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Abstract: - This paper presents a simulation study for a semiconductor laser with optical feedback based on
the Lang-Kobayashi model. The analysis of the system’s dynamical behavior, utilized using Vicente equations,
has provided evidence of the presence of chaotic behavior. Performing detailed numerical simulations, we have
explored the parameters, revealing the transitions of the system from stable operation to chaotic. Our findings
corroborate previous theoretical predictions and offer new insights into the complex behavior of semiconductor
lasers under feedback conditions. The results have significant implications for applications where controlled
chaotic behavior is desirable, such as secure communications and random number generation.
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1 Introduction
The appearance of chaos in a deterministic system,
in general, is characterized by its stochastic operation
under complex conditions that affect its operation,
[1]. With the evolution of our knowledge about
dynamical systems, functions that we previously
classified as noise are now presented in many physics,
biology, and chemistry systems, [2].

Laser systems with optical feedback have attracted
the scientific community’s interest due to their
rich characteristics, including oscillations, periodic
operation, and chaotic regime, [3]. A widely
studied model for understanding these functions is
the Lang—Kobayashi model, developed by Lang and
Kobayashi in 1980 to describe the effect of feedback’s
time lag on the system’s output, [4]. Additionally, the
Lang-Kobayashi model has become a central tool in
experimental and theoretical studies to understand the
fundamental mechanisms of chaos and bifurcation in
nonlinear optical systems, [3]. Vicente and his team
thoroughly investigated the possibility of generating
chaotic signals through the Lang-Kobayashi model.
The team also investigated the possible use of chaos
in communications security. They proposed a system
with synchronized lasers that could produce the same
chaotic signal, [5].

In secure communications, encryption is crucial
because it protects transmitted messages from
interception and unauthorized access. Encryption
transforms information into a coded format that
authorized parties can only interpret with the correct

decryption key, [6]. This ensures that sensitive
personal, financial, or strategic information remains
confidential, maintaining privacy and trust between
communicating parties., [7]. With the development
of more powerful computers, the traditional software
cryptography algorithms look vulnerable, prompting
the need to substitute the current encryption schemes,
[8]. The application of chaotic signals in data
encryption looks promising because chaotic signals
look unpredictable, [9]. Various schemes have been
proposed, with the chaotic masking being one of the
most promising to be adapted, [10]. This technique is
performed at the physical layer by adding the chaotic
carrier. The generated signal is from a nonlinear
optical element with the message’s signal. The
solid-state laser is a non-linear optical system that
exhibits chaotic behavior, [11]. Since the laser is
a nonlinear system, it typically exhibits three key
characteristics. variables, field, polarization, and
inversion, and it is an ideal element of a chaotic
system exhibiting chaotic dynamics, [12].

The masking technique involves mixing the
message to be transmitted with the signal from
a chaotic carrier generated by a nonlinear optical
component. The Lyapunov exponent calculation
verifies a signal’s chaotic behavior, [13]. Apart from
chaotic behavior in optical systems, chaos has been
experimentally verified in electronic circuits [14]. In
addition, some circuits operate in chaotic mode with
an external triggering signal or autonomous like the
Chuas circuit, which can be combined with a laser,
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[15]. In a chaotic scheme, the source of the chaotic
signal could be an autonomous electronic circuit. The
decoding of a message is done by the receiver, where
a signal generator generates the same chaotic signal
as the transmitter. The critical factor of message
recovery is the synchronization of transmitter and
receiver, [16].

In this paper, we simulate a model of a
semiconductor laser proposed by Vicente using
numerical techniques to solve the deference delay
differential equations. The paper is organized as
follows: section 1 is a literature review, followed
by section 2, where the problem is formulated.
Here, we present the details of the model. In
section 3, we present the results of our simulations
in semiconductor lasers, describe the findings, and
finally, section 4 provides some concluding remarks
and future work. Our results contribute to a deeper
understanding of chaotic regimes in semiconductor
lasers, providing insights that could inform future
developments in optical communication, sensing, and
other laser-based technologies.

2 Problem formulation
Chaos is present in systems with nonlinear behavior.
The nonlinearity in a system means that the measured
values in the system’s output are not proportional to
the input values. The presence of nonlinearity in a
system does not mean that the system will behave
chaotically but requires a form of nonlinearity to
achieve chaotic behavior, [17].

Fig. 1: Schematic diagram of the optoelectronic
feedback system, [18]

A lot of optical elements exhibit nonlinear
responses. The light amplification by stimulated
emission of radiation (laser) is one of them since
it is characterized by three parameters: the field,
polarization of matter, and population inversion.
Indeed, lasers were proven to be nonlinear systems

similar to the Lorenz model and show chaotic
dynamics in their output powers, [12].

However, lasers based on semiconductor gain
media, whose equations portray the field and
the carrier density (population inversion), can be
disturbed by applying external perturbations such
as external optical injection, optical feedback, or
modulation for accessible laser parameters. In a
semiconductor laser, the laser oscillation is affected
considerably when the light is reflected from an
external reflector coupled with the original field in the
laser cavity, [4].

In the semiconductor laser, optoelectronic
feedback is one of the perturbations of the injection
current that induces instability. Phase sensitivity is
essential for lasers with optical feedback. Fig. 1
shows optoelectronic feedback in a semiconductor
laser. The photodetector detects the light emitted
from the semiconductor laser, and then this current
is fed back to the laser by a bias circuit. The current
could be either positive or negative according to the
polarity of the amplifier.

A prototypical model to describe single-mode
semiconductor lasers subject to coherent optical
feedback is the one described by the Lang-Kobayashi
equations, [4] for the complex slowly varying
amplitude of the electric fieldE(t) and carrier number
inside the cavity N(t):

Ė(t) =
1 + ia

2

(
G+

1

τph

)
E(t) + κE(t− τ)e−iCp

(1)

ṅ(t) =
I

e
− n(t)

τn
−G|E(t)|2 (2)

Where a denotes the line-width enhancement factor,
κ is the feedback coefficient, τ is the external cavity
roundtrip, τph is the photon lifetime, τn is the carrier
lifetime, and where Cp denotes the phase of the laser
without feedback.

The pump current is fixed to I , where the laser
operates in a chaotic regime. And finally, G is the
optical gain, which is calculated by the following
relation:

G = g
n(t)− no

1 + s|E(t)|2
(3)

g is the differential gain parameter, s is the
saturation coefficient, and no is the carrier number of
transparency.

3 Chaos in semiconductor lasers
The presence of chaos is explored in this section.
The differential equations (1) and (2) are solved using
numerical methods to unveil the chaotic behavior of
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Symbol Quantity Typical orders of magnitude
a Line-width enhancement factor 5
κ Feedback coefficient 4 nsec−1

τ External cavity roundtrip time τ = 2L
vg

τph Photon lifetime 2 psec
τn Carrier lifetime 2 nsec
Cp Phase of laser without feedback 3π

2

İth Pump current threshold value e
τn

(
1

τphiġ
+ no

)
I Pump current 1.5İth
g Differential gain parameter 1.5× 104 sec
s Saturation coefficient 5× 107 sec
e Electron charge 1.6× 10−19 C
no Carrier number of transparency 1.5× 108

Table 1: Typical values of the Lang-Kobayashi simulation model
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Fig. 2: Amplitude A(t) vs time and single-sided
spectrum for A(t) when κ = 3.7nsec−1 and (Cp =
3π/2 and I = 1.5× Ith)

them. We express the electric field in the form of
E(t) = A(t)eiϕt, and substituting this term in (1),
we are taking a form of this equation that is easier to
be simulated expressed in equations (4), (5), and (6):

dA(t)

dt
=

1

2

(
G− 1

τph

)
A(t) . . .

+ κA(t− τ) cos[Cp] + ϕ(t)− ϕ(t− τ)

(4)

dϕ(t)

dt
=

1

2
a

(
G− 1

τph

)
. . .

− κ
A(t− τ)

A(t)
sin[Cp + ϕ(t)− ϕ(t− τ)]

(5)

dn(t)

dt
=

I

e
− n(t)

τn
−G|A(t)|2 (6)
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Fig. 3: Single-sided spectrum for A(t) when κ =
3.7nsec−1 and (Cp = 3π/2 and I = 1.5× Ith)

where A denotes the amplitude of electric fieldEt and
ϕ its phase, t  is the time, Cp is the phase of laser
without feedback, I is the pumping current, g is the
parameter of deferential gain, and τphi, e, τn, and no

are the lifetime of photons, the charge of electrons,
the lifetime of carriers, and density in transparency,
respectively.

The equations 4, 5,and 6 are solved; for this
purpose, we use the values of the parameters
presented in Table 1. The amplitude of the signalA(t)
is calculated as a function of time and the number of
carriers n(t) for the corresponding values. After the
end of the process, the construction of the diagrams,
presented in Fig. 2 and 3, is done after the transient
piece has been previously removed.

Then, a thorough study of the system’s behavior
for different feedback coefficient values is conducted
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Fig. 4: Amplitude A(t) as a function of time when
κ = 6.77nsec−1 and (Cp = 3π/2 and I = 1.5× Ith)
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Fig. 5: Single-sided spectrum for A(t) when κ =
6.77nsec−1 and (Cp = 3π/2 and I = 1.5× Ith)

to analyze the behavior. From the shape of the
output signal and the frequency spectrum diagram,
it is categorized as whether it is chaotic or periodic.
The transition to chaos is characterized by a doubling
of the signal period. This is observed for values
of κ = 3.7, and it is observed that the system
has only one frequency, as it can be seen in Fig.
3 at the value of κ = 5.14, where the system
exhibits the phenomenon of period doubling. The
next period-doubling occurs for κ = 5.39 and then
κ = 5.67. For values more significant than this, the
system exhibits intensely chaotic behavior, as shown
in Fig. 4, for κ = 6.67, where the signal looks
stochastic without any periodicity. Moreover, from
the single-sided frequency spectrum as shown in Fig.
5, this signal is characterized by the superposition of

a wide range of frequencies.
The chaotic state of the system is very similar

to a random noise signal. Driving the system from
periodic to chaotic mode is done by changing the
value of the feedback coefficient κ. In fact, as the
value of κ increases, it is observed that the chaos is
even more intense, and the spectrum of the system
resembles the spectrum of Gaussian white noise.

4 Conclusion
From the data analysis from the simulation that
solves the flow equations of a coherent optical
feedback system with a semi-cavity DFB laser, the
feedback coefficient κ increases the output waveform
from periodic to chaotic. Further increase presents
more intense chaos, consistent with greater apparent
randomness, making its use in cryptography more
effective. When the current I increases, the system
becomes chaotic. However, the system stabilizes in
periodic operation if its feedback coefficient is too
small.

Exploring semiconductor lasers in cryptography
broadens the scope of secure communication
technologies and opens new frontiers in utilizing
chaotic systems for practical, high-stakes
applications.

Since the system we modeled shows chaotic
operation, the next goal is to couple two synchronized
laser systems that produce the same chaotic
waveform. After that, the next step is to use
chaotic masking to explore the possibility of the
system being proposed as a chaotic encryption
scheme.
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