

Scheduling Algorithms Comparisons and Analysis using Simulation

Results

AL REFAI MOHAMMED N.

Software Engineering Department,
Zarqa University,

Zarqa,
JORDAN

 ORCiD: https://orcid.org/0000-0002-3464-8900

Abstract: - Heuristics Process scheduling is one of the key components of any operating system design. It
defines the way the CPU resources are shared among processes in the system. In this paper, we present the
performance comparison of five different process scheduling algorithms: FIFO, Round Robin, Shortest
Remaining Time, Shortest Processing Time, and Highest Response Ratio Next. We evaluated these algorithms
based on the simulations and calculated their effect on three key metrics: turnaround time, waiting time, and
CPU utilization. The results showed that each of them has its pros and cons, thus making the optimal choice of
scheduling algorithm impossible. This paper can be used by operating system designers or professionals in
selecting an appropriate scheduling algorithm for a certain system and learning objectives.

Key-Words: - Scheduling Algorithms, Operating System, Optimization, Process Scheduling, CPU utilization

turnaround time, waiting time.

Received: December 13, 2023. Revised: July 14, 2024. Accepted: August 15, 2024. Published: September 20, 2024.

1 Introduction
Today, in modern computing systems, effective use
of system resources is essential for the smooth
running and high performance of the system.
Process scheduling is one of the critical aspects of
resource management since it relates to the order in
which processes are allocated to the central
processing unit, [1] . To begin with, the scheduling
technique widely applied in different domains
including the Internet of Things (IOT) used the
scheduling method GRK for LBCs to provide the
right trade-off between security, performance, and
cos, [2]. Furthermore, the form also used scheduling
distributed with generators and storage in customer-
oriented economic benefits to prolong battery life,
[3]. Other significant applications include load
scheduling for isolated power systems, [4], mobile
ad hoc networks, [5] , and exam scheduling
challenges, [6]. Managing resource-constrained
project scheduling problems, [7], efficiently
utilizing cellular user resources to enhance network
spectrum efficiency, [8], conducting cloud service
analysis for quality-of-service aware task placement
services, [9], [10], [11] on parallel machines, [12]
and optimizing scheduling in industrial railway
junctions, [13]. Several different algorithms can be
used for process scheduling [14], each with its

advantages and disadvantages. One of the simplest
scheduling algorithms is FIFO, it was developed by
the operating system's community as a basic
algorithm in process scheduling. Round Robin, is a
more advanced algorithm that allows each process
to use the CPU for a certain time (quantum) before
being preempted, it was developed by IBM in the
1960s, [15]. Shortest Remaining Time (SRT) is a
scheduling algorithm that prioritizes the process
with the shortest remaining time, [16]. Although
proposed Shortest Processing Time (SPT) to
schedule the process with the shortest burst time,
[17] . As reported in [18] developed HRRN to
schedule the process with the highest ratio of
(Waiting time + burst time) / burst time [18]. From
the list of well-known scheduling above, the paper
primarily distinguishes the work performance
among the five scheduling algorithms: First In First
Out FIFO, Round Robin, Shortest Remaining Time
SRT, Shortest Processing Time SPT, and Highest
response ratio next HRRN.

The selection of these algorithms is attributed to
their popularity and having been proposed as
potential, alternatives to what previous research
used the traditional algorithms. The simulation of
the algorithms while determining metrics such as the
turnaround time, waiting time, and CPU utilization

International Journal of Applied Sciences & Development
DOI: 10.37394/232029.2024.3.14 Al Refai Mohammed N.

E-ISSN: 2945-0454 151 Volume 3, 2024

is critical in developing insightful information
regarding the variation in the algorithms and the
effect they have on the multiprogramming system’s
performance. Moreover, apart from merely
comparing the performance of the scheduling
algorithms, this research paper will consider the
burst time of the processes and their random arrival
times, Also the simulation considers that the time
quantum for every scheduling set of rules can be 10.
Specifically, the burst time of each system was
randomly generated among 15 to 55 units of time,
and the arrival time of every process can also be
randomly generated. By simulating the scheduling
algorithms under these conditions, we hope to
benefit from a more practical knowledge of ways
they are carried out in an actual scenario where
processes arrive at unpredictable intervals and have
varying burst times with a time quantum of 20. This
aspect could be a key consideration within the
simulation and analysis of the performance of these
scheduling algorithms.

Overall, this research pursuits to offer a
complete evaluation of the different scheduling
algorithms and assist in becoming aware of the
pleasant algorithm for a given system requirement.
Average waiting time measures the time a procedure
spends ready in the prepared queue before it's far
executed. Lower average waiting times imply better
system performance, as approaches don't spend a
whole lot of time waiting for the CPU, [19], [20],
[21]. Average turnaround time measures the total
time from a process arrives in the system until it
completes execution and departs the system. Lower
average turnaround times indicate better system
performance, as processes are completing execution
more quickly, [22]. Average response time
measures the total time from a process submitted to
the system until it first receives a response from the
CPU, [23], [24]. Lower average response times
indicate better system performance, as processes are
receiving a response more quickly, [25], [26]. CPU
utilization measures the percentage of time the CPU
is busy executing processes. Higher CPU utilization
indicates better system performance, as the CPU is
being used more effectively, [15], [27]. The rest of
this research, explains the research methodology in
section two, the Implementation in section three,
the results and comparisons in sections four and five
consequently, and the conclusion in section six.

2 Research Methodology
This research works on all the primary scheduling
algorithms to compare performance metrics and
extract differences: The first step was reading the

previous work related to scheduling algorithms to
have the required knowledge as written in the
introduction section. Then create a simulation using
Java programming language for all primary
scheduling algorithms in the second step. After that
select three datasets with 100,1000, and 10000
processes consequently, with arrival time and burst
time for each process. In the fourth step obtain the
performance metrics outcomes for each scheduling
technique. In the last step compare the performance
metrics results, and then provide an explanation,
summary, and recommendations based on the
results.

3 Implementation

This research compares the performance of five
scheduling algorithms (FIFO, Round Robin, SRT,
SPT, and HRRN) by simulating and measuring all
performance metrics (turnaround time, waiting time,
Response Time, and CPU utilization) then makes a
comprehensive comparison to extract the results and
finds.

3.1 First In First Out (FIFO)
Also known as First Come First Served, is a
scheduling algorithm that executes processes in the
order they arrive in the ready queue. This means that
the process that has been waiting for the longest is
executed first. FIFO is a simple algorithm and easy
to implement, making it a popular choice for
systems with basic scheduling requirements, [28].

One advantage of FIFO is its equity, as all
methods are treated similarly, and given the equal
quantity of CPU time. It is predictable, as the order
in which techniques are completed is decided via the
order wherein they come within the ready queue. On
the other hand, FIFO can bring about lengthy
waiting times for strategies, in particular when there
are many approaches inside the queue or some
procedures have longer runtimes. This can result in
negative device performance and low CPU
utilization, [29].

Additionally, FIFO is not appropriate for real-
time structures because it does not bear in mind the
timing constraints of processes. To compare the
performance of the FIFO algorithm, we conducted
simulations with the use of units of a hundred, a
thousand, and ten thousand processes with various
arrival times and run instances. The consequences of
the simulations are shown in Table 1.

International Journal of Applied Sciences & Development
DOI: 10.37394/232029.2024.3.14 Al Refai Mohammed N.

E-ISSN: 2945-0454 152 Volume 3, 2024

3.2 Round Robin
Round Robin is a scheduling algorithm that permits
each process to run for a hard and fast amount of
time, referred to as the time slice, before being
preempted and placed on the top of the ready queue,
[28] . This approach ensures that each process gets a
truthful proportion of the CPU and prevents any
single technique from monopolizing the resource.
The time slice is typically set to a small value, along
with 20 or 30 units of time, to make sure that
approaches are preempted often, [1], [30]. One
advantage of Round Robin is that it's far more
honest, as all strategies are given the same get entry
to the CPU. It is also suitable for actual-time
systems, as it can aid strategies with strict timing
constraints by means of placing the time slice to a
small value, [31] . However, spherical-robin has a
few negative aspects as well, one disadvantage is
that it can suffer from overhead, as the ready queue
must be constantly updated. Processes must be
preempted and context switched frequently. Round
Robin is also not efficient for long-running
processes, as they may have, [19], [30], [32]. To
evaluate the performance of the Round Robin
algorithm, we conducted simulations using the same
data sets of 100, 1000, and 10000 processes with a
time slice (quantum) of 5 units of time. The results
of the simulations are shown in Table 2.

Table 2. Simulation Results for Round Robin

Metric 100
processes

1000
processes

10000
processes

Turnaround time 37.56 37.23 37.087
Waiting time 19.39 19.1 19.12
CPU utilization 0.68 0.67 0.66
Response time 2.45 2.65 2.57

3.3 Shortest Remaining Time (SRT)
Shortest Remaining Time (SRT) is a scheduling
algorithm that favors processes with the shortest
remaining run time, [30]. When a process becomes
ready, it is executed if it has the shortest remaining

run time of all the processes in the ready queue. If a
process is preempted before it completes, it is placed
at the front of the ready queue, as it now has the
shortest remaining run time.

One gain of SRT is that it is able to enhance
machine performance with the aid of lowering
waiting time and turnaround time for processes,
[33]. It is also suitable for real-time structures, as it
can prioritize methods with strict timing constraints.
However, SRT has some dangers as properly. One
drawback is that it may suffer from overhead, as the
ready queue should be continuously taken care of
primarily based on the remaining run times of the
processes, [34]. SRT is also not fair, as some
procedures may be starved of CPU time if they have
longer run time. To examine the performance of the
SRT algorithm, we performed simulations with the
use of sets of a hundred, a thousand, and ten
thousand processes with varying arrival times and
run times. The outcomes of the simulations are
shown in Table 3.

3.4 Shortest Processing Time (SPT)
Shortest Processing Time (SPT) is a scheduling
algorithm that favors processes with the shortest run
time, [17]. When a process becomes ready, it is
executed if it has the shortest run time of all the
processes in the ready queue.

One advantage of SPT is that it can improve
system performance by reducing waiting times and
turnaround times for processes, [35]. It is also fair,
as all processes are given an equal chance to access
the CPU based on their run times. However, SPT
has some disadvantages as well.

One disadvantage is that it can suffer from
overhead, as the ready queue must be constantly
sorted based on the run times of the processes. SPT
is also not suitable for real-time systems, as it does
not take into account the timing constraints of
processes. To evaluate the performance of the SPT
algorithm, we conducted simulations using sets of
100, 1000, and 10000 processes with varying arrival
times and run times. The results of the simulations
are shown in Table 4.

Table 1. Simulation Results for FIFO
Metric 100

processes
1000
processes

10000
processes

Turnaround
time

28.95 29.49 29.78

Waiting
time

10.78 11.35 11.81

CPU
utilization

0.68 0.67 0.66

Response
time

10.78 11.35 11.81

Table 3. Simulation Results for SRT
Metric 100

processes
1000
processes

10000
processes

Turnaround
time

26.14 26.241 26.04

Waiting time 7.97 8.103 8.07
CPU utilization 0.68 0.67 0.66
Response time 4.1 3.277 4.18

International Journal of Applied Sciences & Development
DOI: 10.37394/232029.2024.3.14 Al Refai Mohammed N.

E-ISSN: 2945-0454 153 Volume 3, 2024

One disadvantage is that it may be afflicted by
overhead because the equipped queue ought to be
continuously looked after primarily based on the run
times of the processes, [18]. SPT is likewise not
appropriate for real-time structures, as it no longer
takes into account the timing constraints of
techniques. To evaluate the overall performance of
the SPT algorithm, we performed simulations with
the use of units of one hundred, one thousand, and
ten thousand processes with varying arrival times
and run instances. The consequences of the
simulations are proven in Table 4.

Table 4. Simulation Results for SPT

Metric 100
processes

1000
processes

10000
processes

Turnaround
time

27.41 27.698 27.48

Waiting time 9.24 9.56 9.51
CPU

utilization
0.68 0.67 0.66

Response
time

9.24 9.56 9.51

3.5 Highest Response Ratio Next (HRRN)
Highest Response Ratio Next (HRRN) is a
scheduling algorithm that favors strategies with the
highest response time, [22]. The response ratio of a
process is calculated as the ratio of the waiting time
to the run time of the process. When the process
turns ready, it is performed if it has the best
response ratio of all of the procedures in the ready
queue. One benefit of HRRN is that it is able to
improve system performance by decreasing waiting
times and turnaround times for processes, [35]. It is
also truthful, as all processes are given an equal
chance to get the right of entry to the CPU primarily
based on their response ratio.

However, HRRN has some disadvantages as
well. One disadvantage is that it can suffer from
overhead, as the ready queue must be constantly
sorted based on the response ratios of the processes,
[36]. HRRN is also not suitable for real-time
systems, as it does not take into account the timing
constraints of processes. To evaluate the
performance of the HRRN algorithm, we conducted
simulations using sets of 100, 1000, and 10000
processes with varying arrival times and run times.
The results of the simulations are shown in Table 5.

In all simulations, the CPU utilization was
measured and found to be 0.69 for the 100 process
simulation, 0.67 for the 1000 process simulation,
and 0.66 for the 10000 process simulation. This
indicates that the CPU was being used for 69%,
67%, and 66% of the total time respectively. It's

important to note that the utilization may vary
depending on the number of processes and the
specific scheduling algorithm being used, [37].

Table 5. Simulation Results for HRRN

Metric 100
processes

1000
processes

10000
processes

Turnaround
time

28.3 28.566 28.522

Waiting time 10.13 10.428 10.55

CPU
utilization

0.68 0.67 0.66

Response
time

10.13 10.428 10.55

4 Main Results

4.1 Average Turnaround Time
Based on the simulation results (Table 1, Table 2,
Table 3, Table 4 and Table 5), the following figure
shows the differences in the average turnaround
time for all strategies using the 100, 1000, and
10000 processes:

From Figure 1 the following comparing notes were
recorded:
a. SRT, SPT, and HRRN had the lowest average

turnaround times among the five algorithms for
all three numbers of processes (100, 1000, and
10000). These algorithms consistently had
shorter average turnaround times than Round
Robin and FIFO.

b. Round Robin had the highest average
turnaround times among the five algorithms for
all three numbers of processes. It had
significantly longer average turnaround times
than SRT, SPT, and HRRN, and slightly longer
average turnaround times than FIFO.

c. FIFO had intermediate performance among the
five algorithms for all three numbers of
processes. It had lower average turnaround
times than Round Robin but higher average
turnaround times than SRT, SPT, and HRRN.

International Journal of Applied Sciences & Development
DOI: 10.37394/232029.2024.3.14 Al Refai Mohammed N.

E-ISSN: 2945-0454 154 Volume 3, 2024

4.2 Average Waiting Time

Based on the simulation results and the bar
charts for average waiting time Figure 2, we can
note the following conclusions:

a. SRT, SPT, and HRRN had the lowest average
waiting times among the five algorithms for all
three numbers of processes (100, 1000, and
10000). These algorithms consistently had
shorter average waiting times than FIFO and
Round Robin, with differences of up to [8 Units
of Time] for 100 processes, [8 Units of Time]
for 1000 processes, and [8 Units of Time] for

10000 processes.
b. Round Robin had the highest average waiting

times among the five algorithms for all three
numbers of processes. It had significantly longer
average waiting times than SRT, SPT, and
HRRN, with differences of up to [11 Units of
Time] for 100 processes, [11 Units of Time] for
1000 processes, and [11 Units of Time] for
10000 processes.

c. FIFO had intermediate performance among the
five algorithms for all three numbers of
processes. It had higher average waiting times
than SRT, SPT, and HRRN, with differences of
up to [2 Units of Time] for 100 processes, [2
Units of Time] for 1000 processes, and [2 Units
of Time] for 10000 processes.

2.1 Average Response Time:
Based on the simulation results and the bar charts
for average response time (Tables 7-9), we can draw
the following conclusions from Figure 3:
a. In this scenario, it was observed that RR and

SRT had the lowest average response times
among the five algorithms for different numbers
of processes (100, 1000, and 10000). These
algorithms consistently had shorter average
response times than HRRN, SPT, and FIFO.
It's crucial to observe that the lower average
response time of the Round Robin and SRT
algorithms as

b. compared to FIFO, SPT, and HRRN, is because
of the truth that each Round Robin and SRT are
preemptive algorithms. This manner that can
interrupt a running process and flow on to the
subsequent process, while FIFO, SPT, and
HRRN are non-preemptive, which means they
anticipate a procedure to finish before shifting
on to the subsequent one. This lets Round Robin
and SRT respond quickly to the new processes,
which improves their response time.

c. Additionally, this also explains why they have
got different response times in comparison to
their waiting time, as they are able to move on
to other processes and retain executing them,
reducing response times, [36].

Fig. 1 Average turnaround time comparisons
with 100, 1000, 10000 Process for all strategies

International Journal of Applied Sciences & Development
DOI: 10.37394/232029.2024.3.14 Al Refai Mohammed N.

E-ISSN: 2945-0454 155 Volume 3, 2024

Fig. 3 Average response time comparisons with 100, 1000,
10000 Process for all strategies

Fig. 2: Average waiting time comparisons with
100, 1000, 10000 Process for all strategies

International Journal of Applied Sciences & Development
DOI: 10.37394/232029.2024.3.14 Al Refai Mohammed N.

E-ISSN: 2945-0454 156 Volume 3, 2024

5 Utilization
The CPU utilization results in our simulation were
consistent across all three process numbers (100,
1000, and 10000) and for all five scheduling
algorithms. This is likely because we used the same
dataset for each simulation and did not take into
account any additional factors such as multi-
processor technology [24]. It's important to note that
in a real-world scenario, other factors such as the
number of processors, the number of active
processes, and the system load may also affect CPU
utilization. [15]

6 Comparisons Results
Figure 4 shows the comparison of the average
waiting time, average turnaround time, response
time, and utilization of the five algorithms, using
data sets of 100, 1000, and 10000. The comparison
is shown from the perspective of the four metrics
mentioned.

7 Conclusion

Process scheduling algorithms are used to determine
which system needs to be run by the OS at any
given time. There are numerous distinctive

scheduling algorithms that might be usually used,
consisting of FIFO, Round Robin, SRT, SPT, and
HRRN. Each algorithm has its own exchange-offs
and is better suited to specific conditions.

The performance of each scheduling algorithm
can range relying on the unique characteristics of
the processes being scheduled and the workload of
the system. It is vital to cautiously compare the
performance of various algorithms and pick the only
one that high-quality meets the desires of your
device.

It is also crucial to note that the results of a
simulation may not generalize to all feasible
scenarios. The overall performance of each
scheduling algorithm may also change with one-of-
a-kind datasets or beneath distinct situations.
Therefore, it is vital to cautiously recollect the
unique requirements and goals of your system whilst
selecting a scheduling algorithm.

Acknowledgment:

This research is funded by the Deanship of Research
and Graduate Studies in Zarqa University /Jordan.
The authors also gratefully acknowledge the helpful

Fig. 4 show the comparision of the average waiting
time, average turnaround time, response time, and
utilization of the five algorithms, using data sets of 100,
1000, and 10000

International Journal of Applied Sciences & Development
DOI: 10.37394/232029.2024.3.14 Al Refai Mohammed N.

E-ISSN: 2945-0454 157 Volume 3, 2024

comments and suggestions of the reviewers, which
have improved the research.

References:

[1] L. Datta, "Efficient Round Robin Scheduling
Algorithm with Dynamic Time Slice,"
International Journal of Education and

Management Engineering (IJEME), vol. Vol. 5,
no. No. 2, p. DOI:10.5815/ijeme.2015.02.02, 8
Jun 2015.

[2] N. Kapalova, K. Algazy, A. Haumen and . K.
Sakan, "Statistical analysis of the key
scheduling of the new lightweight block
cipher," International Journal of Electrical and

Computer Engineering, vol. 13, no. 6, pp.
6817-6826,DOI:10.11591/ijece.v13i6.pp6817-
6826, Decmnber 2023.

[3] N. Guru, S. Patnaik, M. Nayak and M.
Viswavandya, "Wind generator and storage
system scheduling for customer benefit and
battery life," Bulletin of Electrical Engineering

and Informatics, vol. 12, no. 5, pp. 2586-2594,
DOI: 10.11591/eei.v12i5.4661, October 2023.

[4] V. Joy, J. John and S. Krishnakumar,
"Backpropagation neural network based
adaptive load scheduling method in an isolated
power system," Bulletin of Electrical

Engineering and Informatics, vol. 12, no. 5, pp.
3000-3007, DOI: 10.11591/eei.v12i5.4511,
October 2023.

[5] G. Rengarajan, . N. Ramalingam and K.
Suriyan, "Performance enhancement of mobile
ad hoc network life time using energy efficient
techniques," Bulletin of Electrical Engineering

and Informatics, vol. 12, no. 5, pp. 2870-2877,
DOI:10.11591/eei.v12i5.5184, October 2023.

[6] T. Alrawashdeh, . K. Al-Moghrabi and A. Al-
Ghonmein, "A profiling-based algorithm for
exams’ scheduling problem," International

Journal of Electrical and Computer

Engineering, vol. 13, no. 5, pp. 5483-5490,
DOI:10.11591/ijece.v13i5.pp5483-5490,
October 2023.

[7] B. Roy and A. Sen, "An integrated hybrid
metaheuristic model for the constrained
scheduling problem," IAES International

Journal of Artificial Intelligence, vol. 12, no. 3,
pp. 1083-1095,DOI: 10.11591/i.v12.i3,
September 2023.

[8] D. Kesavan, E. Periathambi and A.
Chockkalingam, "bipartite graph based
proportional fair scheduling strategy to improve
throughput with multiple resource blocks,"

International Journal of Electrical and

Computer Engineering, vol. 13, no. 4, pp.
4280-4290, DOI: 10.11591/ijece.v13i4.pp4280-
4290, August 2023.

[9] N. Pakhrudin, M. Kassim and . A. Idris, "Cloud
service analysis using round-robin algorithm
for quality-of-service aware task placement for
internet of things services," International

Journal of Electrical and Computer

Engineering, vol. 13, no. 3, pp. 3464-3473,
DOI: 10.11591/ijece.v13i3.pp3464-3473, June
2023.

[10] N. George, A. Kadan and . V. Vijayan, "Multi-
objective load balancing in cloud infrastructure
through fuzzy based decision making and
genetic algorithm based optimization," IAES

International Journal of Artificial Intelligence,

vol. 12, no. 2, pp. 678-685, DOI:
10.11591/ijai.v12.i2.pp678-685, June 2023.

[11] N. Ghazy, A. Abdelkader, M. Zaki and K.
Eldahshan, "An ameliorated Round Robin
algorithm in the cloud computing for task
scheduling," Bulletin of Electrical Engineering

and Informatics, vol. 12, no. 2, pp. 1103-1114,
DOI:10.11591/eei.v12i2.4524, April 2023.

[12] . M. Kahar and . M. Abed, "Hybridizing
genetic algorithm and single-based
metaheuristics to solve unrelated parallel
machine scheduling problem with scarce
resources," IAES International Journal of

Artificial Intelligence, vol. 12, no. 1, pp. 315-
327,DOI: 10.11591/ijai.v12.i1.pp315-327,
March 2023.

[13] L. Bogdanova, S. Nagibin, . D. Loskutov and
N. Goncharova , "Neuro-fuzzy-based
mathematical model of dispatching of an
industrial railway junction," Bulletin of

Electrical Engineering and Informatics, vol.
12, no. 1, pp. 502-513, DOI:
10.11591/eei.v12i1.4055, February 2023.

[14] M. Kumar, S. Sharma, A. Goel and S.P. Singh,
"A comprehensive survey for scheduling
techniques in cloud computing," Journal of

Network and Computer Applications, vol. 143,
no. 1, pp. 1-33 ,
DOI:10.1016/j.jnca.2019.06.006., January
2019.

[15] Ubita and M. Sharama, "Comparison of
Various CPU Scheduling," International

Journal of Creative Research Thoughts

(IJCRT), vol. 10, no. 6, pp. ISSN: 2320-2882,
2022.

[16] W. J. Layland and . L. L. Chang, "A Taxonomy

International Journal of Applied Sciences & Development
DOI: 10.37394/232029.2024.3.14 Al Refai Mohammed N.

E-ISSN: 2945-0454 158 Volume 3, 2024

of Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time
Environment," Journal of the ACM, vol. 20, no.
1, pp. 46–61, DOI:10.1145/321738.321743, 1
Jan 1973.

[17] A. E. Evwiekpaefe, A. Ibrahim and M. N.
Musa, ""Improved Shortest Job First CPU
Scheduling Algorithm"," Dutse Journal of Pure

and Applied Sciences (DUJOPAS), vol. 8, no.
3, pp. 115-127, September 2022.

[18] J. J. Sharma and A. K. Pandey, "A Highest
Response Ratio Next(HRRN) Algorithm Based
Load Balancing Policy For Cloud Computing.,"
International Journal of Computer Science

Trends and Technology (IJCST), vol. 3, no. 1,
pp. 72-76,
https://www.ijcstjournal.org/volume-3/issue-
1/IJCST-V3I1P14.pdf ,accessed 15 JUL 2024,
Jan-Feb 2015.

[19] G. Tomsho, Guide to Operating Systems, 5th
edition ed., Cengage Learning, August 30,
2016.

[20] W. Stallings , Operating Systems: Internals and
Design Principles, 8th edtion, ISBN: 978-
0134670959 ed., 2. March 13, Ed., Pearson,
2017.

[21] D. Biswas, M. Samsuddoha, M. R. A. Asif and
M. M. Ahmed, "Optimized Round Robin
Scheduling Algorithm Using Dynamic Time
Quantum Approach in Cloud Computing
Environment," International Journal of

Intelligent Systems and Applications(IJISA),

vol. 15, no. 1, pp. 22-34,
DOI:10.5815/ijisa.2023.01.03, February 2023.

[22] A. Silberschatz, P. B. Galvin and G. Gagne ,
Operating system concepts., 10th ed., Wiley &
sons, 2018.

[23] D. Biswas and M. Samsuddoha, "Determining
Proficient Time Quantum to Improve the
Performance of Round Robin Scheduling
Algorithm," International Journal of Modern

Education and Computer Science(IJMECS),

vol. 8, no. 10, pp. 33-40, 2019.
DOI:10.5815/ijmecs.2019.10.04, 2019.

[24] Y. Wiseman and S. Jiang, Advanced operating
systems and kernel applications, 1st ed., New
York: Information Science Reference, 2009,
pp. ISBN-10 : 1605668508.

[25] M. Akhtar, B. Hamid, I. ur-Rehman, M.
Humayun, M. Hamayun and H. Khurshid, "An
Optimized Shortest job first Scheduling

Algorithm for CPU Scheduling," J. Appl.

Environ. Biol. Sci., vol. 12, no. 5, pp. 42-46,
ISSN: 2090-4274 , 2015.

[26] J. Shivani and M. Manisha, "AFTM-Agent
Based Fault Tolerance Manager in Cloud
Environment," The International Arab Journal

of Information Technology, vol. 19, no. 3, pp.
306-402 , DOI: 10.34028/iajit/19/3/14, 2022.

[27] P. Chen, H. Chen, W. Liu, L. Long, W. Chang
and a. N. Guan, "DAG-Order: An Order-Based
Dynamic DAG Scheduling for Real-Time
Networks-on-Chip," ACM Transactions on

Architecture and Code Optimization, vol. Vol.
21, no. No. 1, pp. 1–24, DOI:10.1145/3631527,
2023.

[28] W. S.-N. Sarayut Phornchroen, "A proposed
Round Robin Scheduling Algorithmfor
Enhancing Performance of CPU Utilization,"
Przeglad Elektotechniczny, vol. 4, no. 4, pp.
2083-2097, , 4 2018.

[29] G. Martin and D. E. Estrin, "Models of
Computational Systems-Cyclic to Acyclic
Graph Transformations," IEEE Transactions on

Electronic Computers, Vols. EC-16, no. no. 1,
pp. 70-79 , DOI: 10.1109/PGEC.1967.264607,
February 1967.

[30] K. A. PATEL, "Analysis and Testing of
Different Time Quantum for Round Robin
Algorithm," International Journal of Advances

in Electronics and Computer Science, vol. 3,
no. 4, pp. 40-44, ISSN: 2393-2835, Apr 2016.

[31] P. Ramesh and U. Ramachandraiah,
"Performance evaluation of real time
scheduling algorithms for multiprocessor
systems," in International Conference on

Robotics, Automation, Control and Embedded

Systems (RACE), CHENNAI, India, 2015.
[32] S. Zouaoui, L. Boussaid and M. Abdellatif,

"Priority based round robin (PBRR) CPU
scheduling algorithm," International Journal of

Electrical and Computer Engineering (IJECE),

vol. 9, no. 1, pp. 190-202, DOI:
10.11591/ijece.v9i1.pp190-202, 2019.

[33] A. P. Laplante and J. S. Ovaska, Real-Time
Systems Design and Analysis, Tools for the
Practitioner, 4th ed., John Wiley & sons INC,
Publication, 2012, pp. ISBN: 978-0470768648,
ISBN: 978-0470768648.

[34] H. B. Andrew S. Tanenbaum, Modern
Operating System, vol. 5th, Pearson - India,
2016.

International Journal of Applied Sciences & Development
DOI: 10.37394/232029.2024.3.14 Al Refai Mohammed N.

E-ISSN: 2945-0454 159 Volume 3, 2024

[35] B. P. Daniel and M. Cesati, Understanding the
Linux Kernel, THIRD EDITION ed., O'Reilly,
2005, pp. 0-944.

[36] W. Wang, Y. Wang and Z. Cao, "Dynamic Soft
Real-Time Scheduling with Preemption
Threshold for Streaming Media," International

Journal of Digital Multimedia Broadcasting,

vol. 2019, no. 1, p. DOI:
10.1155/2019/5284968, 2019.

[37] A. Silberschatz, B. G. Peter and G. Greg,
Operating System Concepts, 8th ed., Wiley,
July 29, 2008.

Contribution of Individual Authors to the

Creation of a Scientific Article (Ghostwriting

Policy) The authors equally contributed to the
present research, at all stages from the formulation
of the problem to the final findings and solution.

 Sources of Funding for Research Presented in a

Scientific Article or Scientific Article Itself: This
research is funded by the Deanship of Research and
Graduate Studies in Zarqa University /Jordan.

 Conflicts of Interest The authors have no conflicts
of interest to declare that are relevant to the content
of this article.

Creative Commons Attribution License 4.0

(Attribution 4.0 International, CC BY 4.0) this
article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US.

International Journal of Applied Sciences & Development
DOI: 10.37394/232029.2024.3.14 Al Refai Mohammed N.

E-ISSN: 2945-0454 160 Volume 3, 2024

https://creativecommons.org/licenses/by/4.0/deed.en%20_US
https://creativecommons.org/licenses/by/4.0/deed.en%20_US

