represent delayed variables. We utilize delay-
differential equations to model the within-host
dynamics of malaria infection, focusing on the fol-
lowing components: uninfected red blood cells (y1),
erythropoietin concentration (y2), loss during the cell
cycle (y3), infected red blood cells (y4), extracellular
malaria parasites (merozoites, y5), and gametocytes
(y6).

The First Delay Differential Equation:

ẏ1 = m

(
1− y1
k

)
− µy1 − ρy1y5 (1)

This equation represents the temporal change in the
density of uninfected red blood cells (RBCs). In
this model, m denotes the maximum rate at which
depleted RBCs are replenished, while k represents
the homeostatic equilibrium density, calculated as
tR∗

t−µR∗ , where R∗ is the equilibrium RBC density.
The final term captures the mass action of the in-
fection process, where ρ indicates the rate at which
merozoites invade RBCs upon contact, [20].

The Second Delay Differential Equation:

ẏ2 = −dy2 +
a

1 + yr1
(2)

This equation represents the concentration of ery-
thropoietin (EPO), where d is the disappearance rate
of EPO.

The Third Delay Differential Equation:

ẏ3 = y3

(
−k

1 + yα2
+

k

1 + yα2τ1

)
(3)

This equation models the loss during the cell cycle,
where y3 = e−

∫
h(s) ds with h(t) = − k

1+yα
2

repre-
senting the stem cell loss. The parameter τ1 denotes
the time required for short-term hematopoietic stem
cells to complete a cycle of self-renewal, differentia-
tion, or asymmetric division, [21, 22].

The Fourth Delay Differential Equation:

ẏ4 = ρy1y5 − µy4 − ρy1τ2y5τ2S (4)

This equation outlines the dynamics of infected
red blood cells (RBCs). The parameter ρ signifies
the rate at which merozoites invade RBCs, while
µ represents the background rate at which infected
RBCs die. The delay τ2 reflects the time it takes
for infected RBCs to burst and release merozoites
(such as 1 day for the rodent malaria parasite).
Furthermore, S represents the proportion of infected
RBCs that survive their development, calculated as
e−µα when t > α and in the absence of drugs, [20].

The Fifth Delay Differential Equation:

ẏ5 = (1− c)Bρy1τ2y5τ2S − ρy1y5 −My5 (5)

This equation represents the dynamics of merozoites.
In this model, c denotes the fraction of parasites
that mature into gametocytes, while B represents the
burst size of merozoites released from each infected
RBC, defined as B = Ba −Bt where Ba is the burst
size without treatment and Bt represents the reduc-
tion in burst size due to treatment with Artemisinin.
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The term ρy1y5 describes the infection process, and
M indicates the death rate of merozoites, [20].

The Sixth Delay Differential Equation:

ẏ6 = cρy1τ2y5τ2S −Gy6 (6)

This equation represents the dynamics of gameto-
cytes, where G is the rate at which gametocytes die,
[20].

The model that incorporates the treatment response is
given by:

ẏ = fi(y; yj); (i = 1; 6; j = 1; 2), (7)

ẏ1 = m

(
1− y1
k

)
− µy1 − ρy1y5,

ẏ2 = −dy2 +
a

1 + yr1
,

ẏ3 = y3

(
−k

1 + yα2
+

k

1 + yα2τ1

)
,

ẏ4 = ρy1y5 − µy4 − ρy1τ2y5τ2S,

ẏ5 = (1− c)Bρy1τ2y5τ2S − ρy1y5 −My5,

ẏ6 = cρy1τ2y5τ2S −Gy6,

Positivity of Solutions: The state variables y rep-
resent cell populations, and negative cell densities
are biologically meaningless. Therefore, maintaining
positivity in the solutions of the system is essential
for preserving the integrity of the model described by
equation (7).

Proposition 2.1. Let τ = {max τj} for j = 1, 2 and
Γ denote the initial conditions defined on the closed
interval −τ and 0. If the initial conditions of the sys-
tem (7) are positive, then the solutions y of the system
(7) remain positive for all τ > 0.

2.1 Equilibrium Points
To determine the equilibrium points of the system, we
solve the equations where the derivatives ẏ are set to
zero, that is, fi(y; yj) = 0. This yields the following
conditions:

y5 [(1− c)Bρy1S − ρy1 −M ] = 0, (8)

where, if ŷ5 = 0, it follows that ŷ4 = ŷ6 = 0. Next,
we have:

ŷ3 = e
−
(

k

1+ŷα
2

)
τ1
< 1, (9)

ŷ2 =
a

d(1 + ŷr1)
, (10)

ŷ1 =
t

t+ µk
, (11)

When ŷ5 = 0, the equilibrium point E1 =
(ŷ1, ŷ2, ŷ3, 0, 0, 0) represents a healthy state equilib-
rium. For ŷ5 ̸= 0, the equilibrium point E2 =
(ŷ1, ŷ2, ŷ3, ŷ4, ŷ5, ŷ6) denotes the disease-free equi-
librium.

2.2 Stability Analysis of E1

Let A = (ai;j) denote the matrix representing the lin-
ear approximation around E1 for undelayed terms,
B = (bi;j) for terms with delay τ1, and C = (ci;j)
for terms with delay τ2. These matrices are defined
as follows:

A = (aij)6×6 , (12)

such that aij = ∂f
∂y1
.The elements of matrix A are:

a11 = −m
k

− µ− ρŷ5,

a12 = a13 = a14 = 0,

a15 = −ρŷ1,
a16 = 0,

a21 = − rŷr−1
1 a

(1 + yr1)
2
,

a22 = −e1,
a23 = a24 = a25 = a26 = 0,

a31 = 0,

a32 =
kαŷ3ŷ

α−1
2

(1 + yα2 )
2
,

a33 = a34 = a35 = a36 = 0,

a41 = ρŷ5,

a42 = a43 = 0,

a44 = −µ,
a45 = ρŷ1,

a46 = 0,

a51 = −ρŷ5,
a52 = a53 = a54 = 0,

a55 = −ρŷ1 −M,

a56 = 0,

a61 = a62 = a63 = a64 = a65 = 0,

a66 = −G.
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Similarly, the matrix B is given by:

B =
∂f

∂yτ1
(13)

The non-zero elements of matrix B are:

b32 = −kαŷ3ŷ
α−1
2

(1 + yα2 )
2
,

with all other elements being zero.
The matrix C is defined as:

C =
∂f

∂yτ2
(14)

The non-zero elements of matrix C are:

c41 = −ρSŷ5,

c51 = (1− c)BρSŷ5,

c61 = cρSŷ5,

c45 = −ρSŷ1,
c55 = (1− c)BρSŷ1,

c65 = cρSŷ1.

with all other elements being zero. Thus, the general
characteristic equation is:

det(λIn −A−Be−λτ1 − Ce−λτ2) = 0 (15)

For the equilibrium point E1, substituting ŷ4 = ŷ5 =
ŷ6 = 0 yields the characteristic equation:

(λ− a11)(λ− a22)(λ− a44)(λ− a66)(λ)

×(λ− a55 − e−λτ2c55) = 0 (16)

The real roots of the characteristic equation (16) are:

λ1 = a11 = −m
k

− µ < 0,

λ2 = a22 = −e1 < 0,

λ3 = a44 = −µ < 0,

λ4 = a66 = −G < 0,

λ5 = 0.

The zero eigenvalue (λ = 0) indicates a critical case
for the stability of the nonlinear system. This scenario
is further examined in, [4].

We perform a translation to zero by defining zi =
yi − ŷi for i = 1, 2, 3. The new system can be ex-
pressed as:

ż = f̃i(z, zτj ), i = 1, 6, j = 1, 2 (17)

where

ż3 = f̃3(z2, z3, z2τ1)

= (z3 + ŷ3)

(
− k

1 + (z2 + ŷ2)α
+

k

1 + (z2τ1 + ŷ2)α

)
(18)

The matrices of partial derivatives for the new system
are:

A =
∂f̃

∂z
= (aij), (19)

B =
∂f̃

∂zτ1
= (bij), (20)

C =
∂f̃

∂zτ2
= (cij). (21)

The characteristic equation for the zero solution of
the modified system corresponds to that of E1. Since
the linear component is not zero, we cannot directly
apply the critical case theorem, [4]. Consequently, we
transform the system into a canonical form suitable
for applying the theorem.
Let ξ = α1z1 + α2z2 + · · · + α6z6 where ż = Az.
We have:

ξ̇ = α1ż1 + α2ż2 + · · ·+ α6ż6 (22)

This simplifies to:

ξ̇ = α1a11z1 + (α2a22 + α3a32)z2 (23)
+ α4a44z4 + α5a55z5 + α6a66z6 (24)

Setting ξ̇ = 0 yields:

α2a22 + α3a32 = 0 (25)

Assuming α3 = 1, we find α2 = −a32

a22
.

Noting that:

ż2τ1 = a22z2τ1 +R2τ1 , (26)

where R2τ1 contains terms of order two or higher, we
define:

ξ1 = α3z2 + z3 −
b32
a22

z2τ1 (27)

Then:
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ξ̇1 = b32z2τ1 −
b32
a22

ż2τ1 +R
(1)
3 (28)

= b32z2τ1 −
b32
a22

(a22z2τ1 +R2τ1) +R
(1)
3 (29)

= R
(2)
3 (y, yτ1), (30)

where R(1)
3 and R(2)

3 contain terms of order two or
higher. Taking:

z3 = ξ1 − α2z2 +
b32
a22

z2τ1 , (31)

by replacing the third equation with ξ̇1, we achieve a
zero linear part. Substituting y3 into the equations
of the new system enables us to apply the critical
case theorem from, [4], to analyze the stability of the
zero solution in the transformed system. Given that
a11 < 0, a22 < 0, a44 < 0, and a66 < 0, the stabil-
ity analysis focuses on the transcendental term in the
characteristic equation. Consider the equation:

λ− a55 − e−λτ2c55 = 0. (32)

The stability of this equation is analyzed following
the approach described in, [21].

• a = −ρŷ1 −M < 0, it implies aτ < 1.

• b = c55 = (1− c)BρSŷ1 > 0.

• Under the condition:

−ρŷ1 −M < (c− 1)BρSŷ1

then a+ b < 0, indicating stability for τ2 = 0 and
continued stability for τ2 > 0.

2.3 Stability Analysis of E2

To analyze the stability of the equilibrium point E2,
we start by deriving the characteristic equation. This
equation is given by:

(λ− a66)(λ− a44)
(
λe−λτ2

)
× −a15a51 + a11c55 − c55λ

+

(
λ2 − (a11 + a55)λ
+a11a55 − a15a51

)  = 0 (33)

The real roots of this characteristic equation are:

λ1 = a44 = −M < 0 (34)

λ2 = a66 = −G < 0 (35)

λ3 = 0 (36)

The presence of a root at λ = 0 suggests that the sys-
tem is in a critical stability case. Consequently, we
must simplify the analysis by reducing the system to
zero, similar to the approach used for the first equi-
librium point. The assessment of stability will then
depend on evaluating the transcendental term in the
characteristic equation. Let d(λ) be defined as:

d(λ) = e−λτ2 (−a15a51 + a11c55 − c55λ) (37)
+
(
λ2 − (a11 + a55)λ+ a11a55 − a15a51

)
,

where Q(λ) and P (λ) are defined as:

Q(λ) = −a15a51 + a11c55 − c55λ, (38)

P (λ) = λ2− (a11+ a55)λ+ a11a55− a15a51. (39)

Thus, d(λ) can be expressed as:

d(λ) = P (λ) +Q(λ)e−λτ2 = 0. (40)

The stability of d(λ) is analyzed following the ap-
proach outlined in, [21]. The procedure includes:
P (λ) and Q(λ) do not share any common imaginary
parts. For imaginary arguments:

Q(iy) = −a15a51 + a11c55 − c55iy,

P (iy) = y2 − (a11 + a55)iy + a11a55 − a15a51,

Q(−iy) = −a15a51 + a11c55 + c55iy,

P (−iy) = y2 + (a11 + a55)iy + a11a55 − a15a51.

Hence, Q(iy) = Q(−iy) and P (iy) = P (−iy).
If τ2 = 0, the characteristic equation simplifies to:

λ2− (a11+a55+ c55)λ+a11a55−2a15a51+a11c55
(41)

This results in a quadratic characteristic equation
with at most two roots, implying finiteness. The func-
tion F (y) is defined as:

F (y) ≡ |P (iy)|2 − |Q(iy)|2 = 0. (42)

Simplifying, we get:

P 2
R(y) + P 2

I (y) = Q2
R(y) +Q2

I(y). (43)

Let P (λ) = λ2 − u1λ + v1 and Q(λ) = u2λ + v2,
where:

u1 = a11 + a55, (44)
u2 = −c55, (45)
v1 = a11a55 − a15a51, (46)
v2 = −a15a51 + a11c55. (47)

Substituting these values into (43), we obtain:
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y4 + y2(u21 − 2v1 − v22) + v21 − u22 = 0. (48)

By setting α = y2, the equation becomes:

α2 + α(u21 − 2v1 − v22) + v21 − u22 = 0. (49)

For the equation (43) to have at least one positive sim-
ple root y > 0, the following conditions must be sat-
isfied:

(u21 − 2v1 − v22)
2 − 4(v21 − u22) > 0, (50)

u21 − 2v1 − v22 < 0. (51)

Hence, the characteristic equation of E2 is stable at
τ2 = 0 and remains stable for all τ2 ≥ 0 if at least
one of the conditions (50) or (51) is not met.

3 Conclusion
In this study, we have conducted a comprehensive
analysis of a delay differential equation (DDE) model
to investigate the stability of malaria infection dy-
namics under the influence of treatment. Our research
highlights the importance of accounting for delays in
treatment and their impact on the stability and long-
term behavior of the disease.

The main contributions of this paper include:

1. Model Extensions: We expanded the basic DDE
model by adding an equation to represent the
concentration of EPO and another equation to ac-
count for the loss occurring during the cell cy-
cle. This extension enhances the model’s ap-
plicability to real-world situations and offers a
deeper understanding of how timing and inten-
sity of treatment affect malaria dynamics.

2. Stability Analysis: We have established condi-
tions for the stability of equilibrium points in our
new delay differential equation (DDE) model us-
ing a critical case theorem. These conditions are
crucial for understanding the effects of various
treatment strategies on the disease’s progression
and serve as a basis for developing effective con-
trol measures.

Our findings suggest that incorporating delays into
the model significantly influences the stability of
malaria dynamics. Effective treatment strategies
must account for these delays to optimize control
measures and reduce the incidence of malaria.

Future research should focus on:

1. Empirical Validation: Conducting field studies
to validate the model’s predictions and adjust pa-
rameters based on real-world data is essential for
ensuring the model’s accuracy and relevance.

2. Further Extensions: Exploring additional fac-
tors such as population mobility, environmental
changes, and varying levels of treatment adher-
ence will further refine the model and improve
its applicability to diverse epidemiological con-
texts.

3. Comparison with Other Models: Comparing
our DDE model with other mathematical models
will provide insights into its performance and ac-
curacy, highlighting strengths and areas for im-
provement.

4. Fractional Delay Models: Future work should
investigate the incorporation of fractional delay
models to capture more complex dynamics of
malaria infection. Fractional differential equa-
tions could offer additional insights into stability
and behavior, providing a more comprehensive
understanding of disease dynamics.

In conclusion, this study offers a robust frame-
work for analyzing the impact of treatment delays on
malaria dynamics. By enhancing our understanding
of these delays, we can improve the design and im-
plementation of more effective malaria control strate-
gies. Future research incorporating fractional delay
models and theoretical solution analysis could further
advance our knowledge and optimize disease man-
agement approaches.
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