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Abstract: We study small traveling salesman problems (TSPs) because current quantum computers 
can find optional solutions for TSPs with up to 14 cities.  Also, we study small TSPs because TSPs 
have been recommended to be benchmarks to measure quantum optimization on all types of 
quantum hardware.  This means comparisons of quantum data about small TSPs.  We extent 
previous numerical results that were reported in “Small Traveling Salesman Problems” for 6, 8 
and 10 cities.  The new results in this paper are for 10 – 14 cities in symmetric TSPs.  The data for 
this new range of cities is consistent with the previous data and can be the basis for estimates of 
results from quantum computers that are upgraded to handle more than 14 cities.  The work and 
analysis suggest two conjectures that we discuss.  The paper also contains an annotated survey of 
recent publications about TSPs. 
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1   Introduction 

Research interest in the traveling salesman 
problem (TSP) has been stimulated by 
demonstrated ability to find optimal solutions 
on quantum processors [28] and by questions 
such as:  What are the characteristics that 
distinguish easy to solve TSPs from those 
that are difficult to find an optimal solution 
on a quantum computer?  Additional interest 
in TSPs has come from proposals to use TSPs 
as benchmarks for quantum optimization on 
various hardware [9, 32, 33]. 

   Due to its many applications and 
computational complexity, the worldwide 
opinion of the TSP has escalated from an 
obscure novelty in the 1960’s to a leading 
example of combinatorial optimization 
problems.  Reference [1], which has 
prominent contributors and editors, was 
instrumental in this transition.  Textbooks [2 
- 5] contributed to the rise. of the TSP. 

   The current paper is a continuation of [6] 
where the structure of TSPs for 6, 8 and 10 

cities is examined.  We observe similar 
structure in the current study for 10 – 14 cities 
and show the supporting data in Tables 3 and 
4.  Interestingly, Table 3 shows without 
exception that as the number of cities 
increases, the number of optimal tours 
increases. 

   The effort for [6] was motivated by the 
need to have reference TSPs for comparison 
to the results of the D-Wave quantum solver 
that has about 2,000 qubits and can optimally 
solve TSPs with up to about 8 cities.  An 
upgraded D-Wave quantum solver with about 
5,600 qubits can optimally solve TSPs with 
up to 14 cities.  This improvement stimulated 
the current study to understand the nature of 
optimal solutions.  To obtain an optimal 
solution on D-Wave’s upgraded quantum 
processor, the size of the TSP is limited to about 
14 cities due to difficulties embedding all-to-all 
connections of cities.  Therefore, in this study we 
report about optimal solutions of TSPs with at 
most 14 cities.  The technique in [32] to solve the 
TSP is limited to about 8 cities. 
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   We define the TSP.  Given a set of cities 
and the distance between each pair of cities, 
the TSP asks for a shortest route that visits 
each city once and returns to the starting city.  
A shortest route is called an optimal tour.  If 
for each pair of cities (A, B), the distance 
from city A to city B is the same as the 
distance from city B to city A, then the TSP 
is called symmetric.  The term TSP includes 
those that are symmetric and those that are 
not symmetric.  Initial work defining the TSP 
on a quantum annealing computer was 
published in [7, 8, 30]. 

   We studied symmetric and non-symmetric 
TSPs in [6] without distinction.  References 
[9] and [10] recommend symmetric TSPs as 
a benchmark for quantum optimization 
problems and disqualify non-symmetric 
TSPs as benchmarks.  Therefore, the current 
study is only about symmetric TSPs.  This is 
very significant because there are extremely 
few random TSPs that are symmetric 
compared to the number that are non-
symmetric. 

   Since we are interested primarily in an 
optimal answer, our work does not consider 
hybrid solvers (quantum and digital 
combined, each doing part of the solution) 
because their analog nature usually produces 
answers that are not optimal.  We are 
interested in the total number of optimal tours 
and the frequency of occurrence because 
quantum results can contain several 
minimum energy solutions that may be near-
optimal or optimal tours.  This gives the 
salesman more than one option for a tour. 

   We outline the contents of this paper.  The 
next Section contains insights and two 
conjectures.  Section 3 contains the settings 
for the parameters.  Section 4 has the data 
generated in the study.  Future studies of the 
TSP are recommended in Section 5.  Section 
6 is an annotated survey of recent, relevant 

articles, mostly about the TSP.  Conclusion 
and results are in Section 7. 

2   Open Questions and Conjectures 

Symmetric TSPs are beginning to be used to 
benchmark quantum algorithms and quantum 
hardware for quantitative optimization 
problems [27].  This effort is generating new 
questions about TSPs.  Some of them are: (i) 
How many shortest routes does a TSP have? 
(ii) What is the gap between the length of a 
shortest route and the length of a next-to-
shortest route for TSPs? 

   A conjecture related to Question (i): If a 
TSP has few shortest routes, then adverse 
quantum effects are likely to occur that 
curtail solving the TSP on a quantum 
machine.  A conjecture related to Question 
(ii): If the gap for a TSP is small, then adverse 
quantum effects are likely to occur.  The 
adverse quantum effects for the TSP are 
excessive time to solve, failure to return a 
route, and inability to find a shortest route.  
We expect that answers to the questions for 
TSPs can help predict outcomes for 
quantitative optimization problems. 

   A study has begun to quantify TSP 
characteristics by examining TSPs with 6 
cities [11].  The small number of qubits at that 
time limited the size of the TSPs that could 
be examined.  Now an increase in the number 
of qubits requires larger TSPs.  In the current 
paper we show results for TSPs with 10 – 14 
cities with data collected from classical 
processors. 

   It is widely recognized that quantum 
computers are analog devices that may 
deviate from the theory of an algorithm [12].  
This difficulty, coupled with numeric 
imprecision, caused some quantum 
calculations to miss optimal solutions for 
TSPs.  For some TSPs the D-Wave quantum 
computer could not distinguish between an 
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optimal solution and a close-to-optimal 
solution. 

3   Methodology and Parameter 

Settings 

Table 1 lists the parameters and their 
settings in [6] and the current paper. 

 

Table 1. Settings for the parameters in two studies 

Parameter Reference [6] Setting Current Paper Setting 

Number of Cities 6, 8, 10 10, 11, 12, 13, 14 
Number of TSPs studied 5,000 for each number of cities 200 for 10 cities 

100 for 11 and 12 cities 
51 for 13 cities 
5 for 14 cities 

Distances between cities Random integers ∈ {1, 2, …, 
21} 

Random integers ∈ {1, 2, …, 21} 

Type of TSP Did not distinguish between 
symmetric and non-symmetric 

Symmetric 

Solution algorithm Python exact, examine all tours Python exact, examine all tours 
 

Next, we show two examples of TSPs. 

   Example 1 is a symmetric TSP on 6 cities. 
Let the cities be designated A, B, C, D, E, F.  
Let a distance matrix X be given that contains 
the distance between each pair of cities.  
Since the TSP is symmetric, X is a symmetric 
matrix, i.e., upper triangular.  The diagonal 
elements of X have no role in the TSP. 

   Example 2 is a symmetric TSP on 8 cities.  
We can describe Example 2 as an expansion 
of Example 1.  Two additional designations 
are needed for cities and additional distances 
are needed to expand X. 

   We comment about the distances restricted 
to 1, 2, …, 21 in Table 1.  A D-Wave 
implementation transcribes coefficients to 
the interval [-10, 10].  When the original 
coefficients are integers 1, 2, …, 21, then the 

D-Wave mapping to the [-10, 10] has the 
greatest accuracy because it is a 1 to 1 
mapping of integers onto integers [13].  TSPs 
with all distances 1 and 2 are NP-complete 
and have been studied in [14]. 

   Since it takes significantly longer to test 
TSPs with a larger number of cities, we 
scaled down the total number tested as the 
number of cities increased. 

4   Data Analysis and Findings 

Table 2 shows the distribution of random, 
symmetric TSPs according to the number of 
optimal tours.  Since the TSPs are symmetric, 
a tour and its inverse have the same length, 
which means the number of optimal tours is 
an even integer.  The data for 14 cities is 
weak since the sample size is very small. 
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Table 2. Distribution of random, symmetric TSPs for 10 to 14 cities 

 10 Cities 11 Cities 12 Cities 13 Cities 14 Cities 
2 Optimal Tours 159 75 67 32 3 
4 Optimal Tours  32 16 21 12  
6 Optimal Tours   8   9   8   5 1 
8 Optimal Tours   1    1    1 
10 Optimal Tours     3     
12-16 Optimal Tours      
18 Optimal Tours      1  
20 Optimal Tours      1  
Total Number of 
TSPs 

200 100 100 51 5 

Number of Optimal 
Tours 

502 268 304 180 20 

 

    Table 3 is Table 2 normalized to 100 TSPs for each number of cities.   

Table 3. Normalized distribution of random, symmetric TSPs for 10 to 14 cities 

 10 Cities 11 Cities 12 Cities 13 Cities 14 Cities 
2 Optimal Tours 79.5 75 67 64 60 
4 Optimal Tours  16 16 21 24  
6 Optimal Tours    4   9   8 10 20 
8 Optimal Tours    0.5    1   20 
10 Optimal Tours     3    
12-16 Optimal Tours      
18 Optimal Tours      2  
20 Optimal Tours      2  
Number of Optimal 
Tours 

251 268 304 360 400 

 

Table 4 shows data for the distribution of the average length of optimal tours.  We did 
not compute this for TSPs with 14 cities and for TSPs with 13 cities that have 18 and 
20 optimal tours due to a small number of TSPs. 

Table 4. Distribution of average length of optimal tours for 10 to 13 cities 

 10 Cities 11 Cities 12 Cities 13 Cities 
2 Optimal Tours   44.2   44.8   48.4 45.8 
4 Optimal Tours   48.2   47.3   51.4 46.8 
6 Optimal Tours   47.0   49.9   50.4 44.0 
8 Optimal Tours   53.0    52.0    
10 Optimal Tours     60.0    
Number of TSPs  200  100  100  49 
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Results that are like those in Table 4 are 
shown for TSPs with 6, 8 and 10 cities in 
Figures 1 – 3 of [6]. 

   Tests have been run on the D-Wave 
quantum machine that solve small, 
symmetric TSPs exactly.  In addition to our 
work, reference [28] reports several TSPs 
solved exactly. 

5   Research Directions in the 

Future 

When D-Wave upgrades its array of qubits in 
its quantum processor, then the size of TSPs 
that can be processed without heuristics or 
hybrid methods is expected to increase.  This 
number of cities will need to be determined.  
Then a study like the current one should be 
undertaken for the new numbers of cities 
beyond 14 and for 13 & 14 cities for overlap.  
The classical software Concorde [15] is 
recommended to establish a baseline, since it 
is the gold standard for solving symmetric 
TSPs. 

   The average gap between the length of an 
optimal tour and the length of the next 
shortest tour can be determined for various 
categories of TSPs.  Is there a correlation 
between the size of the gap and easy or 
difficult to solve with a quantum algorithm, 
i.e., do large gaps correspond to ‘easy to 
solve’ on a quantum processor?  ‘Easy to 
solve’ can be described numerically by the 
time to solve, accuracy of the solution, and/or 
a percentage of the optimal tours found.  This 
leads to generating and assembling TSP data 
about the two conjectures in the Preface.  
Based on future data, we can begin to decide 
the validity of the conjectures and how to 
quantify them. 

   A major challenge is the need to deal with 
more sophisticated, real-world problems. 

   Let the number of cities be fixed.  What 
sample size is needed to have X% confidence 
that all symmetric TSPs have a property of 
the samples?  Are the sample sizes in this 
paper adequate? 

    Lastly, we comment that large companies 
including Google, Microsoft, IBM, D-Wave 
and [34] are working to improve their 
quantum hardware and algorithms in order to 
secure their marketplace for this new 
technology in the business world. 

6  Recent Publications Related to 

Experimental Results about TSPs 

In this section we provide fresh insights, 
breakthroughs and collaborations from the 
literature. 

   Reference [16] categorizes an extensive list 
of references in their Tables 9 - 11.  The TSP 
is included in the analysis and comparisons. 

   The authors of [17] introduce an improved 
version of quantum annealing to handle local 
optimal results when solving the TSP on a D-
Wave processor.  Since there are difficulties 
in the theory, the experimental results are 
remarkable. 

   The quantum modeling techniques in [18] 
are designed for variants of the TSP.  It may 
be interesting to recast them for basic TSPs 
and test them on a D-Wave quantum 
processor for 6-city problems.  This is the 
smallest number of cities that can have two 
distinct loops; in this case each loop has three 
cities. 

   Paper [19] uses a logical embedding of a 
TSP in the qubit array of D-Wave’s 2,000 and 
5,000 quantum processors.  The conclusions 
agree with what is known previously.  In 
general, a TSP with at most 8 cities can be 
embedded in D-Wave’s 2,000 qubit machine 

International Journal on Applied Physics and Engineering 
DOI: 10.37394/232030.2024.3.7 Richard H. Warren

E-ISSN: 2945-0489 47 Volume 3, 2024



 
 

[20 Section 5.1] and a TSP with at most 13 
cities can usually be embedded in D-Wave’s 
5,000 qubit machine [10 Section 2]. 

   The remarkable TSP results that are 
claimed in [20] need an independent 
investigation that repeats the experiments. 

   The authors of paper [21] investigate the 
performance of two classical and two 
quantum optimization algorithms to solve the 
TSP.  The overall conclusion of the authors is 
that current classical devices significantly 
outperform the IBM quantum devices. 

   Publication [22] has the same authors and 
topic as [21].  In [22] results on the TSP for 
two classical optimization algorithms are 
compared with one quantum algorithm on a 
range of IBM quantum devices.  There is 
insufficient information about the attributes 
of the TSPs in the experiments.  The overall 
conclusion of the authors is that the classical 
optimization techniques outperform the 
quantum methods in both computational time 
and solution quality. 

   We call attention to paper [23] because it 
has similarities to the current paper.  In [23] 
pairs of integers from a 100 x 100 square are 
candidates for cities.  Randomly N pairs are 
chosen from the square for the cities of a TSP.  
The distance between cities is the Euclidean 
distance rounded down to an integer.  
According to [23 page 3], the plan is to 
address four questions with empirical data.  1. 
What is the distribution of the distances?  2. 
What is the distribution of the lengths of tours 
for instances of the same size?  3. What is the 
distribution of lengths of optimal tours for 
instances of the same size?  4. How difficult 
is it to solve an instance?  Results for 1 – 3 
are in the paper but apparently not for 4. 

   Articles [24] and [25] claim to have a technique 
to reduce the number of variables in a D-Wave 
QUBO for the TSP.  The result is expected to be 
larger TSPs processed by a quantum annealer 

without heuristics, resulting in better quality 
solutions at the expense of longer quantum 
execution time [25 Table 1].  The papers lack 
comparisons of experimental data for solving 
TSPs with and without this enhancement.  
We recommend that the data be collected for 
random, symmetric TSPs with various 
numbers of cities on both the D-Wave 2000 
and 5000 processors.  It is recommended that 
the data be presented in a table that identifies 
the quantum processor, the TSP, the number 
of cities, the length of an optimal tour, length 
of the shortest tour (found by the quantum 
processor) with and without the enhancement 
and number of qubits used with and without 
the enhancement.  Also, time for the quantum 
processing unit with and without the 
enhancement is a useful comparison. 

   The authors of [26] have developed a 
computational method for generating metric 
TSPs that are hard for Concordia [15] to 
solve, i.e., a long runtime is needed by 
Concorde to find an optimal tour. 

   Using simulated Ising quantum software 
with all-to-all connections, the eleven authors 
of [31] show details to find an optimal 
solution for a 9-city, symmetric TSP.  Based 
on that technique they experimentally solve a 
70-city TSP.  The simulation operates with 
high energy efficiency compared to several 
quantum computers, including D-Wave’s 
2,000 qubit Ising machine. 

   The researchers of paper [33] use the TSP 
on gate-based NISQ hardware to show that 
their quantum solution algorithm is superior 
to digitized quantum annealing and the 
quantum approximate optimization 
algorithm.  It appears that [33] reports 
success for a 3-city TSP solved on an IBM 
superconducting machine and for a 3-city 
TSP and a 4-city TSP solved on an IonQ 
trapped-ion machine.  These very small TSPs 
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are trivial to solve.  Results for 100 random 
6-city TSPs would be much more useful. 

7   Conclusions 

The current study examines symmetric TSPs 
that have 10 – 14 cities with distances 
between cities restricted to random integers 
in the interval 1 to 21.  The conclusions in a 
previous study [6] are essentially the same in 
the current study.  We describe them.  Let n 
be an integer and 6 ≤ n ≤ 13.  Then according 
to [6] and Tables 3 and 4 for large collections 
of n-city TSPs, most likely the number of 
optimal tours per TSP and the average length 
of an optimal tour increase together.  This 
data is the first connection between the 
number of optimal tours per TPS and the 
average length of an optimal tour. 

   The data in the last line of Table 3 shows 
for 10 – 14 cities that the number of optimal 
tours increases as the number of cities 
increases.  This result has no exceptions.  
Recalling that each column of Table 3 is 
normalized to 100 TSPs.  The rate of increase 
of optimal tours across Table 3 is very slow 
compared to the factorial rate of increase of 
tours. 

   Looking down the columns of Table 3, the 
conclusion is that as the number of optimal 
tours increases the frequency of optimal row 
tours decreases, except for two anomalies, 
one for 12 cities and the other for 14 cities. 

   Table 4 indicates that for 2 – 6 optimal tours 
as the number of cities increases from 10 to 
11 and from 11 to 12, the average length of 
an optimal tour increases.  The only 
exception occurs for 4 optimal tours 
transitioning from 10 cities to 11 cities. 

   Looking down the columns of Table 4 we 
observe that in most cases (8 of 11) as the 
number of optimal tours increases, the length 
of an optimal tour increases. The three 

exceptions occur between 4 and 6 optimal 
tours. 

   Similar results shown are anticipated for 
quantum annealing solutions of large 
numbers of TSPs. 

   In conclusion, we point to an outstanding 
lecture about the TSP [29]. 
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